

University of Otago
Te Whare Wananga O Otago
Dunedin, New Zealand

A Comparative Review of Functional

Complexity Assessment Methods
for Effort Estimation

Stephen G. MacDonell

The Information Science
Discussion Paper Series

Number 94 / 8

March 1994
ISSN 1172-6024

A Comparative Review of

Functional Complexity Assessment Methods

for Effort Estimation

Dr Stephen G. MacDonell1

Department of Information Science

University of Otago

March 1994

Abstract

Budgetary constraints are placing increasing pressure on project man-

agers to effectively estimate development effort requirements at the ear-

liest opportunity. With the rising impact of automation on commercial

software development the attention of researchers developing effort esti-

mation models has recently been focused on functional representations

of systems, in response to the assertion that development effort is a func-

tion of specification content [1]. A number of such models exist—several,

however, have received almost no research or industry attention. Project

managers wishing to implement a functional assessment and estimation

programme are therefore unlikely to be aware of the various methods or

how they compare. This paper therefore attempts to provide this infor-

mation, as well as forming a basis for the development and improvement

of new methods.

1Address correspondence to: Dr S.G. MacDonell, Lecturer, Department of Information Science, University of

Otago, P.O. Box 56, Dunedin, New Zealand. Fax: +64 3 479 8311 Email: stevemac@commerce.otago.ac.nz

1

1 Introduction

Software development project planning frequently involves the use of estimates in

the determination of projected effort requirements. Numerous research studies over

the last two decades have therefore attempted to develop and validate estimation

models, so that systems development effort can be predicted with some quantitative

degree of accuracy and consistency [2, 3]. The intuitive relationship that exists

between ‘software complexity’ and development effort has provided the basis for

many of these estimation models. This relationship states that a more complex piece

of software will generally require greater effort in development than a less complex

counterpart. Thus a wide variety of factors thought to contribute to complexity have

been proposed as possible determinants of development effort. Most early estimation

models, for example, provided post-development estimates of effort (to be used for

future projects) based on the number of delivered lines of code [4, 5]. Other effort

estimation models have been based on countable attributes of software designs [6].

Some approaches have also considered the impact of external factors, such as system

type and developer experience, on projected effort estimates. Thus the influence of

many diverse factors has been investigated in the pursuit of an adequate estimation

model.

A common element of these studies has been the assessment of product attributes

with a view to the subsequent prediction of effort requirements, based on the assump-

tion that the product attributes have an impact on development effort. Underlying

this approach is another often stated assumption that the product characteristics ex-

amined are considered to be adequate indicators of product ‘complexity’. Although

complexity is seldom defined in measurable terms, most of these studies have ac-

cepted the intuitive association between aspects of system size and interconnectivity

and overall product complexity [7, 8]. It is not the object of this paper to debate

the validity or otherwise of this approach—rather, we are concerned here with the

adequacy of estimation models given this approach. Thus, complexity is considered

here to be a function of product size and interconnectivity. It therefore follows that

as size and interconnectivity increase, so the complexity of a system increases, and

consequently development effort requirements are greater.

The demand for early estimates of effort, that is, before a project is fully under

way, provides the motivation behind the development and use of function-based as-

sessment and estimation methods which consider the impact of specification product

attributes on development effort. In terms of the software process, a system spec-

ification product is a logical representation of system functionality, with no con-

sideration of ‘physical’ constraints, for example, the development language to be

2

used or the required hardware platform. Factors such as these are generally incor-

porated in the design process, with subsequent translation into code during system

implementation. Given this classification, a specification product in the commercial

systems domain often includes logical or conceptual models of data, process and

user interface requirements [1, 9]. Assessing the size and interconnectivity of these

models enables the functional complexity of a system to be considered, rather than

the complexity of a particular implementation. As the degree of automation in the

development process has increased, through the use of computer aided software en-

gineering (CASE) tools, it has been suggested that specification-based indicators

derived from these models should provide a useful basis for relatively consistent ef-

fort predictions [9]. This paper therefore examines nine such functional assessment

approaches for effort estimation according to a set of six characteristics.

The next section of this paper describes the six criteria against which the meth-

ods are evaluated. This is followed by a comparative review of currently known

functional complexity assessment methods for business systems development effort

estimation. An overall comparison of the approaches is presented in Section 4.

Opportunities for improvement are then discussed as a basis for further research.

2 Criteria for Comparison

Six characteristics were selected for the evaluation of the methods based on criticisms

directed at previously proposed complexity assessment and effort estimation models.

• Automation – Product-based data collection necessary for complexity assess-

ment and effort prediction should now be largely automated, given the de-

velopment tools available and in use within commercial software development

departments. Not only does this help to ensure the integrity of data, it also

reduces the intrusive nature of the data collection task [10, 11].

• Comprehensive assessment – In criticising the effectiveness of previous models,

Case [12] and Wrigley and Dexter [13] suggest that product factors other than

those considered by the models should also have been included, if only so that

they could be discarded at a later stage after evidence had illustrated that

they were of little consequence. In terms of specification products, the impact

of the size and interconnectivity of data, process and user interface models

should be assessed, as each may make some contribution to development effort

requirements [1, 9].

• Objectivity – Kulkarni et al. [14] and Lederer and Prasad [15] cite the issue

of subjectivity as a significant drawback associated with models employing

3

product-based effort predictions. Criticism generally centres around the fact

that the impact of the subjective component can overwhelm the usefulness of

the approach. Some degree of consistency may be possible when experienced

assessors and estimators remain in a development group, but problems can

arise when new personnel are required to perform similar tasks.

