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Abstract 
 

Petri nets, as a modelling formalism, are utilised for the analysis of 
processes, whether for explicit understanding, database design or 
business process re-engineering.  The formalism, however, can be 
represented on a virtual continuum from highly graphical to largely 
algorithmic.  The use and understanding of the formalism will, in part, 
therefore depend on the resultant complexity and power of the 
representation and, on the graphical or algorithmic preference of the 
user.  This paper develops a metric which will indicate the graphical or 
algorithmic tendency of hierarchical coloured Petri nets. 
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1 Introduction to Petri Nets 
 
Since the 1960s when Petri nets were first devised [Petri, 1962] they have been modified 
and advanced.  As a result their power and useability have increased.  The application 
domain has also increased to reflect these improvements. Originally a Petri net was defined 
as a bipartite graph consisting of places, transitions, arcs and tokens, such that; 
 P = {p1, p2, .... pn} is the set of n places (graphically represented as circles) 
 T = {t1, t2, ... tm} is the set of m transitions (graphically represented by rectangles) 
 A = {the set of directed arcs bi-directionally connecting places and transitions}, and 
 M = {the set of tokens resident in places at a given instant} (tokens are represented  

    by dots). 
 
In addition to these constructs a net has associated sets of enabling and firing rules.  These 
rules control the actions relating to transitions.  The enabling rules determine under what 
conditions (or particular marking) a transition is enabled and therefore may fire. The firing 
rules determine what action will occur as a transition is fired.  Originally, these rules were 
simplistic, but nonetheless appropriate.  They were; 

a transition, Ti, is enabled iff all its input places have a token and none of its output 
places have a token [Symons 1982], that is; 

 Ti is enabled when PI = 1 AND PO = 0 
 where 
  PI is the set of input places for Ti, and 
  PO is the set of output places for Ti. 
 
The result of this early theory was that the nets were complex even when modelling 
relatively simple processes.  This was considered to be a disadvantage, and in part, was 
responsible for a reluctance to use the nets. There was little point in producing a model that 
was potentially more complex than the phenomenon being modelled.  It is important to 
emphasise here that complexity refers to structure of the graphical formalism.  As the rules 
were simplistic a process had to be decomposed almost to an atomic level. Simple rules led 
to the creation of complex graphics.  Again, complexity needs to be clarified.  The 
formalism has only four constructs so complexity arises not from that number, but rather 
from their excessive and repetitive use. 
 
These deficiencies were addressed with the introduction of coloured Petri nets and also 
hierarchical coloured Petri nets [Reisig 1991].  The extension of the theory allowed for 
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coloured tokens and complex algorithmic rules [op. cit.] to control the flow structure of the 
net.  The rules supplemented and extended the notion of enabling and firing rules.  Rules 
could now be far more complex.  The result was that nets were no longer rampantly 
complex in terms of graphics.  It is now possible to represent a complex process with  
minimal graphics, where the graphical structure is transformed into coloured tokens and 
complex rules.  So Petri nets can be now described in the following manner [Purvis and 
Purvis, 1993]; 
- a net structure, which is just like that of ordinary Petri nets, 
- a set of data declarations, and 
- a set of net inscriptions. 
 
The net structure is like that of Place/Transition nets:  nodes consisting of places and 
transitions, and directed arcs that always connect nodes of different types (either places or 
transitions). 
 
The declarations component, defines the colours, number and types of variables in the net.  
Each place, instead of having a capacity attached to it, now will have a colour set attached 
to it.  Colour sets are analogous to abstract data types in programming languages, and just 
as with abstract data types, each colour set can have an associated set of operations and 
functions that can be applied to tokens of that colour. Because of this analogy with abstract 
data types, the declarations component could be expressed in terms of any of a number of 
programming notations.  For example, Jensen's [Jensen, 1990] original notation of  
Standard ML could be used as it is in a commercial implementation of coloured Petri nets 
[MetaSoft Corp., 1992]. 
 
