

University of Otago
Te Whare Wananga O Otago
Dunedin, New Zealand

Assessing the Graphical and

Algorithmic Structure of Hierarchical
Coloured Petri Net Models

George L. Benwell

Stephen G. MacDonell

The Information Science
Discussion Paper Series

Number 94 / 3
February 1994

ISSN 1172-6024

NOTE

The text of this paper was converted from an older electronic version;
some diagrams that could not be converted from their original
formats were scanned from the original paper document. While
every effort has been made to reproduce the original paper content
and layout as closely as possible, there inevitably may be some minor
discrepancies or loss of quality, for which we apologise.

Any queries regarding this paper should be directed to the
Discussion Paper Series Coordinator: <dps@infoscience.otago.ac.nz>

May 2005

1

Assessing the Graphical and Algorithmic Structure
of Hierarchical Coloured Petri Net Models

Dr George L. Benwell1

Dr Stephen G. MacDonell
Department of Information Science

University of Otago

February 1994

Abstract

Petri nets, as a modelling formalism, are utilised for the analysis of
processes, whether for explicit understanding, database design or
business process re-engineering. The formalism, however, can be
represented on a virtual continuum from highly graphical to largely
algorithmic. The use and understanding of the formalism will, in part,
therefore depend on the resultant complexity and power of the
representation and, on the graphical or algorithmic preference of the
user. This paper develops a metric which will indicate the graphical or
algorithmic tendency of hierarchical coloured Petri nets.

1 Address correspondence to: Dr G.L. Benwell, Senior Lecturer, Department of Information Science, University of
Otago, P.O. Box 56, Dunedin, New Zealand. Fax +64 3 479 6311 Email: gbenwell@commerce.otago.ac.nz

2

1 Introduction to Petri Nets

Since the 1960s when Petri nets were first devised [Petri, 1962] they have been modified
and advanced. As a result their power and useability have increased. The application
domain has also increased to reflect these improvements. Originally a Petri net was defined
as a bipartite graph consisting of places, transitions, arcs and tokens, such that;
 P = {p1, p2, pn} is the set of n places (graphically represented as circles)
 T = {t1, t2, ... tm} is the set of m transitions (graphically represented by rectangles)
 A = {the set of directed arcs bi-directionally connecting places and transitions}, and
 M = {the set of tokens resident in places at a given instant} (tokens are represented

 by dots).

In addition to these constructs a net has associated sets of enabling and firing rules. These
rules control the actions relating to transitions. The enabling rules determine under what
conditions (or particular marking) a transition is enabled and therefore may fire. The firing
rules determine what action will occur as a transition is fired. Originally, these rules were
simplistic, but nonetheless appropriate. They were;

a transition, Ti, is enabled iff all its input places have a token and none of its output
places have a token [Symons 1982], that is;

 Ti is enabled when PI = 1 AND PO = 0
 where
 PI is the set of input places for Ti, and
 PO is the set of output places for Ti.

The result of this early theory was that the nets were complex even when modelling
relatively simple processes. This was considered to be a disadvantage, and in part, was
responsible for a reluctance to use the nets. There was little point in producing a model that
was potentially more complex than the phenomenon being modelled. It is important to
emphasise here that complexity refers to structure of the graphical formalism. As the rules
were simplistic a process had to be decomposed almost to an atomic level. Simple rules led
to the creation of complex graphics. Again, complexity needs to be clarified. The
formalism has only four constructs so complexity arises not from that number, but rather
from their excessive and repetitive use.

These deficiencies were addressed with the introduction of coloured Petri nets and also
hierarchical coloured Petri nets [Reisig 1991]. The extension of the theory allowed for

3

coloured tokens and complex algorithmic rules [op. cit.] to control the flow structure of the
net. The rules supplemented and extended the notion of enabling and firing rules. Rules
could now be far more complex. The result was that nets were no longer rampantly
complex in terms of graphics. It is now possible to represent a complex process with
minimal graphics, where the graphical structure is transformed into coloured tokens and
complex rules. So Petri nets can be now described in the following manner [Purvis and
Purvis, 1993];
- a net structure, which is just like that of ordinary Petri nets,
- a set of data declarations, and
- a set of net inscriptions.