• Specification basis – As stated in the previous section, one of the main moti-

vating factors behind the development of new effort estimation approaches is

the opportunity for the earliest possible predictions to be generated whilst still

maintaining some degree of accuracy. If this requirement is to be fulfilled, the

product complexity assessment should be performed using conceptual specifi-

cation system models (rather than those developed during and after the design

phase) [16, 17].

• Testing – Munson and Khoshgoftaar [18] state that there have been more

than ninety assessment methods proposed within the realm of software mea-

surement. It is almost certain, however, that some of these methods remain

untested in the relevant environment. This is a most necessary characteris-

tic if an assessment procedure is to be used with confidence in the software

development industry [19].

• Validity – In relation to the previous point, any complexity assessment and ef-

fort estimation approach should be validated on data sets derived from systems

other than those used in the original model testing [15].

Thus the six characteristics above have been selected as desirable attributes of

complexity assessment and effort estimation models derivable from system specifi-

cations. For the purpose of repeatability, they are more succinctly and objectively

defined as follows:

Char 1: Automatic – can the product complexity assessment task be totally per-

formed in an automated manner, requiring no input from personnel?

Char 2: Comprehensive – are aspects of the size and interconnectivity of the

data, process and user interface representations considered by the model?

Char 3: Objective – will the model as defined always produce the same result for

a given system at a given point in time (assuming no counting errors) irrespec-

tive of the person requiring or performing the assessment and/or estimation?

Char 4: Specification basis – can the complexity assessment task be totally un-

dertaken using implementation-independent system representations?

4

Char 5: Tested – has the complete model been tested using appropriate real-world

data?

Char 6: Validated – has the complete model been evaluated using systems other

than those employed in testing the model?

These descriptions should now enable objective binary decisions to be made con-

cerning the provision of each characteristic by the various models.

3 Functional Complexity Assessment and Effort Estimation Models

DeMarco [1] suggests that development effort is a function of a system’s informa-

tion content. He further asserts that the information content of a final coded sys-

tem is a well-behaved function of the information content of that system’s speci-

fication. Unfortunately the lack of uniformity among specification structures, he

continues, prevents direct information theory evaluation of traditional requirements

documents—however, he does suggest that the use of standard specification models

would provide a consistent framework for structural comparison. In essence, this

provides the basis for the development and use of functional assessment methods.

A number of existing techniques are now discussed and evaluated according to the

six criteria described in the previous section. Although several of these existing

assessment methods have size or productivity estimation as their overall goal they

have all attempted to consider system complexity and development effort in some

way.

3.1 Bang metrics

Bang [1] is offered as an implementation-independent, quickly derived approach for

effort prediction that can lead to the development of size, cost and productivity esti-

mates. The Bang system of measures is based on a three-view perspective of system

specifications, ignoring all details of the method to be used in system implementa-

tion. The three views consist of a functional model, a retained data model and a

state transition model. This complete representation enables the use of quantita-

tive analysis to provide a measure of the function to be delivered by the system as

perceived by the user. DeMarco [1] does state that most systems can be adequately

specified using just two of the three views—particularly for business software this

would normally consist of the data and functional models.

There are three main basic attributes that can be used as the principal indicators

of Bang. They are the count of functional primitives or elementary processes FP,

5

the count of inter-object relationships RE and the count of data elements flowing

out of the system DEO. The ratio RE/FP is said to be a reasonable measure of data

strength. If the ratio is less than 0.7, this implies a function-strong system—that

is, a system that can be thought of almost completely in terms of operations, for

example, robotic systems; if RE/FP is greater than 1.5, this implies a data-strong

system, or one that should be thought of in terms of the data it acts upon. The

middle range identifies hybrid systems. The DEO/FP ratio is indicative of the

system’s focus on either data movement or data computation. Commercial systems

tend to have high levels of DEO/FP, scientific systems, low.

For function-strong systems it is suggested that the size or information content

of a process can be approximated as a function of the number of tokens TC, or

data elements, involved in the process. Variations in process complexity can then

be accounted for through the assignment of weighting correction factors W, based

on sixteen functional classes, to each primitive’s raw value BANGf. These weighted

figures are then summed over all elementary processes to provide a final value of

function Bang FBANG for the system:

FBANG =
∑

BANGfi ∗Wi

where

BANGfi = (TCi ∗ log2(TCi))/2

The count of objects OB, or entities, in the database is the base metric for data-

strong systems, corrected for the amount of connectedness among the objects COB.

Data Bang DBANG is the overall result obtained by this procedure:

DBANG =
∑

COBi

Hybrid systems require separate computation of both function and data Bang so

that the two figures can be used in the prediction of different activities. DeMarco

[1] states that combining the two totals would be difficult, as it would be almost

certain that one should be weighted more heavily than the other but that the mag-

nitudes of these weightings would depend specifically on the system in question.

Evaluation

Consideration of complexity is achieved in Bang through the use of weightings that

are dependent on the flows of data elements or on the amount of entity connect-

edness. Although DeMarco [1] provides a beginning set of correction factors, these

6

weightings must then be determined through trial and error and with extensive

in-house calibration. The amount of work required by a department to determine

the appropriate weightings has inhibited the wider use of Bang [20]. Furthermore,

results for database-oriented systems, most common in the business domain, are

sparse, despite the fact that the technique is now more than ten years old [21].

Bang can be applied at the conceptual modelling phase and does consider the

number of data elements processed. However, it fails to distinguish between input

and output data elements, even though the effort required to develop their respec-

tive processing components is different [22]. Data Bang also considers the number of

entity relationships, but no assessment of the relationship types is performed. Fur-

thermore, assignment of the sixteen complexity classes must be performed manually

by personnel, reducing the possibility for automatic calculation.