The net inscriptions, are expressions which can be attached to a place, a transition, or an 
arc; 
- Places can have colour sets and initialisation expressions (analogous to the 
capacities and initial markings of Place/Transition nets). 
- Transitions can have guards, which are boolean expressions that may contain 
operations on objects, such as constants, variables, and functions that have been defined in 
the declarations component.  Guards must evaluate to TRUE in order for the transition to 
fire.  If a guard always evaluates to TRUE, then it is not shown. 
- Arcs may contain arc expressions, which also contain constants and items that have 
been defined in the declarations component.  When the arc expressions are evaluated, their 
variables are bound to the appropriate colours.  The value of the expression must be equal  
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to a multi-set (bag) of the colour that is attached to the place at one end of the arc. The arcs 
associated with a single transition (whether incoming or outgoing) have a common scope:  
any variable that appears more than once must be bound to the same colour. 
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Figure 1 
 
The end result is that there is now a continuum of combinations.  A net could be highly 
graphical with little more than simple rules or at the other end of the spectrum, it could be 
hardly graphical and highly algorithmic.  Figure 1 presents this concept. 
 
It is contended that it is appropriate to derive a measurement to assess the relative 
percentages of graphics and algorithmic rules of a net.  In the short term, this metric could 
be simply to determine if there are classes of nets.  In the long term, it could be possible to 
match ‘net type’ with ‘end user type’ to maximise the outcome of the application of  
the Petri net formalism.  This paper uses the term ‘structure’ as a measure of the relative 
percentages shown in Figure 1.  It may be argued that it would have been better to use 
‘complexity’. This latter term is related here more to the number of constructs in use rather 
than their alternate representations (graphical or algorithmic). This definition is supported 
by Symons [1982, p3] where he states; 
 The structure of a net is defined by the interconnection pattern of the places and 

transitions 
To be absolutely sure then, this paper deals with measuring the two forms of representation 
- graphical and algorithmic and at this point in time is not concerned with comparing two 
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different nets for complexity (number constructs).  The latter would be important when 
measurements of efficiency and clarity are required. 
 
2 Introduction to Metrics 
 
To assess the structure of a Petri net model it may be appropriate to substantially adopt 
techniques from the field of software metrics, particularly those investigations that have 
attempted to assess and analyse graphical product representations.  Software metrics is the 
common name for the branch of software engineering that is concerned with the (normally 
quantitative) assessment of software project effort, quality assurance and the like.  
Underlying all of these major goals is the fundamental attribute measurement of products, 
resources and processes [Fenton 1991].  As a Petri net is a tangible system representation, 
this paper is most interested in methods of product assessment.  Some previously proposed 
product measures are very simple, for example, the number of lines of code in a program, 
or the number of modules on a structure chart.  Others, such as Basili and Hutchens' SynC 
family of measures [1983] and the Macro/Micro measures proposed by Harrison and Cook 
[1987], are more complicated combinations of several product attributes. 
 
Software product measures such as these have been used in a wide variety of functions.  
Some have been used, for example, in the estimation of software development costs, or to 
assist in the prediction of maintenance requirements, or in the evaluation of particular 
development strategies [MacDonell 1992].  In some cases, however, the validity of these 
investigations has been subsequently challenged, as the measures used have been chosen 
inappropriately and have therefore failed to actually assess the characteristic(s) of interest 
[Fenton 1991].  This has occurred most especially when assessments of poorly-defined 
attributes such as ‘understanding’ or ‘useability’ have been the goal.  The concern in this 
paper, however, is only with the direct assessment of Petri net structure.  It is therefore 
likely that problems of validity can be largely avoided through the use of relatively rigorous 
measurement definitions.  In addition, discussion here is not concerned with functionality 
as this should appear in both (or any) representations of the same system.  The core theme 
is to only consider the structure of the chosen representation in terms of path/decision 
metrics.  Figures 2a and b provide a simple example.  While being simple it must be said 
that the example also displays some relaxed theoretical rules.  That is, the sink or counter at 
P4 in (a) and P3 in (b), once marked by a token would bar the respective transition T2 (in 
(a)) or T1 (in (b)) from being enabled again.  This relaxed rule matters little in terms of the 
measurement of structure being discussed here. 
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Figure 2 
 
As described earlier, a Petri net is a system representation formalism that incorporates both 
graphical and algorithmic components.  Structural assessment of the whole would 
intuitively require separate assessment of each aspect, as both contribute to overall net size 
and structure.  Given that the algorithmic component is concerned with processing control 
[Jensen, 1990], which can also be depicted graphically, it would seem appropriate to use 
graphical analysis methods for both Petri net components. 
 