The net structure is like that of Place/Transition nets: nodes consisting of places and
transitions, and directed arcs that always connect nodes of different types (either places or
transitions).

The declarations component, defines the colours, number and types of variables in the net.
Each place, instead of having a capacity attached to it, now will have a colour set attached
to it. Colour sets are analogous to abstract data types in programming languages, and just
as with abstract data types, each colour set can have an associated set of operations and
functions that can be applied to tokens of that colour. Because of this analogy with abstract
data types, the declarations component could be expressed in terms of any of a number of
programming notations. For example, Jensen's [Jensen, 1990] original notation of
Standard ML could be used as it is in a commercial implementation of coloured Petri nets
[MetaSoft Corp., 1992].

The net inscriptions, are expressions which can be attached to a place, a transition, or an
arc;
- Places can have colour sets and initialisation expressions (analogous to the
capacities and initial markings of Place/Transition nets).
- Transitions can have guards, which are boolean expressions that may contain
operations on objects, such as constants, variables, and functions that have been defined in
the declarations component. Guards must evaluate to TRUE in order for the transition to
fire. If a guard always evaluates to TRUE, then it is not shown.
- Arcs may contain arc expressions, which also contain constants and items that have
been defined in the declarations component. When the arc expressions are evaluated, their
variables are bound to the appropriate colours. The value of the expression must be equal

4

to a multi-set (bag) of the colour that is attached to the place at one end of the arc. The arcs
associated with a single transition (whether incoming or outgoing) have a common scope:
any variable that appears more than once must be bound to the same colour.

0%

100%

100%Graphics (G)

A
lg

o
ri

th
m

ic

ru
le

s
(A

)

y = f(G
, A

)

net with high relative % of graphics

net with high relative % of algorithmic rules

Figure 1

The end result is that there is now a continuum of combinations. A net could be highly
graphical with little more than simple rules or at the other end of the spectrum, it could be
hardly graphical and highly algorithmic. Figure 1 presents this concept.

It is contended that it is appropriate to derive a measurement to assess the relative
percentages of graphics and algorithmic rules of a net. In the short term, this metric could
be simply to determine if there are classes of nets. In the long term, it could be possible to
match ‘net type’ with ‘end user type’ to maximise the outcome of the application of
the Petri net formalism. This paper uses the term ‘structure’ as a measure of the relative
percentages shown in Figure 1. It may be argued that it would have been better to use
‘complexity’. This latter term is related here more to the number of constructs in use rather
than their alternate representations (graphical or algorithmic). This definition is supported
by Symons [1982, p3] where he states;
 The structure of a net is defined by the interconnection pattern of the places and

transitions
To be absolutely sure then, this paper deals with measuring the two forms of representation
- graphical and algorithmic and at this point in time is not concerned with comparing two

5

different nets for complexity (number constructs). The latter would be important when
measurements of efficiency and clarity are required.

2 Introduction to Metrics

To assess the structure of a Petri net model it may be appropriate to substantially adopt
techniques from the field of software metrics, particularly those investigations that have
attempted to assess and analyse graphical product representations. Software metrics is the
common name for the branch of software engineering that is concerned with the (normally
quantitative) assessment of software project effort, quality assurance and the like.
Underlying all of these major goals is the fundamental attribute measurement of products,
resources and processes [Fenton 1991]. As a Petri net is a tangible system representation,
this paper is most interested in methods of product assessment. Some previously proposed
product measures are very simple, for example, the number of lines of code in a program,
or the number of modules on a structure chart. Others, such as Basili and Hutchens' SynC
family of measures [1983] and the Macro/Micro measures proposed by Harrison and Cook
[1987], are more complicated combinations of several product attributes.