Outcome: Bang metrics

Automatic – No

Comprehensive – Yes

Objective – No

Specification basis – Yes

Tested – Yes

Validated – No

3.2 Bang metric analysis (BMA)

This is an adaptation of the original Bang method that considers both processing

and data requirements in transaction-based systems [23]. Each functional primitive

or elementary process is assigned a level of complexity according to the number

of create, read, update and delete operations that it performs, with each of these

operations carrying a weighting factor. This forms the basis for the calculation of a

process’ function Bang. The formulation of data Bang is the same as in DeMarco’s

theory [1], that is, complexity is dependent on the number of entity relationships.

Total Bang is the sum of both function and data Bang for each elementary process.

Evaluation

In terms of data-oriented transaction systems this is a much more useful approach,

in that database operations are considered instead of DeMarco’s sixteen weighted

functional classes [1]. The weightings used for the operations were intuitively pro-

posed, but have proved to be useful in testing. Regression techniques have been

7

used to determine the appropriate coefficients for function and data Bang in the

prediction of overall development effort. This method, however, still suffers from

the same drawbacks as DeMarco’s original proposal [1], that is, a failure to distin-

guish between input and output data elements and non-assessment of relationship

types.

Outcome: BMA

Automatic – Yes

Comprehensive – Yes

Objective – Yes

Specification basis – Yes

Tested – Yes

Validated – No

3.3 CASE size metrics

Tate and Verner [9, 21] and Tate [24] assert that the automatic measurement of size

as a function of data dictionary entries should be possible in a CASE environment.

Furthermore, they state that the widespread use of graphics within CASE tools

and the relative absence of lines of code means that more appropriate size measures

should be chosen. They therefore suggest that measures of specification size appli-

cable to transaction-oriented database systems may include those based on the data

model, the data flow model and the user interface. Examples of specific product

measures suggested include counts of entities and attributes, data flows, processes

and data stores. It is suggested that measures such as these will be useful in the

development of effort estimates. Measurement of complexity, on the other hand, is

described by Tate and Verner [9] as a relatively well-defined area of conventional

development that should follow similar principles within CASE, except that it may

be based on data structure and data flow models. At the risk of oversimplification,

they suggest that complexity is a measure of component interconnectivity within

a software product, an aspect that should be automatically computable within a

CASE environment and that should present no particular problems.

Evaluation

As discussed earlier in this paper, complexity is considered to be a combination of

aspects of size and interconnectivity. Thus, Tate and Verner’s discussion of specifica-

tion size [9] remains particularly appropriate here as size is certainly thought to have

8

an impact on overall complexity. Therefore the automatically derivable measures

suggested above are relevant. Their study was a preliminary examination of metric

possibilities and consequently no evidence supporting or refuting their suggestions

was provided. Subsequent empirical investigations into the relationship between

the measures and development effort, however, have provided some support for the

approach [25].

Outcome: CASE Size metrics

Automatic – Yes

Comprehensive – Yes

Objective – Yes

Specification basis – Yes

Tested – Yes

Validated – No

3.4 Entity metrics

Gray et al. [26] describe a set of techniques for the assessment of the complexity

of various tasks relating to the development of data-oriented systems. They firstly

propose an ER metric for determining the effort required to implement a database

design. There are said to be four factors that influence the complexity of a database

design: the number of entities in the design, the number of relationships for each

entity, the number of attributes for each entity and the distribution of relationships

and attributes. The overall complexity of a complete ER diagram is shown as the

sum of the complexities of the entities that comprise it. Individual entity complexity

is calculated using the values of the number of relationships, functionally dependent

attributes and non-functionally dependent attributes for each entity. Weightings

for these factors are also used in the formula—it is suggested that these weightings

can be used to reflect the impact of characteristics from the local development

environment. The calculation also considers the ‘functional complexity’ of each

entity, but this is assumed to have the constant value of one for every entity.

The third measure is an enhancement of Shepperd’s structural IF4 metric [27]

which was itself derived from Henry and Kafura’s Information Flow metric [8]. The

original IF4 measure makes no consideration for the use of a database—therefore an

extension is suggested. Each entity in a database is regarded as a type of module

that can receive information, through create and update transactions, and can also

provide information, through read and delete operations. A delete operation is said

to be an information extraction because the entity will contain less information after

9

the transaction is completed. Thus the enhanced IF4 metric (IF4+) is said to enable

the assessment of both processing and data in a single metric approach.

Finally a measure of database operation complexity is proposed. This treats

each operation (create, read, update and delete) as a virtual entity, being composed

of the parts of the entities accessed by the operation. The ER metrics as proposed

can then be used, with the number of entities replacing the number of relationships

in the original formula, to assess the overall complexity of each operation.

Evaluation

Overall this would seem to be a positive approach for the analysis of business sys-

tems, particularly given that its focus is on the impact of both data and processing.

The decision to assign a delete operation as a provision of data is interesting.

Although it is certainly true that an entity will contain fewer elements after the

operation, it can equally be said that the operation itself is one that writes a blank

record, therefore suggesting that it should be classified as a ‘receive’ by the entity.

Placing this issue aside, the new IF4+ metric could be useful as a more comprehen-

sive structural complexity measure. It is not strictly a functional measure, however,

because the processing assessment is based on design-phase module structure charts.

The final measurement approach, considering database operation complexity, is

also a valid and worthwhile proposal. Again, it would seem to be more comprehen-

sive than many other techniques in that it attempts to consider processing and data

in one metric. Moreover, the basic measures could be determined automatically if

the representations were stored electronically. However, there is no indication as to

whether one type of operation will be inherently more complex than another, with-

out consideration of the data that it manipulates. Furthermore, the number and

type of relationships between the entities are not considered, and there is no explicit

guidance provided as to how entity look-ups or relationship exclusivity should be

treated in the assessment.