Metrics that are derivable from graphic product representations are widespread in the 
software engineering literature;  for example, the methods described by Chen [1978], 
Benyon-Tinker [1979] and Szulewski et al. [1981].  Some are based on conceptual or 
functional system descriptions, such as DeMarco's Bang method [1982].  Others are  
derived from design documents, and are therefore generally based on a product's calling 
structure.  Of most interest here, however, are those assessment techniques that may be 
applied to lower level product abstractions as represented in graph form, as these will be 
directly applicable to the graphical structure of Petri nets.  Although many of these methods 
were initially proposed as measures of software product complexity (for example, see 
McCabe [1976], Woodward et al. [1979] and Chen [1978]), the underlying rationale of the 
methods is appropriate for the less ambitious assessment of Petri net structure. 
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3 Measurement of Petri Net Structure 
 
A graphical structure assessment method adapted directly from software metrics (but 
which, interestingly was originally derived from graph theory) is that which determines the 
‘cyclomatic complexity’ of a program flowgraph [McCabe 1976].  As a Petri net can be 
considered in terms of a directed graph C [Peterson 1977] with nodes p and t (places and 
transitions), edges a (arcs), and connected components c, the formulation of the graph 
cyclomatic number v is as follows [Berge 1973]: 
 
 v(C) = a - p - t + c (1) 
 
In a strongly connected Petri net graph, that is, a graph in which a directed path can be 
traced between any pair of nodes [Symons, 1982, p7], the cyclomatic number is equal to  
the number of linearly independent paths. 
 
Some graphs, however, are not strongly connected.  For example, a given model may have 
logical starting or ending points, or both.  This can be observed on the net in the form of 
‘start’ nodes s or ‘finish’ nodes f, places that only have inputs or outputs.  For Petri net 
graphs of this type the above formulation must be adjusted accordingly [Sellers 1992].  
This is important as, at least intuitively, they are two basic net forms.  The first may be 
called cyclic, having no end or beginning, and is a net that models the ongoing logic of a 
system.  The other may be called episodic, which clearly have start and finish nodes.  The 
fact that the difference may only be the level of abstraction or the ‘view’ of the system or 
process does not remove the need for the classification.  Thus for nets with zero or one  
start place and zero or one end place the equation for the cyclomatic number becomes: 
 
 v(C) = (a + 1) - p - t + c (2) 
 
Finally for nets that have two or more start places or two or more finish places the 
calculation of the cyclomatic number is of the form: 
 
 v(C) = ((a + 1) + (s + f)) - (p + t + 2) + c (3) 
 
Values of v (as calculated from equations 1 and 2) were used by McCabe [1976] as 
measures of graph ‘complexity’, and subsequently as a basis for determining software 
testing strategies.  This approach was based on the underlying assumption that a greater  
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number of decision constructs meant a greater number of paths, and that this in turn 
contributed significantly to higher product complexity (also see [Peterson, 1981, p118]).  
Since it was first proposed, McCabe's method has been the subject of extensive 
investigation, with somewhat mixed results.  Some empirical support has appeared - for 
example, see the studies reported by Curtis et al. [1979] and Hartman [1982] - and, on the 
whole, the measure is viewed as one of the more effective software metrics [Boehm 1981;  
Arthur 1985;  Li and Cheung 1987].  In contrast, however, it has also been the subject of 
some criticism in relation to its treatment of path control constructs.  This has led in some 
cases to metric refinements being proposed based on notions of intuitive complexity [Myers 
1977;  Hansen 1978;  Ramamurthy and Melton 1988].  In the current study, however, the 
issue of varying construct complexity is of minimal concern, as the interest lies only in the 
underlying path structure of a Petri net (which is unaltered by construct variations), not  
how this relates to complexity or understanding [Shepperd 1988].  Thus the measures are 
used here simply to provide standardised indicators of the graphical and algorithmic path 
structure of Petri nets. 
 