Software product measures such as these have been used in a wide variety of functions.
Some have been used, for example, in the estimation of software development costs, or to
assist in the prediction of maintenance requirements, or in the evaluation of particular
development strategies [MacDonell 1992]. In some cases, however, the validity of these
investigations has been subsequently challenged, as the measures used have been chosen
inappropriately and have therefore failed to actually assess the characteristic(s) of interest
[Fenton 1991]. This has occurred most especially when assessments of poorly-defined
attributes such as ‘understanding’ or ‘useability’ have been the goal. The concern in this
paper, however, is only with the direct assessment of Petri net structure. It is therefore
likely that problems of validity can be largely avoided through the use of relatively rigorous
measurement definitions. In addition, discussion here is not concerned with functionality
as this should appear in both (or any) representations of the same system. The core theme
is to only consider the structure of the chosen representation in terms of path/decision
metrics. Figures 2a and b provide a simple example. While being simple it must be said
that the example also displays some relaxed theoretical rules. That is, the sink or counter at
P4 in (a) and P3 in (b), once marked by a token would bar the respective transition T2 (in
(a)) or T1 (in (b)) from being enabled again. This relaxed rule matters little in terms of the
measurement of structure being discussed here.

6

Figure 2

As described earlier, a Petri net is a system representation formalism that incorporates both
graphical and algorithmic components. Structural assessment of the whole would
intuitively require separate assessment of each aspect, as both contribute to overall net size
and structure. Given that the algorithmic component is concerned with processing control
[Jensen, 1990], which can also be depicted graphically, it would seem appropriate to use
graphical analysis methods for both Petri net components.

Metrics that are derivable from graphic product representations are widespread in the
software engineering literature; for example, the methods described by Chen [1978],
Benyon-Tinker [1979] and Szulewski et al. [1981]. Some are based on conceptual or
functional system descriptions, such as DeMarco's Bang method [1982]. Others are
derived from design documents, and are therefore generally based on a product's calling
structure. Of most interest here, however, are those assessment techniques that may be
applied to lower level product abstractions as represented in graph form, as these will be
directly applicable to the graphical structure of Petri nets. Although many of these methods
were initially proposed as measures of software product complexity (for example, see
McCabe [1976], Woodward et al. [1979] and Chen [1978]), the underlying rationale of the
methods is appropriate for the less ambitious assessment of Petri net structure.

7

3 Measurement of Petri Net Structure

A graphical structure assessment method adapted directly from software metrics (but
which, interestingly was originally derived from graph theory) is that which determines the
‘cyclomatic complexity’ of a program flowgraph [McCabe 1976]. As a Petri net can be
considered in terms of a directed graph C [Peterson 1977] with nodes p and t (places and
transitions), edges a (arcs), and connected components c, the formulation of the graph
cyclomatic number v is as follows [Berge 1973]:

 v(C) = a - p - t + c (1)

In a strongly connected Petri net graph, that is, a graph in which a directed path can be
traced between any pair of nodes [Symons, 1982, p7], the cyclomatic number is equal to
the number of linearly independent paths.

Some graphs, however, are not strongly connected. For example, a given model may have
logical starting or ending points, or both. This can be observed on the net in the form of
‘start’ nodes s or ‘finish’ nodes f, places that only have inputs or outputs. For Petri net
graphs of this type the above formulation must be adjusted accordingly [Sellers 1992].
This is important as, at least intuitively, they are two basic net forms. The first may be
called cyclic, having no end or beginning, and is a net that models the ongoing logic of a
system. The other may be called episodic, which clearly have start and finish nodes. The
fact that the difference may only be the level of abstraction or the ‘view’ of the system or
process does not remove the need for the classification. Thus for nets with zero or one
start place and zero or one end place the equation for the cyclomatic number becomes:

 v(C) = (a + 1) - p - t + c (2)