Outcome: Entity metrics

Automatic – Yes

Comprehensive – Yes

Objective – Yes

Specification basis – Yes

Tested – No

Validated – No

10

3.5 Function point analysis (FPA)

Function point analysis [28] is the most widely investigated of the function-based

approaches. Quantification of complexity under this technique is performed as a

sub-task of the complete model, the overall original purpose being the determi-

nation and prediction of development productivity. Each system is considered in

terms of the number of inputs, outputs, inquiries, files and external system inter-

faces that it contains. The system total for each of these attributes is multiplied

by a weighting factor appropriate to its complexity in the system (simple, average

or complex), based on the number of data elements and/or file types referenced.

The combined total of all of these products is then adjusted for application and

environment complexity—this can cause an increase or decrease of up to 35% in

the raw function point total. Calculation of the adjustment factor is carried out

by considering the need for certain features in the system, for example, distributed

processing, on-line data entry, end user efficiency and ease of installation. Each of

the fourteen factors is assigned a degree of influence of between zero (no influence)

and five (strong influence), and these are summed to give a total degree of influence,

denoted N . One of the fourteen factors is allocated for the consideration of complex

processing. A technical adjustment factor is then calculated as (0.65 + 0.01(N)).

This adjustment factor is subsequently multiplied by the raw function point total

to determine the final function point value delivered by the system. According to

Grupe and Clevenger [7] the underlying assumption of FPA is that higher numbers

of function points reflect more complex systems; these systems will consequently

take longer to develop than simpler counterparts.

Evaluation

Complexity is therefore considered in two ways during function point analysis. It is

questionable, however, whether this consideration is completely adequate. Albrecht

acknowledges that the complexity weights applied to the raw function point counts

were “. . .determined by debate and trial.” [29 p.639]. The absence of empirical

foundation for these weights has since received criticism from several quarters [30,

31]. Moreover, with respect to the raw counts, the categorisation of the system

components as simple, average or complex, although clearly straightforward, seems

to be rather simplistic in terms of a comprehensive assessment of complexity—

Symons [32] provides the example that a component consisting of over 100 data

elements is assigned at most twice the points of a component that contains just one

data element. It is also suggested that the weightings are unlikely to be valid in all

11

development situations.

There are similar problems with the technical complexity adjustment process. It

would seem unlikely that the consideration of the same fourteen factors would be

sufficient to cope with all types of applications. Also, adjustments to the raw counts

can only be affected by a factor within the zero to five range which, although simple,

is unlikely to be appropriate in all cases. Consideration of processing complexity in

only one of the fourteen factors is not only inadequate, it may also not be practically

applicable at the software specification stage. It is recommended that the value

of the adjustment factor for complex processing should be based on a number of

factors, including the need for sensitive control/security processing and extensive

logical or mathematical processing [29, 33, 34]. It would seem unlikely, however,

that information of this kind would be available at the conceptual modelling stage.

This reinforces another drawback of the method, in that it is not based on modern

structured analysis and data modelling techniques [21].

Overall, then, the technique tends to underestimate systems that are procedu-

rally complex and that have large numbers of data elements per component [32,

35]. Shepperd [31] and Ratcliff and Rollo [36] also remark that the identification of

the basic components from the specification can be difficult and rather subjective—

different analyzers may therefore use different logic to determine the number and

complexity of the functions provided by the system [37, 38]. It has been suggested

that this subjective element can dominate the final results, reducing the utility of a

seemingly quantitative process [13, 32, 39]. A recent investigation by Kemerer [40],

however, has provided some evidence to refute this assertion. Moreover, the method

itself is widely used and supported.

Outcome: FPA

Automatic – No

Comprehensive – Yes

Objective – No

Specification basis – No

Tested – Yes

Validated – Yes

3.6 Information engineering metrics

Data representing complexity variables thought to influence development phase ef-

fort was collected from a number of information engineering development projects

[41]. In producing an information strategy plan for an organisation it was found that

12

the number of entity types had a large impact on project effort, based on twenty-

eight projects from seventeen domains. Other important complexity variables were

the number of lowest-level functions, the number of proposed data stores and several

other factors relating to the structure and personnel of the organisation concerned.

For business area analyses, the number of elementary processes to be implemented

in a system was found to be highly influential, based on data derived from twenty

projects over ten application domains. Other factors included the number of users

interviewed, the number of relationships, the number of attributes and the number

of action diagrams.

Evaluation

This approach is a practical, empirical evaluation of intuitive relationships with

minimal background theory. The results obtained may be useful in the information

engineering (IE) environment, but because the formulæ derived are totally oriented

towards steps of the IE methodology, their general application may be less effective.

Furthermore, the effort data was used after the fact for metric analysis. That is, it

was not collected specifically for assessment purposes. Therefore much of the data

was based on personal notes, personal memory, accounting data and best guesses.

Finally, several variables relate to the development and organisational environment,

reducing the functional basis of the method. This may have been due to the fact

that only some of the projects made use of CASE or similar tools.

Outcome: IE metrics

Automatic – No

Comprehensive – Yes

Objective – No

Specification basis – No

Tested – Yes

Validated – Yes

3.7 Mark II FPA

Symons [22, 32] has developed a specification-based sizing and effort estimation

technique based on a revised version of the function point analysis method. He

identified several failings with Albrecht’s original technique, as outlined earlier in

this section, pertaining particularly to the classification and weighting strategies

used in the original theory. Symons [32] further suggested that these problems

13

were compounded by technology-driven changes, so that, for example, the original

concept of a logical file was no longer appropriate in the database environment that

now dominates business systems. Symons [32] therefore adopted the entity type as

the basic data equivalent for transaction-centred systems.

