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Establishing Relationships Between Specification Size and
Software Process Effort in CASE Environments

Dr Stephen G. MacDonell1

Department of Information Science
University of Otago

July 1995

Abstract

Advances in software process technology have rendered many existing methods
of size assessment and effort estimation inapplicable.  The use of automation in
the software process, however, provides an opportunity for the development of
more appropriate software size-based effort estimation models.  A
specification-based size assessment method has therefore been developed and
tested in relation to process effort on a preliminary set of systems.  The results
of the analysis confirm the assertion that, within the automated environment
class, specification size indicators (that may be automatically and objectively
derived) are strongly related to process effort requirements.
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1 Introduction

Recent and ongoing studies in the areas of software metrics, software process assessment and
software process automation have generated similar ideas in relation to process effort
estimation1,2.  Much of this work suggests that both the data collection procedures required for
effort prediction and the estimation of process effort itself should be:

¥ performed as early as is feasible to obtain estimates within specified

bounds of accuracy;

¥ automated as much as possible;

¥ as objective as possible.

These suggestions are commonsense, but it has taken metrics research a relatively long time to
acknowledge the importance of such issues.  Prior to this, data collection and subsequent
estimation were often performed on an ad hoc basis involving substantial manual procedures,
making them highly susceptible to subjective opinions in assessment.

Requirements such as the three listed above, as well as advances in process automation via
computer-aided software engineering (CASE) tools and application generators, have lent support
to the development of effort estimation models based on relevant aspects of requirements
specifications.  Using extensive statistical analyses, Mukhopadhyay and Kekre1, for example,
were able to show that, as well as holding the inherent advantage of early derivation, their
feature-based effort estimation models proved to be more effective than several other
well-known techniques.  Although having a similar aim to the Mukhopadhyay and Kekre work,
the study reported here has been undertaken in the transaction processing/management
information systems (TP/MIS) domain, and is an initial evaluation of a previously proposed
assessment and estimation scheme3.

As a characteristic of all software development artifacts, product size has for some time been
generally  acknowledged as having a significant impact on other important product attributes,
including quality and maintainability4,5.  Product size has also been recognised as an influential
factor concerning the effective management of the software process. This is a result of the
expectation that, in general, a larger piece of software will require greater development effort,
will contain more errors and will be more difficult to maintain and enhance6,7,8.  Ultimately then,
overall development and maintenance costs are affected by product size9,10.

The establishment of useful objective relationships between size and effort/cost at an early stage
of the software process is clearly a desirable outcome of the assessment process.  The
observations of Mukhopadhyay and Kekre1 concerning the limited usefulness of most effort
estimation models due to their late derivation are also supported here, providing the motivation
for specification-based assessment and prediction.  The effective application of a large number
of existing assessment methods is also impeded by other problems - some are oriented more to
the assessment of the development methods used and the individual style and ability of
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programmers than to the actual scope of the software, and several are less than comprehensive
in their assessment11,12.

In general, quantitative software assessment involves the extraction of counts of various product
and process attributes, based on the assumption that these counts are useful in their own right,
but that they may also be useful in determining or estimating other development attributes.  Thus
the aim of many proposed size assessment techniques has been to provide product-based
predictions of attributes such as development effort or post-implementation error frequency.
Given progress in process automation, the functional metric approach, in which measures are
extracted from some early functional representation(s) of a system (as opposed to an
implementation-oriented representation), appears to hold promise for size assessment and effort
model development. The increasing use of application generators and CASE tools presents an
opportunity for the development of assessment techniques that can overcome at least some of
the problems associated with other metric classes.  Due to the degree of automation that these
tools provide, the transformation from a system's functional requirement to its implementation
is more straightforward13,14, thus reducing (to some unknown degree) the impact of specific
development personnel and implementation methods.  Furthermore, the multi-dimensional
nature of many CASE specifications enables the assessment of system product size from a
number of perspectives, leading to a more comprehensive consideration. Requirement
representations are also among the first tangible products of the software development process,
so models developed from them are likely to be among the earliest available.  Measures derived
from functional representations therefore have the potential to be useful in comparing the scope
of complete systems, and in assessing the impact that variation in size has on outcomes of the
software process.

Two of the most widely cited functional approaches to product assessment are Function Point
Analysis (FPA)15 and System Bang16.  In terms of the requirements listed at the start of this
paper, these techniques would appear to be unsatisfactory13,17,18.  Tate and Verner17, for example,
observe that FPA is difficult to determine automatically, and can involve a significant degree of
subjectivity.  Furthermore, they remark that some of the information that is required for the
calculation of function points is not available from CASE tools.  System Bang also demands that
a number of subjective assessments be made in its formulation, reducing the general applicability
of the results obtained.