The c term in equations (1) to (3) relates to the number of connected components.  McCabe 
[1976] adopted this term as an adjustment factor for the use of sub-programs, so that the 
number of components equalled the main module plus all called modules.  Thus when 
determining the value of v for a single module the value of c was equal to 1.  In the current 
context it seems natural to take the same approach - the value of c for each distinct self-
contained Petri net will therefore also be set equal to 1.  In addition there may be some need 
to consider the hierarchical nature of coloured Petri nets as a contributing factor to the 
structure of a net.  This is believed to have more to do with functionality than structure (as 
already defined).  So those places and transitions which link layers in the hierarchy will not 
be given any higher weight than they do as ordinary nodes.  It has also been shown that 
transitions and places can be transposed into places and transitions to produce an equivalent 
net [Peterson, 1981, p13].  It would therefore seem logical that places and transitions are  
all nodes of equal significance. 
 
Given these conditions the three equations above may be reduced [Stetter, 1984;  Sellers, 
1992]: 
Equation 1 becomes, 
 v(C) = a - p - t + 1 (4) 
Equation 2 becomes, 
 v(C) = a - p - t + 2 (5) 
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Equation 3 becomes, 
 v(C) = a - p - t + s + f (6) 
 
Algorithmic structure assessment is likely to follow a very similar approach, as the coded 
rules in a Petri net perform essentially the same function as the graphical form; that is, they 
control the sequence of functions through the use of conditional tests (REF).  Thus the 
graphical assessment methods discussed above will also be adapted for use with the 
algorithmic net component.  This clearly requires the development and measurement of a 
flowgraph for each place, transition or arc in which rules are used. The total structure 
measure for the algorithmic component would be the sum of the individual block measures 
adjusted for the number of blocks [Sellers, 1992]. 
 
The Petri net shown in Figure 2 will serve as an initial example.  Figure 3 shows the 
concept of forming a graphic equivalent of the algorithmic component.  The net in Figure 
2(b) has been interpreted as two graphs with the numbers indicating the count of places, 
arcs and transitions. 
 

 
 

Figure 3 
 
Using equations (5) and (6) the metrics for Figure 3 can be expressed as; 
 Sg = a - p - t  + s + f (7) 
 Sa = a - p - t  + 2 (8) 
 
So, from Figure 3 it is determined that; 
 Sg = (3 - 3 - 1 + 1 + 2) 
      = 2 
and 
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 Sa = (4 - 2 - 2 + 2) 
      = 2 
 
It may be held that it is necessary to determine the number of tokens in the net as a 
contributing factor toward structure.  While this may be so, tokens are not considered 
separately as; 
1 the number of types of tokens is the significant factor not the number of tokens, 
2 the types of tokens are considered indirectly in the assessment of the algorithmics, 
3 the number of tokens relates more to net complexity than net structure. 
Safeness and conservational aspects of a net, directly concern tokens but relate to 
complexity and are not assessed here. 
 
As an example consider a Petri net modelling a car hire process [Benwell, Firns and Sallis, 
1991] (see Figures 4a and b).  In a part of the net, cars are represented by tokens;  the 
number of cars will dictate the number of coloured tokens (but not necessarily the number 
of colours).  This will not inherently change the structure of the net nor in fact complexity 
until such time as the processes to handle the number of cars change.  Then a new process 
is being modelled so it should be expected that structure (and maybe complexity too) will 
be different.  Therefore a net to model 10 cars or a 100 cars will have the same structure, 
provided all cars are treated equally and the process to handle the number of cars is the 
same. 
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Figure 4a: Car Hire Net (adapted from [Benwell et. al. 1991]) 
 

 
 