The Mark II method involves the identification of all the inputs, outputs and

processes associated with each externally triggered logical transaction performed

by a system. To assess the size contribution of the input and output components,

Symons’ method [32] counts the number of data elements that are used in and

produced by the transaction. This is founded on the assumption that the effort for

formatting and validating an input or an output is proportional to the number of

data elements in each. Symons [32] suggests that this provides greater objectivity in

the counting procedure when compared to Albrecht’s somewhat subjective approach.

Identification and evaluation of the process component is more difficult, in terms

of developing an appropriate size parameter for this aspect of a transaction. The

method suggested by Symons [32] relies on previous work on internal structure

measurement based on code branching and looping [42]. It is suggested that the

data structure employed by a system may provide a basis for the assessment of

processing complexity. At the specification stage, this is represented by the access

path of a transaction through the system entity model. Symons [32] states that since

each step in the path correlates to a branch or a loop, the processing complexity

will be directly related to the number of entities referenced by the transaction.

Although this argument was originally considered to be rather tentative, providing

only a crude measure of processing complexity, it has remained intact and has been

reinforced in Symons’ more recent work [22].

The formula for the raw size factor in unadjusted function points is therefore

calculated by multiplying locally calibrated weighting factors with the basic counts

of input and output data elements and the number of entity references in the sys-

tem, and then summing together the three weighted totals for all of the system’s

transactions. An industry standard set of weightings is available as a starting point.

The technical complexity adjustment procedure is very similar to that of the original

theory except that the fourteen Albrecht factors [28] are augmented by five or more

new characteristics.

Evaluation

Using counts of data elements for the input and output components is a positive and

more contemporary approach, as is the adoption of entity-based assessment. Under

this method, however, there is no consideration of the entity link types traversed,

14

despite the fact that, as Symons [32] acknowledges, they produce different processing

requirements. The technique also counts a maximum of one reference to each entity

per transaction, in spite of the fact that a transaction may refer to a given entity

more than once in order to manipulate different data elements. Mark II also fails

to consider the types of operation that are performed in each transaction (that

is, create, read, update or delete), even though others [23, 26] suggest that the

operations are of differing complexities. As justification, Symons [22] suggests that

operation types should not be counted as they might depend on the logical database

design, the file structure or the database tools used, that is, physical considerations.

This, he suggests, is contrary to gaining a measure of the logical representation.

The use of McCabe’s work as a basis for process complexity in terms of logical

structure is certainly valid to an extent; however, evidence has also shown that Mc-

Cabe’s measure is not comprehensive enough to reflect overall complexity and that

other contributors are assessed inadequately using this approach [43]. Therefore this

basis should be further investigated. In calculating the input and output compo-

nents, no distinction is made between data elements that are read from/written to

the database and those that are provided by/for the user, even though the processing

and validation requirements for each of these situations may be quite different.

In order to perform estimation for future project requirements, historical effort

data from past development projects must be allocated by staff after the fact to the

input/output/process components and to each of the nineteen adjustment factors.

Also acknowledged as crude in 1988, Symons [22] has subsequently stated that the

method has provided reasonable results in validation studies based on the analy-

sis of more than sixty systems. It is somewhat subjective, however, and may be

jeopardised by leading questions from the assessor. Moreover, collection of the data

required for the nineteen adjustment factors would be difficult to automate [44].

Finally, Albrecht [45] states that the use of local weights in the initial functional

assessment makes the method invalid as a purely functional approach. This seems

reasonable, in that he asserts that the functional measure should be derived first

and then adjusted or weighted accordingly.

Outcome: Mark II FPA

Automatic – No

Comprehensive – Yes

Objective – No

Specification basis – Yes

Tested – Yes

Validated – Yes

15

3.8 Metrics Guided Methodology (MGM)

The Metrics Guided Methodology (MGM) was proposed by Ramamoorthy et al.

[46] as a reflection of the need for metrics from all development phases. Discussion

of the specification stage is based on the use of requirements specification languages

(RSLs). It is suggested that a spectrum of measures is needed to assess the different

aspects of a specification, as it is normally not possible to specify requirements fully

from just one perspective. Normally, then, both processing and data requirements

are developed. A set of metrics that considers the control-flow and entity models of

an RSL specification is therefore described. Measures include the number of paths,

nesting levels, ANDs and ORs, statements, data types and files.

Evaluation

Although this approach does consider the function of a system, the measurements

used are more lexical or topological, due to the language-based form of RSLs. This

also means that the technique is not applicable to conceptual data or structured

analysis models. Moreover, some of the measures (such as those that are concerned

with determining the style and meaning of the RSL specifications) can only be

determined in a subjective manner.

Outcome: MGM

Automatic – No

Comprehensive – Yes

Objective – No

Specification basis – No

Tested – No

Validated – No

3.9 Usability measures

Wilson [47] has described a method for determining the usability of systems, in

order to enable the comparison of designs that conform to the same requirements.

The approach is based on cognitive issues not generally covered in quantitative

assessment. The procedure considers the number of user-visible concepts, terms

and inter-relationships in a system, prior to implementation. This practice is said

16

to actually measure the complexity of application problems, system designs and

system-supported solutions, based on the semantic analysis of a design model similar

to the ER representation. Under this model there are five mutually exclusive concept

types:

1. entity – something that (usually) persists in time as (some of) its attributes

and relationships change;

2. event – an occurrence of a change in the attributes and/or relationships of one

or more things;

3. relationship – a directed association or connection between something and

(usually) something else;

4. attribute – an aspect of something that can be qualitatively or quantitatively

assessed;

5. value – an assessment of an attribute of something.