An assessment/estimation approach that attempts to overcome some of the problems associated
with previously proposed methods, and one that is consequently designed to satisfy the
requirements of an effective approach, has been proposed.  This approach is described in the
next section.  (For complete details of its derivation, the interested reader is referred to the
original paper3.)  Empirical evaluation of the approach using thirteen systems from ten
commercial sites is described.  The paper is then concluded with a summary of the findings and
recommendations for continuing research.
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2 Specification Size Assessment

After applying the GQM and Classification Scheme paradigms19,20 to the goals of the study, five
specification perspectives were selected as being quantifiable in terms of the contribution that
each might make to the overall size of a complete specification:  transaction, function, user
interface, processing and data.  It was considered that quantification of aspects of each would
help to ensure that the assessment of system scope was as comprehensive as possible3.  During
site interviews, however, it was found that none of the software processes examined made
extensive use of data flow diagrams (DFDs), so the processing perspective (covered by DFD-
type models) was disregarded for this analysis.

Figure 1 is an adapted diagrammatic representation of the CASE product model proposed by
Tate and Verner17 as a basis for assessing specification size.  The tasks and activities necessary
for the production of such artifacts are considered to be typical of software processes used in the
automated development of business-oriented transaction processing and reporting systems.

General
data model

Detailed
data model

System
model

Database
design

Design

Detailed
functional

specification

User
interface

Generated
code

Actions

General
dataflow
model

Detailed
dataflow
model

Outline
system
model

Figure 1:  Tate and Verner's CASE product model



5

As this study was concerned only with the assessment of those products developed within the
analysis process, and since the data flow-oriented products were to be disregarded, a revised
product model for this study was developed.  This model is shown in Figure 2.

Transaction
model

Detailed
data

model

Detailed
functional

specification

Detailed
function
model

User
interface

Figure 2: The automated development product model adopted in this study

2.1 Transaction measures

Transaction details are commonly specified for database manipulation systems in the commercial
environment.  Low level transactions in these systems perform one of the following operations:
create a record, read a record (including look-up validation), update a record or delete a record.
Given that this representation combines both data and functional requirements21 it may provide
a sound basis for comprehensive size indications. The measures from this representation
collected in this study are defined in Table 1.

TCR Total number of create transactions performed by the system

TRE Total number of read transactions performed by the system

TUP Total number of update transactions performed by the system

TDE Total number of delete transactions performed by the system

Table 1: Transaction measures

2.2 Functional model measures

Paulson and Wand10 suggest that functional decompositions are central to most development
approaches.  In cases where the functional model is broken down to an elementary level, this



6

representation can provide a quantitative insight into the scope and complexity of the specified
system.  Functional model size indicators should form a useful basis for developing transaction
design and implementation estimates within automated development environments17.  More
specifically, it is suggested here that the number and interaction of functional modules will have
an impact on overall system size (and consequently process effort) - this provides the motivation
for inclusion of the measures shown in Table 2.  (Measures marked with an asterisk are
composite measures - that is, they may be calculated from the values of other base measures.)

DEFUNC Number of distinct elementary functions in the decomposition

FLEV Maximum number of function decomposition levels

L1 Number of functions at level 1

L2 Number of functions at level 2
...

...

Ln Number of functions at level n

*TFUNC Total Functions (L1 + L2 +...+ Ln)

*TD Total Decomposition ((L1 x 1) + (L2 x 2) +...+ (Ln x n))

Table 2: Functional model measures

2.3 User interface measures

Particularly for software development in an interactive processing environment, the number of
screens, reports and data elements produced for the user is expected to have a significant impact
on development effort, as the creation of acceptable screen and report formats is often a major
part of interactive (business) system production17,22,23.  As such they should provide a good basis
for the development of effort estimates for user interface-related development tasks17.  Interface
measures are defined in Table 3.

TDREP Total number of distinct reports produced by the system

TDER Total number of distinct data elements reported by the system

TDSCR Total number of distinct screens displayed by the system

TDED Total number of distinct data elements displayed by the system

Table 3: User interface measures
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2.4 Data model measures

Measures concerned with the size, interconnection and manipulation of data model
representations are listed in Table 4 of the assessment scheme, reflecting the assumption that
larger, highly interconnected data models, and higher numbers of accesses to entities and
attributes, imply a larger and more complex processing system21,24.  Indicators of data model
scope should form a useful basis from which to estimate subsequent database-related task
effort17.