Finally for nets that have two or more start places or two or more finish places the
calculation of the cyclomatic number is of the form:

 v(C) = ((a + 1) + (s + f)) - (p + t + 2) + c (3)

Values of v (as calculated from equations 1 and 2) were used by McCabe [1976] as
measures of graph ‘complexity’, and subsequently as a basis for determining software
testing strategies. This approach was based on the underlying assumption that a greater

8

number of decision constructs meant a greater number of paths, and that this in turn
contributed significantly to higher product complexity (also see [Peterson, 1981, p118]).
Since it was first proposed, McCabe's method has been the subject of extensive
investigation, with somewhat mixed results. Some empirical support has appeared - for
example, see the studies reported by Curtis et al. [1979] and Hartman [1982] - and, on the
whole, the measure is viewed as one of the more effective software metrics [Boehm 1981;
Arthur 1985; Li and Cheung 1987]. In contrast, however, it has also been the subject of
some criticism in relation to its treatment of path control constructs. This has led in some
cases to metric refinements being proposed based on notions of intuitive complexity [Myers
1977; Hansen 1978; Ramamurthy and Melton 1988]. In the current study, however, the
issue of varying construct complexity is of minimal concern, as the interest lies only in the
underlying path structure of a Petri net (which is unaltered by construct variations), not
how this relates to complexity or understanding [Shepperd 1988]. Thus the measures are
used here simply to provide standardised indicators of the graphical and algorithmic path
structure of Petri nets.

The c term in equations (1) to (3) relates to the number of connected components. McCabe
[1976] adopted this term as an adjustment factor for the use of sub-programs, so that the
number of components equalled the main module plus all called modules. Thus when
determining the value of v for a single module the value of c was equal to 1. In the current
context it seems natural to take the same approach - the value of c for each distinct self-
contained Petri net will therefore also be set equal to 1. In addition there may be some need
to consider the hierarchical nature of coloured Petri nets as a contributing factor to the
structure of a net. This is believed to have more to do with functionality than structure (as
already defined). So those places and transitions which link layers in the hierarchy will not
be given any higher weight than they do as ordinary nodes. It has also been shown that
transitions and places can be transposed into places and transitions to produce an equivalent
net [Peterson, 1981, p13]. It would therefore seem logical that places and transitions are
all nodes of equal significance.

Given these conditions the three equations above may be reduced [Stetter, 1984; Sellers,
1992]:
Equation 1 becomes,
 v(C) = a - p - t + 1 (4)
Equation 2 becomes,
 v(C) = a - p - t + 2 (5)

9

Equation 3 becomes,
 v(C) = a - p - t + s + f (6)

Algorithmic structure assessment is likely to follow a very similar approach, as the coded
rules in a Petri net perform essentially the same function as the graphical form; that is, they
control the sequence of functions through the use of conditional tests (REF). Thus the
graphical assessment methods discussed above will also be adapted for use with the
algorithmic net component. This clearly requires the development and measurement of a
flowgraph for each place, transition or arc in which rules are used. The total structure
measure for the algorithmic component would be the sum of the individual block measures
adjusted for the number of blocks [Sellers, 1992].

The Petri net shown in Figure 2 will serve as an initial example. Figure 3 shows the
concept of forming a graphic equivalent of the algorithmic component. The net in Figure
2(b) has been interpreted as two graphs with the numbers indicating the count of places,
arcs and transitions.

Figure 3

Using equations (5) and (6) the metrics for Figure 3 can be expressed as;
 Sg = a - p - t + s + f (7)
 Sa = a - p - t + 2 (8)

So, from Figure 3 it is determined that;
 Sg = (3 - 3 - 1 + 1 + 2)
 = 2
and

10

 Sa = (4 - 2 - 2 + 2)
 = 2

It may be held that it is necessary to determine the number of tokens in the net as a
contributing factor toward structure. While this may be so, tokens are not considered
separately as;
1 the number of types of tokens is the significant factor not the number of tokens,
2 the types of tokens are considered indirectly in the assessment of the algorithmics,
3 the number of tokens relates more to net complexity than net structure.
Safeness and conservational aspects of a net, directly concern tokens but relate to
complexity and are not assessed here.

