
EPIC - User's Guide

Table of Contents
Plug-in Installation ... 1

Prerequisites ... 1
Eclipse ... 1
Perl ... 1
Considerations when using Cygwin ... 1
Installing EPIC .. 1
Uninstalling EPIC .. 2

Setting Up Preferences .. 3
General Preferences .. 3
Code Assist ... 4
Editor .. 4
Source Formatter ... 5
Task Tags ... 6
Templates ... 6
Associating Files with the Perl Editor ... 7
CVS Setup .. 8
Setting Up the Debugger ... 9

Perl Projects ... 10
Creating a Project .. 10
Perl Include Path ... 10
Converting an Existing Project .. 11
Recommended Project Layout ... 11

Eclipse Basics .. 13
Perspectives ... 13
Views ... 13
Using Perspectives .. 13
New Perspectives .. 13
Configuring Perspectives .. 15
Saving a User Defined Perspective ... 16
Resetting Perspectives .. 16
Using Views .. 17
Opening Views ... 17
Moving and Docking Views .. 17

Working with the Perl Editor ... 18
Syntax Check ... 18
Explain Errors and Warnings ... 18
Open Declaration .. 19
Perldoc ... 21
Quick Reference ... 22
Code Assist .. 22
Variable Inspection ... 22
Module Inspection ... 23
Task Markers ... 23
Templates .. 24
Defining Templates ... 24
Using Templates ... 25
Source Formatter .. 26
Source Folding ... 26
Refactoring .. 27
Extract Subroutine ... 27
HTML Export .. 29
Outline View .. 29

Using the Perl Debugger ... 30
Launching Perl Programs .. 30

i

Launching Perl Programs in Run Mode ... 30
Re-launching a Perl Program ... 31
Creating Launch Configurations ... 32
Perl Local: Running a Perl Script on the Local Machine ... 32
Perl CGI: Run Perl Programs in a CGI Environment .. 33
Perl Remote: Debug a Perl Script on a Remote Machine ... 34
Breakpoints .. 36
Setting Breakpoints ... 36
Enabling or Disabling Breakpoints ... 36
Removing Breakpoints ... 36
Views in the Debug Perspective ... 37
Debug View ... 37
Variables View ... 37
Breakpoints View .. 39
Perl Expression View ... 39
Stepping Through the Execution of a Perl Program .. 40
Step Over .. 40
Step Into .. 40
Run to Return ... 40

RegExp Plug-in .. 42
Enabling the RegExp View ... 42
Using the RegExp Plug-in ... 42
Debugging Regular Expressions ... 42

Known Bugs & Problems ... 44
References ... 45

EPIC - User's Guide

ii

Plug-in Installation
Prerequisites
Eclipse

Before installing the EPIC plug-in, a recent version of Eclipse has to be installed. The minimum re-
quirement is version 3.1 of Eclipse for EPIC 'stable' and version 3.2 of Eclipse for EPIC 'testing'.

Eclipse comes in two flavors. The SDK version contains Java IDE components and is much larger
than the Platform version. If you only want to use Eclipse as a Perl IDE, the Platform version is suf-
ficient. If you are in for Perl and Java coding, use the SDK version.

Eclipse does not include a Java Runtime Environment (JRE). You will need a 1.4.1 level or higher
Java Runtime or Java Development Kit (JDK) installed on your machine in order to run Eclipse.

Eclipse can be downloaded from www.eclipse.org [http://www.eclipse.org].

Perl
In order to have all EPIC features like Syntax Checking, Source Formatting etc., a Perl interpreter is
needed. In principle any Perl interpreter can be used. To use debugging within Eclipse, Perl version
5.8.x or 5.6.x is required. For further requirements concerning the debugger, see the section called
“Setting Up the Debugger”.

Most *nix/Linux installations will provide Perl interpreters out of the box.

Perl for Windows can be downloaded from www.activestate.com [http://www.activestate.com]

Considerations when using Cygwin
Make sure that the mount command is available and that it is in your system path. As mount is a
standard component of Cygwin, you usually just have to add the cygwin\bin directory to your sys-
tem path.

Installing EPIC
The installation is done by using the Eclipse Update Manager. The Update Manager connects to an
EPIC Update Site [http://e-p-i-c.sourceforge.net/updates]. The Update Site can also be stored locally
if no Internet connection is available and can be downloaded from the EPIC project page [ht-
tp://e-p-i-c.sourceforge.net].

After starting Eclipse, select Help # Software and Updates # Find and Install... from the menu.