Different system design approaches, that is, using different methodologies, can

be assessed for complexity using various factors, such as the number of entity types,

the number of event types, the number of value types, the number of new terms and

the average number of attributes per subject. Generally, the design method with

the lowest total number of concepts and terms is the least complex and therefore

the most usable. Wilson suggests that the average values of the features mentioned

should conform as a general rule to Miller’s 7±2 constraint [48], which is believed

to be related to understandability.

The complexity of solutions proposed for a system requirement can be measured

using the following factors: number of entity types, number of entity attributes or

relationships, number of event types, number of event attributes or relationships

and the number of value types—these figures give the total concepts—and the aver-

age number of attributes/relationships per subject, the average number of events per

subject, number of non 1 to 1 problem-solution choices (the number of times the user

is faced with alternative ways to map problem concepts to solution concepts) and

the number of non 1 to 1 problem-solution relationships (where a problem requires

none or more than one solutions)—these values give the total number of problem-

solution relationships. The solution with the fewest concepts is generally the one

that supports the entities and operations with the best match to the problem and is

therefore the easiest to implement. Again, Miller’s constraint [48] is recommended

for evaluation of the average figures.

17

Evaluation

Although a novel approach, this method has seen no further investigation. The focus

on understandability reduces the usefulness of this technique as a general, objective

procedure. The only consideration of processing in this scheme is the counting of

entity event types and only the number of relationships is considered, not the type.

Outcome: Usability measures

Automatic – No

Comprehensive – No

Objective – No

Specification basis – Yes

Tested – No

Validated – No

4 Comparison of Methods

The following two tables summarise the relative merits of the nine development

effort estimation procedures considered above, in terms of the six characteristics.

(Due to restrictions on room the six criteria have been abbreviated in the heading

of Table 2.)

Method Comments

Bang Intuitive and early, but partly subjective and not validated.

BMA No subjectivity and easy to automate, but minimal testing.

CASE Size Basis in conceptual models, objective and tested.

Entity Early and objective, but as yet untested.

FPA Question over objectivity, but widely used, tested and supported.

IE Several subjective elements but relatively comprehensive.

Mark II FPA Not completely objective or automatable, but well tested.

MGM Partially automatable, but only after conceptual phase.

Usability Somewhat subjective and completely untested.

Table 1: General comments on functional assessment and estimation methods

The rating assigned to each method in Table 2 is based on the method’s sat-

isfaction of the six criteria. If a method completely satisfies the requirements of a

characteristic it receives a ‘Y’ in the table. Each ‘Y’ is worth one ‘mark’. An ‘N’

in the table denotes that the method does not satisfy the necessary requirement

18

Method Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Rating
Auto. Comp. Obj. Spec. Tested Valid. (out of 6)

Bang N Y N Y Y N 3

BMA Y Y Y Y Y N 5

CASE Size Y Y Y Y Y N 5

Entity Y Y Y Y N N 4

FPA N Y N N Y Y 3

IE N Y N N Y Y 3

Mark II FPA N Y N Y Y Y 4

MGM N Y N N N N 1

Usability N N N Y N N 1

Table 2: Comparison of functional assessment and estimation methods

and therefore receives no ‘marks’ for that characteristic. Clearly this is an arbitrary

assignment of value to the six criteria and no weightings have been applied, in spite

of the fact that some aspects may be more important than others to project man-

agers. Moreover, characteristics other than those included in the table may also

be of greater interest to managers—inclusion of such criteria in the table may lead

to changes in the ratings achieved. This reflects the nature of this discussion as

an exploratory comparison of the various methods, however. Indeed, it may not be

comprehensive, but it should at least provide some comparative information of value

to those managers considering their functional assessment and estimation options.

5 Opportunities and Recommendations for Improvement

All nine approaches discussed above have some useful features and a few in particular

would appear to be promising avenues for both practice and further research. Several

issues of concern, however, have also been identified. In particular, some of the

approaches have been criticised for their lack of objectivity, in that much of the

assessment can be directly dependent on decisions made by individual evaluators.

This is in spite of the fact that automatic measurement extraction would now seem

to be a prerequisite for any successful approach [10]. Some of the methods are

not completely applicable at the conceptual modelling phase and some are also not

comprehensive in their assessment. Most of the methods still suffer from a lack of

significant validation and are therefore likely to remain underutilised in industry.

Clearly, then, there are a number of areas in which improvements to the assess-

ment function could be made. Of particular importance (as illustrated in Table 3)

are the issues of automatic collection, subjectivity and validation. All of these is-

19

sues need to be addressed if any method, new or existing, is to be accepted by

the development industry. Any degree of subjectivity places too much emphasis on

the working methods of particular individual assessors—if counting methods can

be interpreted differently by individuals then the measures obtained from the same

system by different people are likely to vary. Consequently any recommendations

based on those measures will also vary. Any new method must therefore be totally

objective to ensure consistent results and conclusions.

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6

Auto. Comp. Obj. Spec. Tested Valid.

Number of ‘Y’s 3 8 3 6 6 3

Number of ‘N’s 6 1 6 3 3 6

Table 3: Satisfaction of the six criteria

As well as reducing the influence of subjectivity on the assessment procedure,

automated data collection also lessens the work effort imposed on developers and

assessors. Furthermore, automatic collection reduces the risk of errors being intro-

duced into the extracted data. Finally, any new analysis procedure needs to be

tested and validated with real-world systems to illustrate that it is indeed effective

in the relevant development domain. Of the six criteria considered here, these were

the most poorly fulfilled by the nine techniques.