As an example consider a Petri net modelling a car hire process [Benwell, Firns and Sallis,
1991] (see Figures 4a and b). In a part of the net, cars are represented by tokens; the
number of cars will dictate the number of coloured tokens (but not necessarily the number
of colours). This will not inherently change the structure of the net nor in fact complexity
until such time as the processes to handle the number of cars change. Then a new process
is being modelled so it should be expected that structure (and maybe complexity too) will
be different. Therefore a net to model 10 cars or a 100 cars will have the same structure,
provided all cars are treated equally and the process to handle the number of cars is the
same.

11

p1

t1

p2

t2

p5

p7

p4

p3

t3

t4

p6 p8

t5

p9 Prospective

CUSTOMERS

(say 100 red)

CUSTOMER

decide to RENT

CUSTOMER

CUSTOMER

signs

CONTRACT (yellow)

Completed

CONTRACTS

CUSTOMERS !

settle

CONTRACTS

VEHICLES

returned VEHICLES

serviced

RENTable

VEHICLES

(say 100 black)

CONTRACTS

returned

CUSTOMERS

finish with

VEHICLES

RENTED

VEHICLES

index

CUSTOMERS

using VEHICLES

Live

CONTRACTS

Figure 4a: Car Hire Net (adapted from [Benwell et. al. 1991])

Figure 4b: Figure 4a with reduced graphics and implied algorithmics

12

4 Indicators of Overall Petri net Structure

With appropriate indicators of both graphical and algorithmic structure, denoted Sg and Sa
respectively, an overall measure of Petri net structure, Sp, can be determined. The two
individual measures can also be used to determine whether a Petri net is dominated by
graphical or algorithmic structure. This could be, in the future, extended to meet the longer
term aims mentioned earlier. Given that the two components (graphical and algorithmic)
are directly dependent, in that high utilisation of one will result in proportionally lower use
of the other, a function of the sum of the components would seem to be an appropriate
indicator of overall structure. In determining the graphical or algorithmic dominance in a
given Petri net, however, a ratio would intuitively provide a useful method of assessment.
Therefore, Petri net structure, is equal to
 Sp = [Sg + Sa] - [c - 1] (9)

Given that the structure measure equates to the number of linearly independent paths in a
net it is again necessary to reduce the raw sum of the two components by [c - 1]. This is in
fact a specific instance of the formulation introduced by Sellers [1992], whereby the total
value of the path measure is always equal to the sum of the contributing component values
minus the number of components plus one. Thus, if Sa = 0, that is there is no algorithmic
component, then c = 1.

The measure of overall Petri net structure Sp, as given by equation (9), could be solely
used as a tool for net evaluation. Notwithstanding that possibility, the thesis of this paper
is to derive a metric that will classify nets as predominantly graphical or algorithmic and
then, and only then, to draw some conclusions as to any differences between the two
types.

Structural dominance can be expressed in terms of graphics or algorithmics according to
the following;

 Dpg = Sg/Sp (10)
 Dpa = Sa/Sp (11)
but, in cases in which Sg and Sa contribute to the structure:
 Dpg + Dpa ≠ 1 (12)

13

So, it is not possible to directly compare the influences and sum them to 100%. It is
desirable to have the sum of equation (12) equal to one. This can be achieved by adjusting
Sp. Therefore,
 Sp’ = Sp + (c - 1) (13)
and
 Dpg = Sg/Sp’ (14)
 Dpa = Sa/Sp’ (15)
and, therefore,
 Dpg + Dpa = 1 (16)
Now the two components may be compared directly as complementary percentages
(equation (16)). The outcome is a direct comparison, but Sp’ no longer represents the total
count of all paths through the net.