1

http://www.eclipse.org
http://www.eclipse.org
http://www.activestate.com
http://www.activestate.com
http://e-p-i-c.sourceforge.net
http://e-p-i-c.sourceforge.net
http://e-p-i-c.sourceforge.net

Select Search for new features to install an press Next. Press the Add Update Site... button for a re-
mote installation via HTTP or the Add Local Site... button if the Update Site is available locally.
When installing EPIC from remote, enter any desired Name and the URL ht-
tp://e-p-i-c.sf.net/updates.

Tick the newly created site and press the Next button. Follow the instructions of the install wizard.
The warning about the installation of an unsigned feature can be ignored. Eclipse has to be restarted
after installation.

Now the EPIC installation should be complete.

Uninstalling EPIC
To tempoarily disable or uninstall the currently active version of EPIC, select Help # Software and
Updates # Manage Configuration from the menu. Expand the tree in the dialog window which ap-
pears and select the EPIC feature. Click on the option Disable in the panel on the right side and re-
start Eclipse when asked. At this point EPIC is disabled, but still present on disk. To remove it com-
pletely, enter the same dialog again and select the previously disabled version of EPIC (you may
need to toggle showing disabled features in the dialog's toolbar). The option Uninstall will now re-
move the chosen version of EPIC completely.

Plug-in Installation

2

Setting Up Preferences
EPIC preferences can be accessed via Window # Preferences... from the Eclipse Menu.

General Preferences

Click on Perl EPIC to open the General Preferences page.

General preferences include the location of the Perl interpreter, the option to enable warnings, taint
mode and the interval of the source validation.

The validation interval indicates when to start validation after the editor becomes idle.

Apart from the standard interpreter type, the type can be switched to Cygwin. In this case the @INC
path is mapped to be Cygwin compliant.

The two debugger-related preferences work as follows:

• Enable debugger console is only useful if you wish to debug EPIC itself and should not be activ-
ated otherwise. This preference causes a special console to become available while debugging
Perl scripts. The console shows internal communication between EPIC and the Perl debugger
backend. To access this console, you have to click on the item perl -d in the Debug view.

• Suspend debugger at first statement (active by default) causes the debugger to stop right at the be-
ginning of the debugged script, even if there are no breakpoints set. If this preference is inactive,
then the debugger will not suspend until the first breakpoint is hit (or the script finishes execu-
tion).

Note

On slower systems it might be useful to disable automatic syntax validation. Syntax validation is still
possible by using the Shift-F5 function key.

3

Code Assist
On the Code Assist Preference Page the auto completion trigger characters are defined. Normally it
should not be necessary to change these values.

By default the editor suggests a list of already used variables when the characters $ @ % are typed.
To switch this feature off, deselect the Inspect Variables check box.

Editor
These options define the appearance of the Perl Editor, the coloring of the Perl source code, and
how annotations are displayed.

Smart typing settings allow to switch auto-completion of quotes, parenthesis etc. on or off.

Setting Up Preferences

4

Source Formatter
EPIC uses PerlTidy to format source code. The Source Formatter Preference allows to specify Per-
lTidy command line parameters. To get a description of available parameters, press the Help key
and select PerlTidy options from the popup menu.

Setting Up Preferences

5

Note

In order for PerlTidy to work correctly, the Perl Interpreter Preferences have to be setup correctly (see
above).

Task Tags

In this section, you can specify a list of keywords that act as markers for tasks inside comments in
your Perl code, i.e. tags that mark the beginning of a task entry.

By default, the words TODO and TASK mark the beginning of a task.

Check the Ignore Case option if you want EPIC to recognize task tags case-insensitively, e.g. #
todo my task.

If you select Allow whitespace, task tags do not need to follow a comment sign (#) directly, e.g. #
TODO my task instead of having to write #TODO my task.

See the section called “Task Markers” to see how to use Task Tags in the Perl Editor.

Templates
Templates are a powerful tool to insert pre-defined code snippets while working with the Perl Edit-
or.

Setting Up Preferences

6

How Templates are use is covered in Working with the Perl Editor . The Templates Preference page
allows the creation, import and export of Templates.

Exported Templates are stored in XML format.

Associating Files with the Perl Editor
Eclipse associates file extensions with editors. If another plug-in is installed, the EPIC Perl Editor
might not be used as the default editor when opening *.pl, *.pm or *.cgi files. To associate these file
extensions with the Perl Editor, choose Window # Preferences... from the Eclipse menu and select
Workbench # File Associations. If the Perl extensions are missing, they can be created by pressing
the Add... button. Select the Perl Editor from the list and press the Default button.

Setting Up Preferences

7

Note

Regrettably, there is currently no way [http://www.antlr.org] to associate EPIC with script files that do
not have any specific extension but instead begin with the #!/usr/bin/perl line.

CVS Setup
By default, Eclipse stores Perl files as binary when they are added to the CVS repository. To store
Perl files as text (ASCII), select Window # Preferences... from the Eclipse menu and modify the
Team # File Content settings. Add your Perl extensions (pl, pm etc.) by pressing the Add... button
and specify ASCII in the Contents column.