Figure 4b: Figure 4a with reduced graphics and implied algorithmics 
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4 Indicators of Overall Petri net Structure 
 
With appropriate indicators of both graphical and algorithmic structure, denoted Sg and Sa 
respectively, an overall measure of Petri net structure, Sp, can be determined.  The two 
individual measures can also be used to determine whether a Petri net is dominated by 
graphical or algorithmic structure.  This could be, in the future, extended to meet the longer 
term aims mentioned earlier.  Given that the two components (graphical and algorithmic) 
are directly dependent, in that high utilisation of one will result in proportionally lower use 
of the other, a function of the sum of the components would seem to be an appropriate 
indicator of overall structure.  In determining the graphical or algorithmic dominance in a 
given Petri net, however, a ratio would intuitively provide a useful method of assessment.  
Therefore, Petri net structure, is equal to 
 Sp = [Sg + Sa] - [c - 1] (9) 
 
Given that the structure measure equates to the number of linearly independent paths in a 
net it is again necessary to reduce the raw sum of the two components by [c - 1].  This is in 
fact a specific instance of the formulation introduced by Sellers [1992], whereby the total 
value of the path measure is always equal to the sum of the contributing component values 
minus the number of components plus one.  Thus, if Sa = 0, that is there is no algorithmic 
component, then c = 1. 
 
The measure of overall Petri net structure Sp, as given by equation (9), could be solely  
used as a tool for net evaluation.  Notwithstanding that possibility, the thesis of this paper  
is to derive a metric that will classify nets as predominantly graphical or algorithmic and 
then, and only then, to draw some conclusions as to any differences between the two  
types. 
 
Structural dominance can be expressed in terms of graphics or algorithmics according to 
the following; 
 
 Dpg = Sg/Sp (10) 
 Dpa = Sa/Sp (11) 
but, in cases in which Sg and Sa contribute to the structure: 
 Dpg + Dpa ≠ 1 (12) 
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So, it is not possible to directly compare the influences and sum them to 100%.  It is 
desirable to have the sum of equation (12) equal to one.  This can be achieved by adjusting 
Sp.  Therefore, 
 Sp’ = Sp + (c - 1) (13) 
and 
 Dpg = Sg/Sp’ (14) 
 Dpa = Sa/Sp’ (15) 
and, therefore, 
 Dpg + Dpa = 1 (16) 
Now the two components may be compared directly as complementary percentages 
(equation (16)).  The outcome is a direct comparison, but Sp’ no longer represents the total 
count of all paths through the net. 
 
Equations (14)  and (15) enable the assessment of the graphical or algorithmic dominance 
in a given Petri net.  Some ‘classes’ of Petri net user may prefer graphically or 
algorithmically dominated representations.  The consequential matching of a graphical 
(/algorithmic) net with a graphical (/algorithmic) user has not escaped attention; though it is 
not the subject of this paper.  For example, project managers as a group, may prefer a 
higher graphic component, as this may enable more effective communication.  Conversely, 
programmers might be better served by having algorithmic dominated nets, so that the 
implementation of the functions described by the net are made more straightforward.  In 
addition, there may be classes of problems that are better portrayed in either representation.  
At this stage, however, the paper is not concerned with why different preferences exist. 
 
Given the ratio form of the Petri net dominance indicators, the value of Dp(i) will fall 
somewhere along the continuum from graphically dominated to algorithmic dominated.  
When Dpg equals Dpa the structure is evenly distributed between the graphical and 
algorithmic components. A different rendition of Figure 1 conveys the concept in Figure 5. 
 