Equations (14) and (15) enable the assessment of the graphical or algorithmic dominance
in a given Petri net. Some ‘classes’ of Petri net user may prefer graphically or
algorithmically dominated representations. The consequential matching of a graphical
(/algorithmic) net with a graphical (/algorithmic) user has not escaped attention; though it is
not the subject of this paper. For example, project managers as a group, may prefer a
higher graphic component, as this may enable more effective communication. Conversely,
programmers might be better served by having algorithmic dominated nets, so that the
implementation of the functions described by the net are made more straightforward. In
addition, there may be classes of problems that are better portrayed in either representation.
At this stage, however, the paper is not concerned with why different preferences exist.

Given the ratio form of the Petri net dominance indicators, the value of Dp(i) will fall
somewhere along the continuum from graphically dominated to algorithmic dominated.
When Dpg equals Dpa the structure is evenly distributed between the graphical and
algorithmic components. A different rendition of Figure 1 conveys the concept in Figure 5.

 Sg increases Dpg = Dpa Sa increases
««««««««««««««««««««««««««|»»»»»»»»»»»»»»»»»»»»»»»»»»

 graphical not dominated algorithmic
 domination by either domination

Figure 5

14

5 The Dining Philosophers Problem

The dining philosophers problems is now universally established [Peterson, 1981, p65 and
Krishnamurthy, 1989, p54] and is a good practical example for comparing the structural
dominance of the graphics and algorithmics. The Petri net for the philosophers (adopted
from Peterson [op. cit.]) in given in Figure 6. The problem is that there are five diners and
five eating utensils, the latter can be assumed to be forks (a, b, c, d, e in Figure 6). A diner
needs two forks to eat. If two forks are not available the diner must be a true philosopher
and forego eating for thinking. It is only possible for two opposite diners (say ‘1’ and ‘3’
or ‘1’ and ‘4’ for example) to eat at the same time. Figure 6 represents this situation where
diner ‘1’ is eating, the immediate left (‘5’) and right (‘2’) dinner partners must think, while
either of the upper two (‘3’ or ‘4’) may choose to eat. If one chooses to eat, the other
cannot. This situation is cyclic and continues ad nauseam. The net configuration, as
presented, makes a deadlock impossible. In the more general case it would be possible
where any diner can select a fork (as distinct from a pair) at a given time.

The graphical measure of this net is given by;
 Sg = a - p - t + c
 = 40 -15 - 10 + 1
 = 16
and Sa = 0, so
 Sp = (Sa + Sg) - (c - 1)
 = 0 + 16 - (1 - 1)
 = 16
 Sp’ = Sp + [c - 1]
 = 16 + [1 - 1]
 = 16
Therefore,
 Dpg = Sg/Sp’ = 16/16 = 1 ≈ 100%
 Dpa = Sa/Sp’ = 0 ≈ 0%
which leads to the obvious conclusion that the net is graphically dominated. Now a new
net can be created where some or all of the graphical logic is transposed to algorithmics.
This is presented in Figure 7.

15

1

2

3

4

5

a

b

c

d

e

Figure 6: The Dining Philosophers[adapted from, Peterson, 1981, p65]

1
2

5
43

case of 2

 diners

 then do function !

end case

case of 5

 philosophers

 if fork LEFT

 AND fork RIGHT

 then do function "

end case

a b c d e

Figure 7: Collapsed Dining Philosophers’ Net

16

Calculation of the graphical structure of the Figure 7 representation is relatively straight
forward;
 Sg = a - p - t + c
 = 4 - 2 - 2 + 1
 = 1

The assessment of the algorithmic structure, Sa, however, requires some preliminary
calculations. Given that there are two blocks of algorithmic code in the representation, the
value for each block must be determined first;