Setting Up Preferences

8

http://www.antlr.org
http://www.antlr.org

Setting Up the Debugger
Setting up the debugger requires two steps:

1. Define the Perl interpreter to use.

2. Install the PadWalker Perl module.

Note

It is possible to use the debugger without installing PadWalker, but in this case local variables won't be
shown.

Download the PadWalker module from CPAN [http://www.cpan.org/] (PadWalker 1.5 [ht-
tp://search.cpan.org/%7Erobin/PadWalker-0.10/]) and install as described in the installation notes or
use the installation manager provided with your Perl installation (e.g. PPM for ActiveState installa-
tions).

Earlier versions of EPIC provided a custom-compiled version of PadWalker for ActiveState 5.8.x. This
is no longer necessary; you should simply use the most recent version of PadWalker distributed by Act-
iveState.

Setting Up Preferences

9

http://www.cpan.org/
http://www.cpan.org/
http://search.cpan.org/%7Erobin/PadWalker-0.10/
http://search.cpan.org/%7Erobin/PadWalker-0.10/
http://search.cpan.org/%7Erobin/PadWalker-0.10/

Perl Projects
Creating a Project

Perl projects are created (like any other project) by selecting File # New # Project... from the Eclipse
menu.

Follow the wizard's instructions to create your Perl Project. Perl Projects appear with a custom
folder icon in the Navigator view:

Perl Include Path
To add entries to a project's Perl Include Path (@INC), right click on the project icon and select
Properties....

If non-absolute paths are entered, they are interpreted as relative to the project folder. Standard Ec-
lipse variables (e.g. ${project_loc}) can also be used.

10

Converting an Existing Project
To add the Perl Nature to an existing project, select the project in the Navigator and select Add Perl
Nature from the context menu.

To remove the Perl Nature from a project, select the project and select Remove Perl Nature from the
context menu.

Recommended Project Layout
In order to avoid problems with syntax validation (such as packages reported missing) and the de-
bugger (such as skipped breakpoints), it is best to organize your project according to the conventions
of the core Perl distribution:

• Keep your own modules in dedicated subtrees of your project. For example, create a subdirectory
lib as the root of the subtree containing all *.pm files. Note that you can have more than one

Perl Projects

11

such subtree. For example, you could also create test/lib to store modules that are only im-
ported by test scripts.

• Add the root directories of your subtrees to the @INC path (see the section called “Perl Include
Path”). For example, add the entries lib and test/lib there.

• Map package names to paths in the subtree (and vice versa). For example, store code for the pack-
age Foo::Bar in file lib/Foo/Bar.pm and ensure that lib/Foo/Baz.pm contains only
package Foo::Baz.

• Store your Perl scripts anywhere you like in the project. For example, in subdirectory bin or
cgi-bin.

• To import from a package, use it, rather than require it. For example, use Foo::Bar;
rather than require '../lib/Foo/Bar.pm';

Perl Projects

12

Eclipse Basics
Perspectives

Each Workbench window contains one or more perspectives. A perspective defines the initial set
and layout of views in the Workbench window. Within the window, each perspective shares the
same set of editors. Each perspective provides a set of capabilities aimed at accomplishing a specific
type of task or works with specific types of resources. For example, the Java perspective combines
views that you would commonly use while editing Java source files, while the Debug perspective
contains the views that you would use while debugging Java programs. As you work in the Work-
bench, you will probably switch perspectives frequently.

Perspectives control what appears in certain menus and toolbars. They define visible action sets,
which you can change to customize a perspective. You can save a perspective that you build in this
manner, making your own custom perspective that you can open again later.

You can set your Workbench preferences to open perspectives in the same window or in a new win-
dow.

The main perspectives for developing Perl applications are:

This is the main perspective for coding Perl scripts.

Provides the main functionality for debugging and executing Perl scripts. For details

see the section called “Views in the Debug Perspective”.

Views
Views support editors and provide alternative presentations as well as ways to navigate the informa-
tion in your Workbench. For example, the Navigator view displays projects and other resources that
you are working with.

Views also have their own menus. To open the menu for a view, click the icon at the left end of the
view's title bar. Some views also have their own toolbars. The actions represented by buttons on
view toolbars only affect the items within that view.

A view might appear by itself, or stacked with other views in a tabbed notebook. You can change
the layout of a perspective by opening and closing views and by docking them in different positions
in the Workbench window.

Using Perspectives
New Perspectives

There are several ways to open a new perspective within this Workbench window:

• Using the Open Perspective button on the shortcut bar.

• Choosing a perspective from the Window # Open Perspective menu.