 Sg increases   Dpg = Dpa   Sa increases  
««««««««««««««««««««««««««|»»»»»»»»»»»»»»»»»»»»»»»»»» 

 graphical not dominated algorithmic 
 domination by either domination 
 

Figure 5 
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5 The Dining Philosophers Problem 
 
The dining philosophers problems is now universally established [Peterson, 1981, p65 and 
Krishnamurthy, 1989, p54] and is a good practical example for comparing the structural 
dominance of the graphics and algorithmics.  The Petri net for the philosophers (adopted 
from Peterson [op. cit.]) in given in Figure 6.  The problem is that there are five diners and 
five eating utensils, the latter can be assumed to be forks (a, b, c, d, e in Figure 6).  A diner 
needs two forks to eat.  If two forks are not available the diner must be a true philosopher 
and forego eating for thinking.  It is only possible for two opposite diners (say ‘1’ and ‘3’ 
or ‘1’ and ‘4’ for example) to eat at the same time.  Figure 6 represents this situation where 
diner ‘1’ is eating, the immediate left (‘5’) and right (‘2’) dinner partners must think, while 
either of the upper two (‘3’ or ‘4’) may choose to eat.  If one chooses to eat,  the other 
cannot.  This situation is cyclic and continues ad nauseam.  The net configuration, as 
presented, makes a deadlock impossible.  In the more general case it would be possible 
where any diner can select a fork (as distinct from a pair) at a given time. 
 
The graphical measure of this net is given by; 
 Sg = a - p - t  + c 
      = 40 -15 - 10 + 1 
      = 16 
and Sa = 0, so 
 Sp = (Sa + Sg) - (c - 1) 
      = 0 + 16 - (1 - 1) 
      = 16 
 Sp’ = Sp + [c - 1] 
       = 16 + [1 - 1] 
       = 16 
Therefore, 
 Dpg = Sg/Sp’ = 16/16 = 1 ≈ 100% 
 Dpa = Sa/Sp’ = 0 ≈ 0% 
which leads to the obvious conclusion that the net is graphically dominated.  Now a new 
net can be created where some or all of the graphical logic is transposed to algorithmics.  
This is presented in Figure 7. 
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Figure 6: The Dining Philosophers[adapted from, Peterson, 1981, p65] 
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Calculation of the graphical structure of the Figure 7 representation is relatively straight 
forward; 
 Sg = a - p - t + c 
  = 4 - 2 - 2 + 1 
  = 1 
 
The assessment of the algorithmic structure, Sa, however, requires some preliminary 
calculations.  Given that there are two blocks of algorithmic code in the representation, the 
value for each block must be determined first; 
 
 Sa1 = (a + 1) - p + c 
  = (30 +1) - 17 + 1 
  = 15 
 
 Sa2 = (a + 1) - p + c 
  = (4 + 1) - 4 + 1 
  = 2 
 
As stated previously, the total algorithmic structure value is the sum of the individual block 
measures adjusted for the number of blocks.  Hence; 
 Sa = (Sa1 + Sa2) - (c - 1) 
  = (15 + 2) - (2 - 1) 
  = 16 
 
Now that values for Sg and Sa have been obtained the remaining indicators of overall 
structure, Sp, Sp’, Dpg and Dpa can be evaluated; 
 Sp = (Sg + Sa) - (c - 1) 
  = (1 + 16) - (2 - 1) 
  = 16 
 (as can be expected, the overall structure value for this representation is equal to that 
of the representation in Figure 6). 
 Sp’ = Sp + (c - 1) 
  = 16 + (2 - 1) 
  = 17 
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Therefore, 
 Dpg = Sg/Sp’ = 1/17 = 0.06 ≈ 6% 
 Dpa = Sa/Sp’ = 16/17 = 0.94 ≈ 94% 
 
These values now show that the net, as represented in Figure 7, is dominated heavily by 
algorithmic structure.  An intuitive assessment would no doubt have generated the same 
conclusion;  the calculations above, however, provide quantitative relative indicators of this 
fact. 
 
6 Conclusion 
 
This paper has adopted and derived a numerical technique to measure the relative 
percentages of graphical and algorithmic structure of a Petri Net.  The basis for the 
calculation has been the research and development undertaken in the area of software 
metrics.  The metric so derived can be utilised to indicate the influence each component has 
on the structure of a Petri Net.  This has fulfilled the initial goal of this research.  In the 
longer term it may be possible to match the attributes of a net to the characteristics of a user 
and thereby enhance the functionality of Petri Nets as a formalism. 
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