 Sa1 = (a + 1) - p + c
 = (30 +1) - 17 + 1
 = 15

 Sa2 = (a + 1) - p + c
 = (4 + 1) - 4 + 1
 = 2

As stated previously, the total algorithmic structure value is the sum of the individual block
measures adjusted for the number of blocks. Hence;
 Sa = (Sa1 + Sa2) - (c - 1)
 = (15 + 2) - (2 - 1)
 = 16

Now that values for Sg and Sa have been obtained the remaining indicators of overall
structure, Sp, Sp’, Dpg and Dpa can be evaluated;
 Sp = (Sg + Sa) - (c - 1)
 = (1 + 16) - (2 - 1)
 = 16
 (as can be expected, the overall structure value for this representation is equal to that
of the representation in Figure 6).
 Sp’ = Sp + (c - 1)
 = 16 + (2 - 1)
 = 17

17

Therefore,
 Dpg = Sg/Sp’ = 1/17 = 0.06 ≈ 6%
 Dpa = Sa/Sp’ = 16/17 = 0.94 ≈ 94%

These values now show that the net, as represented in Figure 7, is dominated heavily by
algorithmic structure. An intuitive assessment would no doubt have generated the same
conclusion; the calculations above, however, provide quantitative relative indicators of this
fact.

6 Conclusion

This paper has adopted and derived a numerical technique to measure the relative
percentages of graphical and algorithmic structure of a Petri Net. The basis for the
calculation has been the research and development undertaken in the area of software
metrics. The metric so derived can be utilised to indicate the influence each component has
on the structure of a Petri Net. This has fulfilled the initial goal of this research. In the
longer term it may be possible to match the attributes of a net to the characteristics of a user
and thereby enhance the functionality of Petri Nets as a formalism.

18

References

Arthur, L.J., 1985, Measuring Programmer Productivity And Software Quality, John
Wiley & Sons, New York.

Basili, V.R. and Hutchens, D.H., 1983, An Empirical Study of a Syntactic Complexity
Family, IEEE Transactions on Software Engineering 9 (6), pp664-672.

Benwell, G.L., Firns, P.G. and Sallis, P.J., 1991, Deriving Semantic Data Models from
Structured Process Descriptions of Reality, Journal of Information Technology, No. 6,
pp15-25.

Benyon-Tinker, G., 1979, Complexity Measures In An Evolving Large System, Conf.
Proc., Workshop on Quantitative Software Models for Reliability, Complexity and Cost,
New York NY, USA, 1979, pp117-127.

Berge, C., 1973, Graphs and Hypergraphs, North-Holland, Amsterdam.

Boehm, B.W., 1981, Software Engineering Economics, Prentice-Hall, Englewood Cliffs
NJ.

Chen, E.T., 1978. Program Complexity and Programmer Productivity, IEEE Transactions
on Software Engineering 4 (3), pp187-194.

Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A. and Love, T., 1979, Measuring the
Psychological Complexity of Software Maintenance Tasks with the Halstead and
McCabe Metrics, IEEE Transactions on Software Engineering 5 (2), pp96-104.

DeMarco, T., 1982, Controlling Software Projects, Yourdon, New York.

Fenton, N.E., 1991, Software Metrics, Chapman & Hall, London.

Hansen, W.J., 1978, Measurement of Program Complexity by the Pair (Cyclomatic
Number, Operator Count), ACM SIGPLan Notices 13 (3), pp29-33.

19

Harrison, W.A. and Cook, C., 1987, A Micro/Macro Measure of Software Complexity,
Journal of Systems and Software 7, pp213-219.

Hartman, S.D., 1982, A Counting Tool for RPG, ACM SIGMetrics PER 11 (3), Fall,
pp86-100.

Jensen, K., 1990, Coloured Petri Nets: High Level Language for System Design and
Analysis, in Advances in Petri Nets 1990, Springer-Verlag, Berlin.

Krishnamurthy, 1989, Parallel Processing, Principles and Practice, Addison-Wesley,
Sydney.

Li, H.F. and Cheung, W.K., 1987, An Empirical Study of Software Metrics, IEEE
Transactions on Software Engineering 13 (6), pp697-708.