To open one by using the shortcut bar button:

13

1. Click on the Open Perspective button .

2. A menu appears showing the same choices as shown on the Window # Open Perspective menu.
Choose Other from the menu.

3. In the Select Perspective dialog choose Debug and click OK.

The Debug perspective is displayed.

Eclipse Basics

14

4. There are several other interesting things to take note of.

• The title of the window now indicates that the Debug perspective is in use.

• The shortcut bar contains several perspectives, the original Resource perspective, the new De-
bug perspective and a few others. The Debug perspective button is pressed in, indicating that it
is the current perspective.

• To display the full name of the perspective right click the perspective bar and check Show
Text.

5. In the shortcut bar, click on the Resource perspective button. The Resource perspective is once
again the current perspective. Notice that the set of views is different for each of the perspectives.

Configuring Perspectives
In addition to configuring the layout of a perspective you can also control several other key aspects
of a perspective. These include:

• The New menu.

• The Window # Open Perspective menu.

• The Window # Show View menu.

• Action sets that show up on the toolbar.

Try customizing one of these items.

1. In the shortcut bar click on the Resource perspective.

2. Select Window # Customize Perspective....

3. Select the Commands tab.

4. Check Launch and click OK.

Eclipse Basics

15

5. Observe that the toolbar now includes buttons for debug/run launching.

6. After experimenting with the other options on the Customize Perspective dialog, choose Window
Reset Perspective to return the perspective to its original state.

Saving a User Defined Perspective
If you have modified a perspective by adding, deleting, or moving (docking) views, you can save
your changes for future use.

1. Switch to the perspective that you want to save.

2. Click Window # Save Perspective As.

3. Type a new name for the perspective into the Name field.

4. Click OK.

Resetting Perspectives
To restore a perspective to its original layout:

1. Click Window # Preferences.

2. Expand Workbench and choose Perspectives.

Eclipse Basics

16

3. From the Available perspectives list, select the perspective you want to restore.

4. Click Reset.

5. Click OK.

Using Views
Opening Views

Perspectives offer pre-defined combinations of views and editors. To open a view that is not in-
cluded in the current perspective, select Window # Show View from the main menu bar.

You can create fast views to provide a shortcut to views that you use often.

After adding a view to the current perspective, you may wish to save your new layout by clicking
Window # Save Perspective As.

Moving and Docking Views
To change the location of a view in the current perspective:

1. Drag the view by its title bar. Do not release the left mouse button yet.

2. As you move the view around the Workbench, the mouse pointer changes to one of the drop
cursors shown in the table below. The drop cursor indicates where the view will be docked if you
release the left mouse button. To see the drop cursor change, drag the view over the left, right,
top, or bottom border of another view or editor.

3. When the view is in the location that you want, relative to the view or editor area underneath the
drop cursor, release the left mouse button.

4. (Optional) If you want to save your changes, select Window # Save Perspective As from the
main menu bar.

5. Note that a group of stacked views can be dragged using the empty space to the right of the view
tabs.

Eclipse Basics

17

Working with the Perl Editor
Syntax Check

EPIC performs on the fly syntax check of Perl source files. In order for the Syntax Check to work,
the Perl Interpreter has to be set up correctly (see Setting Up Preferences).

The Syntax Check is performed after a defined idle period, after the user has stopped typing. This
idle period can be configured in the preferences.

When an error/warning has been found, the editor displays the appropriate icon in the annotation
ruler (the gray bar on the left side of the editor), underlines the error in the source, and inserts a
marker into the Problems view.

A syntax check can be enforced by pressing Shift-F5. It is also triggered automatically by saving a
source file.

Explain Errors and Warnings
In addition to displaying warnings and errors, the editor is capable of explaining them in more de-
tail.

To get an Error/Warning explanation, right-click the Error/Warning icon and select Explain Errors/
Warnings from the context menu.

18

The explanation(s) will be displayed in the Explain Errors/Warnings view:

Open Declaration
Open Declaration allows the user to search for the declaration of a specific subroutine or package.

Working with the Perl Editor

19

The search first determines what is selected. If no text is selected, it attempts to find a subroutine or
package name at the current cursor position. The search will fail if neither is selected.

Due to the dynamic nature of Perl programs, the search is not entirely reliable. For package names
and subroutine names qualified by a package prefix, an attempt will be made to locate the appropri-
ately named module file using the @INC path. For unqualified subroutine names, the search will
first occur in the current editor and then extend to modules referenced by 'use' and (literal) 'require'
statements.

If the declaration is found, it will be highlighted in an existing or new editor.

Working with the Perl Editor

20

Perldoc
To retrieve Perldoc information, select a keyword or text and choose Perldoc from the context menu
or press Shift-Ctrl-H. If nothing is selected, an input dialog will appear.