To summarise, any new functional assessment method should enable:

early application - the requirements specification is one of the earliest available

products of the development process—analysis of this representation would

enable rapid measurement and estimate determination

objective quantification - any assessment scheme should be based totally on the

functional specification of system requirements; consequently, all of the mea-

sures would be directly quantifiable in an unambiguous, assessor-independent

manner

automatic collection - collection and analysis of the measures should be incorpo-

rated into automated development tools so that collection and interpretation

errors can be reduced or avoided

comprehensive assessment - since a specification can be considered from a num-

ber of perspectives, for example, data, process and/or user interface, measures

applicable to the size and interconnectivity of each perspective should be in-

cluded in any new assessment scheme

20

independent results - given that automation now plays a significant part in the

development of business systems (with the use of CASE tools), it has been as-

serted that the development environment will have far less impact on the data

obtained from different sites [9]; therefore results from different environments

may be more easily compared

rapid uptake - as a result of the last point it is also suggested that a lesser de-

gree of calibration will be needed, enabling more rapid uptake of the analysis

recommendations by organisations that do not have pools of recent project

data

testing and validation - new assessment schemes should be tested and validated

with actual systems developed within the commercial software industry.

Acknowledgements

The work described in this paper was carried out while the author was a graduate

student at Cambridge University. Financial support for the work came from the

Cambridge Commonwealth Trust, the New Zealand Vice-Chancellors Committee,

British Telecom plc, Clare College, Cambridge, the Cambridge University Engineer-

ing Department and the University of Otago.

References

[1] DEMARCO, T.: ‘Controlling software projects’ (Yourdon, 1982)

[2] JEFFERY, D.R., and LAWRENCE, M.J.: ‘An interorganisational comparison

of programming productivity’. Proc. 4th International Conference on Software En-

gineering, Munich, West Germany, 1979

[3] SAMSON, W.B., NEVILL, D.G., and DUGARD, P.I.: ‘Predictive software met-

rics based on a formal specification’, Information and Software Technology , June

1987, 29, (5), pp. 242-248

[4] PUTNAM, L.H.: ‘A general empirical solution to the macro software sizing prob-

lem’, IEEE Transactions on Software Engineering , April 1978, 4, pp.345-361

[5] BOEHM, B.W.: ‘Software engineering economics’ (Prentice-Hall, 1981)

21

[6] RUBIN, H.A.: ‘Macro-estimation of software development parameters: The ES-

TIMACS system’, in ‘SOFTFAIR-Software development: Tools, techniques, and

alternatives’ (IEEE, 1983)

[7] GRUPE, F.H., and CLEVENGER, D.F.: ‘Using function point analysis as a soft-

ware development tool’, Journal of Systems Management , December 1991, pp.23-26

[8] HENRY, S., and KAFURA, D.: ‘Software structure metrics based on informa-

tion flow’, IEEE Transactions on Software Engineering , September 1981, 7, (5),

pp.510-518

[9] TATE, G., and VERNER, J.: ‘Software metrics for CASE development’. Proc.

COMPSAC ’91, Tokyo, Japan, 1991

[10] NORMAN, R.J., and CHEN, M.: ‘Working together to integrate CASE (Guest

editors’ introduction)’, IEEE Software, March 1992, pp.13-16

[11] HENRY, S., and LEWIS, J.: ‘Integrating metrics into a large-scale software

development environment’, Journal of Systems and Software, 1990, 13, pp.89-95

[12] CASE, A.F. Jr: ‘Information systems development: Principles of computer-

aided software engineering’ (Prentice-Hall, 1986)

[13] WRIGLEY, C.D., and DEXTER, A.S.: ‘A model for measuring information

system size’, MIS Quarterly , June 1991, pp.245-257

[14] KULKARNI, A., GREENSPAN, J.B., KRIEGMAN, D.A., LOGAN, J.J., and

ROTH, T.D.: ‘A generic technique for developing a software sizing and effort esti-

mation model’. Proc. COMPSAC ’88, 1988

[15] LEDERER, A.L., and PRASAD, J.: ‘Nine management guidelines for better

cost estimating’, Communications of the ACM , 1992, 35, (2), pp.51-59

[16] GRADY, R.B.: ‘Work-product analysis: The philosopher’s stone of software?’,

IEEE Software, March 1990, pp.26-34

[17] MUKHOPADHYAY, T., and KEKRE, S.: ‘Software effort models for early

estimation of process control applications’, IEEE Transactions on Software Engi-

22

neering , October 1992, 18, (10), pp.915-924

[18] MUNSON, J.C., and KHOSHGOFTAAR, T.M.: ‘Applications of a relative

complexity metric for software project management’, Journal of Systems and Soft-

ware, 1990, 12, pp.283-291

[19] CÔTÉ, V., BOURQUE, P., OLIGNY, S., and RIVARD, N.: ‘Software metrics:

An overview of recent results’, Journal of Systems and Software, 1988, 8, pp.121-131

[20] VERNER, J., and TATE, G.: ‘A model for software sizing’, Journal of Systems

and Software, 1987, 7, pp.173-177

[21] TATE, G., and VERNER, J.: ‘Approaches to measuring size of application

products with CASE tools’, Information and Software Technology , November 1991,

33, (9), pp.622-628

[22] SYMONS, C.R.: ‘Software sizing and estimating: Mk II FPA (Function point

analysis)’ (John Wiley & Sons, 1991)