MacDonell, S G., 1992, Quantitative Functional Complexity Analysis of Commercial
Software Systems, unpublished PhD thesis, University of Cambridge.

McCabe, T.J., 1976. A Complexity Measure, IEEE Transactions on Software Engineering
2 (4), pp308-320.

MetaSoft Corp., 1992, MetaSoft Corporation Manual, Design/CPN Version 9, MetaSoft
Corporation, Cambridge, Mass.

Myers, G.J., 1977, An Extension to the Cyclomatic Measure of Program Complexity,
ACM SIGPLan Notices 12 (10), pp61-64.

Petri, C. A., 1962, Communication with Automata, Supplement 1 to RADC-TR-65-377
Vol. 1, Griffiss Air Force Base, New York, - Originally published in German
‘Kommunikation mit Automaten’, University of Bonn, cited in [Peterson, 1981, p3].

Peterson, J.L., 1977, Petri Nets, Computing Surveys, Vol. 9, No. 3, pp223-252.

Peterson, J.L., 1981, Petri Net Theory and The Modelling of Systems, Prentice-Hall,
Eaglewood Cliffs, New Jersey.

20

Purvis M.A. and Purvis, M., 1993, Dynamic Modelling of the Resource Management Act,
Conf. Proc., 5th Annual Colloquium, Spatial Information Research Centre, university of
Otago, New Zealand, pp225-240.

Ramamurthy, B. and Melton, A., 1988, A Synthesis of Software Science Measures and
the Cyclomatic Number, IEEE Transactions on Software Engineering 14 (8), pp1116-
1121.

Reisig, W., 1991, A Primer in Petri Net Design, Springer-Verlag, Berlin.

Sellers, B.H., 1992, Modularization and McCabe's Cyclomatic Complexity,
Communications of the ACM 35 (12), pp17-19.

Shepperd, M., 1988, A Critique of Cyclomatic Complexity as a Software Metric,
Software Engineering Journal, pp30-36.

Stetter, F., 1984, A Measure of Program Complexity, Computer Language (UK) 9 (3/4),
pp203-208.

Symons, F.J.W., 1982, The Application of Petri Nets and Numerical Petri Nets, Research
Laboratories Report 7520, Telecom, Australia.

Szulewski, P.A., Whitworth, M.H., Buchan, P., and DeWolf, J.B., 1981, The
Measurement of Software Science Parameters in Software Designs, ACM SIGMetrics PER
10 (1), pp89-94.

Woodward, M.R., Hennell, M.A., and Hedley, D., 1979, A Measure of Control Flow
Complexity in Program Text, IEEE Transactions on Software Engineering 5 (1), pp45-50.

 University of Otago

 Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at the
University of Otago. The department offers courses of study leading to a major in Information Science within the
BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also strongly involved in
postgraduate programmes leading to the MBA, MCom and PhD degrees. Research projects in software engineering
and software development, information engineering and database, artificial intelligence/expert systems, geographic
information systems, advanced information systems management and data communications are particularly well
supported at present.

 Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information Science.
Current members of the Editorial Board are:

Mr Martin Anderson Dr George Benwell
Dr Nikola Kasabov Dr Geoff Kennedy
Dr Martin Purvis Professor Philip Sallis
Dr Hank Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial board. The
accuracy of the information presented in this paper is the sole responsibility of the authors.

 Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the condition
that the authors and the Series are given due acknowledgment. Reproduction in any form for purposes other than
research or teaching is forbidden unless prior written permission has been obtained from the authors.

 Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions relating
to this topic. It is likely, however, that the paper will appear in some form in a journal or in conference proceedings
in the near future. The authors would be pleased to receive correspondence in connection with any of the issues
raised in this paper. Please write to the authors at the address provided at the foot of the first page.

Any other correspondence concerning the Series should be sent to:

DPS Co-ordinator
Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: workpapers@commerce.otago.ac.nz