The search is performed among built-in Perl functions, FAQs from the Perl documentation, and
modules on the include path (see the section called “Perl Include Path”). If Perldoc entries are
found, they are displayed inside the Perldoc view.

Working with the Perl Editor

21

Note

Perldoc has to be installed and available in the system PATH, otherwise this feature will not work.

Quick Reference
Apart from Perldoc support, a quick reference feature is available. This feature has the advantage
that no perldoc has to be installed on the system but does not provide as much information as perl-
doc.

To view the Quick Reference, select a keyword and move the mouse pointer over the selection.

A tooltip with a short description of the keyword should appear.

Code Assist
Code Assist features try to assist the user during source code editing.

Note

The features currently implemented in EPIC may not be fully functional but will be improved in the fu-
ture.

Variable Inspection
When you press one of the auto completion characters $ @ %, the editor displays all defined vari-
ables in a list. From the list you can select the variable that should be inserted in the source code.

Working with the Perl Editor

22

Module Inspection
The editor tries to display methods available in modules when the auto completion characters > or :
are entered.

Note

Currently, indirect object invocations are not recognized by code assist. This code block will not work:

$smtp = new Net::SMTP;
$smtp->[no content assist]

This one will work:

$smtp = Net::SMTP->new();
$smtp->[content assist]

Task Markers
Task markers are a very convenient way to add items to the Eclipse task list. A task marker is gener-
ated when a #TODO any text is found in the Perl source code. On deletion of the #TODO com-
ment, the task marker is also deleted.

You can customize the keywords which begin task markers in the preferences (see the section called

Working with the Perl Editor

23

“Task Tags”).

Templates
Templates allow for easy insertion of predefined text segments. In addition to normal text these seg-
ments can also include pre-defined variables that are included at runtime as well as variables that are
specified by the user when the template is inserted.

Defining Templates
Templates are defined in the EPIC Preferences (Window # Preferences...). To define a new tem-
plate, press the New... button.

Working with the Perl Editor

24

To insert pre-defined variables, press the Insert Variable... button.

In addition to pre-defined variables, the user can specify additional variables (using the syntax
${varname}) which can be edited when the template is inserted. When the first variable is inser-
ted, variables with the same name will automatically be changed.

Using Templates
Templates are invoked by typing some characters and pressing Ctrl-Space.

Templates matching the typed characters will be displayed in a list. A preview is also available.

Working with the Perl Editor

25

If the template contains user defined variables the user can press the TAB key to jump to the next
variable after the template has been inserted.

Source Formatter
EPIC uses PerlTidy for source code formatting (PerlTidy is included in the EPIC package).

To format the source code, select Source # Format from the Eclipse menu or use Ctrl-Shift-F.

PerlTidy settings can be changed in the Source Formatter preference page.

Note

Source formatting might take a while if the source code has a lot of lines.

Source Folding
The editor supports folding of POD comments and subroutines.

Working with the Perl Editor

26

Source folding can be disabled in the Editor preference page.

Note

On big files source folding can decrease performance. So if you experience slowdowns, disabling
source folding might help.

Refactoring
Extract Subroutine

Extraction of subroutines is supported by the use of the CPAN Devel::Refactor module.

To extract a subroutine, mark the code to extract and select Refactor # Extract Subroutine from the
popup menu.

Working with the Perl Editor

27

In the popup menu insert the name of the new subroutine and press Enter.

The new subroutine will be placed at the end of the Perl script (before __END__ section) and the
selection will be replaced with the subroutine call.

Note

The extraction might not work properly at the moment because the Devel::Refactor module is in an

Working with the Perl Editor

28

early stage of development. With upcoming versions of the module, this function should become more
reliable.

HTML Export
To export, select Source # Export # HTML from the Eclipse menu and specify an output file.

HTML export settings can be changed in the Source Formatter preference page.

Note

For HTML export to work, a working Source Formatter is needed (see the section called “Source
Formatter”).

Outline View
The Outline view displays packages and subroutines defined in the edited file. Modules referenced
by 'use' statements are also shown. When you click on a module or subroutine name in the outline,
the editor will jump to the appropriate position in the source code. When the cursor is moved inside
of a subroutine's definition, the subroutine will become selected in the outline.

Subroutines named new will get a different icon.

Working with the Perl Editor

29

Using the Perl Debugger
Launching Perl Programs

You may launch your Perl programs from the workbench. Programs may be launched in either run
or debug mode.

• In run mode, the program executes, but may not be suspended or examined.

• In debug mode, execution may be suspended and resumed, variables may be inspected, and ex-
pressions may be evaluated.