[23] BRITISH GAS: ‘Bang metric analysis’. Document Num. 000763, Process Sup-

port, British Gas plc, Dorking, UK, June 1991

[24] TATE, G.: ‘Management, CASE and the software process’. Proc. 12th New

Zealand Computer Conference, Dunedin, New Zealand, 1991

[25] MACDONELL, S.G.: ‘Quantitative functional complexity analysis of commer-

cial software systems’. Ph.D. Dissertation, Department of Engineering, University

of Cambridge, Cambridge, UK, 1992

[26] GRAY, R.H.M., CAREY, B.N., MCGLYNN, N.A., and PENGELLY, A.D.:

‘Design metrics for database systems’, BT Technology Journal , October 1991, 9,

(4), pp.69-79

[27] SHEPPERD, M.: ‘Design metrics: An empirical analysis’, Software Engineering

Journal , January 1990, pp.3-10

[28] ALBRECHT, A.J.: ‘Measuring application development productivity’. Proc.

IBM GUIDE/SHARE Applications Development Symposium, California, USA, 1979

23

[29] ALBRECHT, A.J., and GAFFNEY, J.E. Jr: ‘Software function, source lines

of code, and development effort prediction: A software science validation’, IEEE

Transactions on Software Engineering , November 1983, 9, (6), pp.639-648

[30] ROLAND, J.: ‘Software metrics’, Computer Language (USA), June 1986, pp.27-

33

[31] SHEPPERD, M.: ‘An evaluation of software product metrics’, Information and

Software Technology , April 1988, 30, (3), pp.177-188

[32] SYMONS, C.R.: ‘Function point analysis: Difficulties and improvements’, IEEE

Transactions on Software Engineering , January 1988, 14, (1), pp.2-10

[33] RUDOLPH, E.E.: ‘Measuring information systems’. Seminar Guide and Addi-

tional Notes, Auckland, New Zealand, 1987

[34] GORDON GROUP: ‘Before You Leap - A software cost model’. Product User

Manual, Gordon Group, San Jose CA, USA, 1987

[35] VERNER, J., and TATE, G.: ‘Estimating size and effort in fourth-generation

development’, IEEE Software, July 1988, pp.15-22

[36] RATCLIFF, B., and ROLLO, A.L.: ‘Adapting function point analysis to Jack-

son system development’, Software Engineering Journal , January 1990, pp.79-84

[37] RUDOLPH, E.E.: ‘Productivity in computer application development’. Work-

ing Group Report, University of Auckland, Auckland, New Zealand, 1983

[38] CONTE, S.D., DUNSMORE, H.E., and SHEN, V.Y.: ‘Software engineering

metrics and models’ (Benjamin/Cummings Publishing, 1986)

[39] LOW, G.C., and JEFFERY, D.R.: ‘Function points in the estimation and evalu-

ation of the software process’, IEEE Transactions on Software Engineering , January

1990, 16, (1), pp.64-71

[40] KEMERER, C.F.: ‘Reliability of function points measurement: A field experi-

ment’, Communications of the ACM , February 1993, 36, (2), pp.85-97

24

[41] IE: ‘IE-metrics knowledge base’. James Martin & Co., Reston VA, USA, Novem-

ber 1989

[42] MCCABE, T.J.: ‘A complexity measure’, IEEE Transactions on Software En-

gineering , December 1976, 2, (4), pp.308-320

[43] SHEPPERD, M.: ‘A critique of cyclomatic complexity as a software metric’,

Software Engineering Journal , March 1988, pp.30-36

[44] KING, S.F.: ‘The quality gap: A case study in information system develop-

ment quality and productivity using CASE tools’, in SPURR, K., and LAYZELL,

P. (eds.): ‘CASE: Current practice, future prospects’ (John Wiley & Sons, 1992,

pp.35-54)

[45] ALBRECHT, A.J.: ‘Open letter to the secretary of the international function

point user group’. IFPUG Memorandum, June 1988

[46] RAMAMOORTHY, C.V., TSAI W.-T., YAMAURA, T., and BHIDE, A.: ‘Met-

rics guided methodology’. Proc. COMPSAC ’85, Chicago IL, USA, 1985

[47] WILSON, M.L.: ‘The measurement of usability’, in CHEN, P.P. (ed.): ‘Entity-

relationship approach to systems analysis and design’ (North-Holland, 1980, pp.75-

101)

[48] MILLER, G.A.: ‘The magical number seven, plus or minus two. Some limits on

our capacity for processing information’, Psychological Review , 1956, 63, pp.81-97

25

 University of Otago

 Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at the
University of Otago. The department offers courses of study leading to a major in Information Science within the
BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also strongly involved in
postgraduate programmes leading to the MBA, MCom and PhD degrees. Research projects in software engineering
and software development, information engineering and database, artificial intelligence/expert systems, geographic
information systems, advanced information systems management and data communications are particularly well
supported at present.

 Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information Science.
Current members of the Editorial Board are:

Mr Martin Anderson Dr George Benwell
Dr Nikola Kasabov Dr Geoff Kennedy
Dr Martin Purvis Professor Philip Sallis
Dr Hank Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial board. The
accuracy of the information presented in this paper is the sole responsibility of the authors.

 Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the condition
that the authors and the Series are given due acknowledgment. Reproduction in any form for purposes other than
research or teaching is forbidden unless prior written permission has been obtained from the authors.

 Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions relating
to this topic. It is likely, however, that the paper will appear in some form in a journal or in conference proceedings
in the near future. The authors would be pleased to receive correspondence in connection with any of the issues
raised in this paper. Please write to the authors at the address provided at the foot of the first page.

Any other correspondence concerning the Series should be sent to:

DPS Co-ordinator
Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: workpapers@commerce.otago.ac.nz