The environment a Perl program is to be executed in is defined via "Launch Configurations". A
launch configuration defines

• if the program is to be executed in a CGI or normal Perl environment

• the host the program is to be executed on

• the program to execute

• execution parameters to pass

• environment variables

• configuration data for the web server used to provide the CGI framework

Launching Perl Programs in Run Mode

30

1. Select Run # Run... from the Eclipse menu.

2. Within the appearing dialog, select the configuration type:

• Perl Local: Run a Perl script on the local machine

• Perl CGI: Run Perl programs in a CGI environment on the local machine

• Perl Remote: Run a Perl script on a remote machine

and press the New button to create a new launch configuration.

3. Adjust launch configuration attributes. For details see the section called “Creating Launch Con-
figurations”.

4. Press the Run button.

This executes the program. The program's console output will be shown in the console window. For
"Perl Local" and "Perl Remote" configurations, the console window also accepts keyboard input to
be passed to the program.

If you switch to the debug view, you have additional control over the execution of the program. For
details see the section called “Debug View”.

Re-launching a Perl Program
The workbench keeps a history of each launched and debugged program. To relaunch a program, do

Using the Perl Debugger

31

one of the following:

• Select a previous launch from Run or Debug button pull-down menus.

• From the menu bar, select Run # Run History or Run # Debug History and select a previous
launch from these sub-menus.

• In the Debug view, select a process that you want to relaunch, and select Relaunch from the pro-
cess's pop-up menu.

To relaunch the most recent launch, do one of the following:

• Click the Run or Debug buttons (without using the button pull-down menu).

• Select Run # Run Last Launched (Ctrl-F11), or Run # Debug Last Launched (F11) from the
workbench menu bar.

Creating Launch Configurations
Perl Local: Running a Perl Script on the Local Machine

1. Enter the name for the launch configuration in the Name field.

2. In the Main tab

• Project field: select the project which contains the script to execute

Note

Only Perl projects (projects associated with a Perl nature) will be shown. If the project you require is
not shown, see the section called “Converting an Existing Project” for adding a Perl nature to your

Using the Perl Debugger

32

project.

• File to execute field: select the script to execute

Note

Only files associated with the Perl editor will be shown. See the section called “Associating Files with
the Perl Editor” for details.

3. If you wish to pass command-line parameters to the script or to the Perl interpreter, enter them in
the Arguments tab.

4. If you wish to modify environment variables for the script, enter them in the Environment tab.

Note

Be careful when removing or overriding the standard environment variables. For example, the environ-
ment variable %SYSTEMROOT% is essential for Perl socket IO to work under Windows.

5. Press the Apply button

Perl CGI: Run Perl Programs in a CGI Environment

1. Enter the name for the launch configuration in the Name field.

2. In the Web Server tab

• HTML Root Directory field: enter the base directory that contains all HTML files or use the
Browse button to select the appropriate directory.

• HTML Startup File field: enter the file name to be shown in the browser after startup or use the
Browse button to select this file.

• CGI Root Directory field: enter the base directory that contains all CGI files or use the Browse

Using the Perl Debugger

33

button to select the appropriate directory.

• Extension for CGI files field: this is a comma separated list of file extensions (each starting
with a ".") used for CGI files in the project.

3. In the Browser tab, there are two possible settings:

• Select Custom Browser: specify the path to the browser executable and add the required com-
mand line parameters. Use %1 as a place holder for the HTML file to be opened.

• Select Default System Browser to use the browser defined as default browser by your OS pref-
erences.

4. If you wish to modify environment variables for the script, enter them in the Environment tab.

5. If you wish to pass command-line parameters to the Perl interpreter, enter them in the Arguments
tab.

6. Press the Apply button.

Perl Remote: Debug a Perl Script on a Remote Ma-
chine

Note

This feature is not tested very well and should be considered experimental.
Some points to consider:

• You need a Perl interpreter installed on the remote host.

• During debugging the remote host connects to the local (Eclipse) host using three TCP ports: the
debugger port, the stdout/stdin port and the stderr port. The debugger port is specified statically in
the launch configuration (see below). The two other ports are picked up from the range
5000-10000. (EPIC attempts to reserve these ports in ascending order starting with 5000.) Make
sure that your firewall does not block these required connections.

• Scripts executed and code shown are from different sources: EPIC displays the code present on
your local host and executes a copy of this code on the remote host. So if you make changes with-
in your project please make sure to transfer these changes to the remote host (see below for fur-
ther details).

This problem gets more significant for code/modules provided by your Perl installation. If mod-
ules on your local and remote host differ, debugging results may be quite meaningless. So try to
have the same Perl version installed on both hosts and make sure all modules you require (which
are not part of your Eclipse project) are identical.

• @INC path handling: if the include path references directories within your project or directories
that are linked into your projects, EPIC will include these modules in the list of files to be copied
to the remote host and adjust the @INC-path for your remote host accordingly. Overall, it is best
to set up project-relative @INC paths in the project properties.

Using the Perl Debugger

34

1. Enter the name for the launch configuration in the Name field.

2. In the Configuration tab

• Project field: select the project to debug.

Note

Only Perl projects (projects associated with a Perl nature) will be shown. If the project you require is
not shown, see the section called “Converting an Existing Project” for adding a Perl nature to your
project.

• File to execute field: select the Perl file to execute.

Note

Only files associated with the Perl editor will be shown. See the section called “Associating Files with
the Perl Editor” for details.

3. Local Host IP: this is the IP-address used by the remote host to connect to your local host. In
most cases the default value is appropriate.

4. Target Host Project Installation Path: the project's location on the remote host. Make sure that
your Eclipse project can be found at this location.

5. Port: Port used by the remote debugger to connect to the local host.

6. Create Debug Package: if checked, a ZIP file containing the project files to be transfered to the
remote host is created. This file is stored at the location indicated in Debug Package File Path.

7. Press the Debug button. At this point, the local host starts listening for a remote debugger con-
nection.

8. Extract the ZIP file to the location on your remote host indicated in Target Host Project Installa-

Using the Perl Debugger

35

tion Path.

9. Start the script start_epicDB.pl on your remote host (it is included in the ZIP archive and thus
located in the project directory after extraction). This script starts the debugger and makes it con-
nect to the local host.

10
.

Enjoy debugging...

Breakpoints
The Perl debugger supports line breakpoints and regular expression breakpoints. Both types of
breakpoints are set on an executable line of a program. If enabled, they suspend thread execution be-
fore the corresponding line of code is executed. Regular expression breakpoints additionally extract
the regular expression contained in the line of code they are associated with and enable you to debug
the regular expression within the RegExp-Plugin.

The following symbols are used to indicate breakpoints:

Status Line Breakpoint Regular Expression Breakpoint

Enabled

Disabled

Registered with debugger

Note

Regular Expressions Breakpoints are still in an experimental state and will at the moment only work
for expressions of the type: Expr1 =~ <delim>regexp<delim>modifiers; Modifiers are
ignored.

Setting Breakpoints

1. In the editor area, open the file where you want to add the breakpoint with the Perl editor.

2. Directly to the left of the line where you want to add the breakpoint, open the marker bar
(vertical ruler) pop-up menu and select Add Breakpoint or Add RegExp Breakpoint.

While the breakpoint is enabled, thread execution suspends before that line of code is executed.

Enabling or Disabling Breakpoints
Open the debug view, open the Breakpoints view and use the check box in front of the break point
to enable or disable the break point.

Removing Breakpoints
There are two possible ways for removing a breakpoint:

1. Right click on the breakpoint symbol in marker the bar (vertical ruler) of the editor pop-up menu
and select Remove Breakpoint.

2. Open the debug perspective, open the Breakpoints view, right-click the breakpoint you want to
remove and select Remove.

Using the Perl Debugger

36

Views in the Debug Perspective
If any of the views described below is not visible, you can open it using the Window # Show View
menu.

Debug View

This view allows you to manage the debugging or running of programs in the workbench. It displays
the stack frames for the suspended program you are debugging. It also displays the process for each
target you are running.

If the program is suspended, its stack frames are shown as child elements. Clicking on a stack frame
takes you to the corresponding line in the Perl editor and updates contents of the Variables view. If
necessary, a new editor is opened automatically.

Note

EPIC does not currently include support for debugging multi-threaded programs.

Variables View

Using the Perl Debugger

37

When a stack frame is selected, you can see the visible variables in that stack frame in the Variables
view. The view shows the value of primitive (scalar) types. Variables which point to data structures
such as hashes, lists or objects can be examined by expanding them to show their members. Vari-
ables that are references are dereferenced to show the final scalar value or data structure pointed to
by the reference chain (or an indication of cyclic reference).

Global variables (including Perl internal variables) are marked with an icon, local variables with

an icon.

Customizing the Variables View

You can customize the presentation with the configuration menu:

Show Details Pane

To show the detail pane select Vertical View Orientation or Horizontal View Orientation. Select
Variables View Only to disable it. The details pane shows the value of primitive variables
(especially useful for string variables).

Highlight Updated Variables

If you enable this option, the variables whose values have changed during the last execution step
(since the last suspend) and new variables will be highlighted. If a change has occurred inside of a
complex variable, the variable will be highlighted and the path to the changed value will also be in-
dicated using delta symbols:

Using the Perl Debugger

38

This makes it possible to see these kinds of changes even if variables are collapsed.

Note

This feature requires EPIC to retrieve and remember the value of every variable on each suspend. It
may be very slow for larger programs (e.g. it might take about 20 seconds for a program containing
data structures with 5000+ values). For this reason, the option is disabled by default and should be used
with care.

Select Variables to Display

The variables view allows to select the following types of variables for displaying by checking the
corresponding menu entry:

• Perl Internal Variables: these are variables provided by the Perl interpreter like $_, @INC etc.

• Global Variables: variables visible from everywhere in your program. More precisely, these are
the variables from the symbol table of the main package.

• Local Variables: variables declared with the keyword my, more correctly called "lexical" vari-
ables in Perl. To show lexical variables, you need to install the Perl PadWalker module. The Pad-
Walker module has some problems which influence viewing of local variables.

Show Addresses of Variables

By default, EPIC shows the address to which a reference variable points, but it does not show the
address of each non-reference variable. This additional information can be helpful when you wish to
check which variable is pointed to by a reference. When enabled, the address of each variable
(including scalar variables) will be displayed right before its value.

Breakpoints View

The Breakpoints view shows all breakpoints (see the section called “Breakpoints”), their state and
location.

By selecting one or more breakpoints and invoking the context menu, you can enable, disable or re-
move these breakpoints.

Perl Expression View

Using the Perl Debugger

39

The Perl Expression View allows you to execute any valid Perl code within the current context of
the program executed in debug mode.

1. Open the view (Window # Open View # Other, then EPIC # Perl Expression View).

2. Enter the code to execute.

3. Press the symbol.

Stepping Through the Execution of a Perl
Program

When a thread is suspended, the step controls can be used to step through the execution of the pro-
gram line-by-line. If a breakpoint is encountered while performing a step operation, the execution
will suspend at the breakpoint and the step operation is ended.

Step Over

1. Select a stack frame in the Debug view. The current line of execution in that stack frame is high-
lighted in the editor in the Debug perspective.

2. Click the Step Over button () in the Debug view toolbar, or press the F6 key. The currently

selected line is executed and suspends on the next executable line.

Step Into

1. Select a stack frame in the Debug view. The current line of execution in that stack frame is high-
lighted in the editor in the Debug perspective.

2. Click the Step Into button () in the Debug view toolbar, or press the F5 key. The next ex-

pression on the currently selected line to be executed is invoked, and execution suspends at the
next executable line in the method that is invoked.

Run to Return

Using the Perl Debugger

40

1. Select a stack frame in the Debug view. The current line of execution in that stack frame is high-
lighted in the editor in the Debug perspective.

2. Click the Run To Return button () in the Debug view toolbar, or press the F7 key. Execu-

tion resumes until the next return statement in the current subroutine is executed, and execution
suspends on the next executable line.

Using the Perl Debugger

41

RegExp Plug-in
Enabling the RegExp View

To display the RegExp view, select Window # Show View # Other... from the Eclipse menu and se-
lect the EPIC # RegExp view from the list.

Using the RegExp Plug-in
The RegExp plug-in is a small tool to debug regular expressions.

To check if a regular expression is valid, press the Run icon. If the regular expression matches

the text, it will be signaled by a green icon. If the regular expression contains brackets, the matching
character groups in text will be colored.

Regular expression shortcuts are available via the context menu.

Debugging Regular Expressions
42

The Single Step feature allows for a step by step inspection of the regular expression.

If no groups (...) are defined by the user, the RegExp Plug-in tries to use logical blocks for
matching, otherwise the already existing groups are used.

The following buttons are provided:

• Reset (clears all color markers)

• Step forward

• Step backward

RegExp Plug-in

43

Known Bugs & Problems
The Bugs [http://sourceforge.net/tracker/?group_id=75859&atid=545274] and Feature Requests [ht-
tp://sourceforge.net/tracker/?group_id=75859&atid=545277] trackers on SourceForge contain de-
scriptions of the current open issues for EPIC. If you encounter a problem, you can also search the
Help forum [http://sourceforge.net/forum/forum.php?forum_id=258688] for previous reports and
solutions and ask your question there.

44

http://sourceforge.net/tracker/?group_id=75859&atid=545274
http://sourceforge.net/tracker/?group_id=75859&atid=545274
http://sourceforge.net/tracker/?group_id=75859&atid=545277
http://sourceforge.net/tracker/?group_id=75859&atid=545277
http://sourceforge.net/tracker/?group_id=75859&atid=545277
http://sourceforge.net/forum/forum.php?forum_id=258688
http://sourceforge.net/forum/forum.php?forum_id=258688

References
Part of this document is taken from the official Eclipse documentation provided by the Eclipse
project and IBM.

EPIC uses the public domain ANTLR 2 library developed by Terence Parr and others in the ANTLR
project [http://www.antlr.org].

45

http://www.antlr.org
http://www.antlr.org
http://www.antlr.org