TESDM Total number of entities in the system data model

TDEPD Total number of distinct entities providing data

TEP Total number of entity provisions

TDECD Total number of distinct entities consuming data

TEC Total number of entity consumptions

TAU Total number of attributes updated by the system

TAC Total number of attributes consumed by the system

TOOLS Total number of 1:1 links between entities in the system data model

TOMLS Total number of 1:n links between entities in the system data model

TMMLS Total number of n:m links between entities in the system data model

TOLS Total number of optional links between entities in the data model

TMLS Total number of mandatory links between entities in the data model

*TEA Total Entity Access (TEP+TEC)

*TAM  Total Attribute Manipulation (TAU+TAC)

*TIDM Total Interconnection (Data Model) (TOOLS+TOMLS+TMMLS)

*TSDM Total Size (Data Model) (TESDM+TIDM)

Table 4: Data model measures

3 Empirical Evaluation

One of  the assumptions underlying the use of the proposed approach was that higher values of
the various specification measures would indicate systems that were more time-consuming to
develop. To empirically evaluate the assessment scheme, this assertion had to be tested -
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quantitative indicators of process effort were therefore required.  For the purposes of this study,
the relevant indicators were defined as shown in Table 5.

AN_DES Effort, in person-days, spent on analysing, specifying and designing a
system in an automated environment

PROG_UT Effort, in person-days, spent on constructing and unit testing a system in
an automated environment

TOTAL Effort, in person-days, spent on analysing, designing, constructing and
testing a system in an automated environment

Table 5:  Process effort measures

The effort indicators are derived from various well-supported assumptions concerning the
intuitive relationship between relative system size levels and development effort6. The effort
measures therefore reflect the amount of work carried out by personnel using CASE tools and
application generators over various phases of development.

3.1 Systems analysed

After an extensive mailing campaign, ten business and government organisations agreed to
provide systems for the project. Most agreed to allow one system only to be analysed, giving an
overall sample of thirteen systems.  The small sample size precluded any realistic opportunity
to undertake both relationship development and subsequent validation but it was still hoped that
the results obtained would prove to illustrate the feasibility and potential of objective, automated
and early product size assessment as a basis for process effort estimation.  Moreover, the use of
small samples is not uncommon in first-cut analyses of size assessment and estimation
approaches25-28.

The ten organisations that agreed to participate in the study varied in size and function, from
multinational petroleum manufacturers and distributors to government departments, through to
small private commercial development sites. The thirteen systems in the sample performed a
number of overall TP/MIS functions, including customer and supplier recording, costing and
charging, accounting, site and personnel administration, scheduling and rostering.

Although factors such as specific tools and project personnel varied over the sample, other
potential contributors to process effort (apart from system scope) were reasonably consistent.
This included a common baseline software process, centred on structured analysis and design
using automated tools, and a common application domain.  Tate and Verner17 suggest that, in
an automated environment,  size measures taken from specifications are less tool-dependent than
those taken from lower level software products (e.g. programs and the like), so the influence of
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particular tools within the CASE class (particularly given the use of a common analysis and
design methodology) should have been reduced.

3.2 Analysis results

Correlation procedures identified a number of highly significant associations between variables
from all of the specification perspectives and the effort indicators.  Many of these relationships
were significant at the α  = 0.001 level; that is, there was less than 0.1% probability that the

relationships had been encountered by chance.  Since the Spearman correlation coefficient is said
to be conservative, except in cases where ties are common29, it was decided that further analysis
would be carried out only on variables that showed highly significant values for both the
Spearman and Pearson statistics.  The variables chosen based on this criterion are shown in
Table 6.

Perspective Size measures

Transaction TRE

Functional TD

User Interface TDSCR

Data TESDM TDEPD TAU TAC TMLS *TAM *TIDM *TSDM

Table 6:  Size measures significantly correlated with effort measures

Another variable selection method was then employed to ensure that interrelated variables did
not go forward for use in further (goodness of fit) tests.  Kitchenham and Pickard29 suggest that
closely related predictor indicators should be treated with caution when used together, especially
when the overall objective is the development of estimation models.  It is often the case that one
of a group of interrelated variables is sufficiently powerful to act for the group.  In these
circumstances, criteria other than the original correlation coefficients should be used to select
appropriate independent variables from related groups.  In cases where the data are normally
distributed and the sample size is sufficiently large, some form of factor analysis may be useful
in determining an appropriate representative variable.  Full normality in software engineering
data distributions is uncommon, however29.  Hampel et al.30 suggest (in a general discussion of
the topic) that there is practically always no guarantee of normality and that slight departures
from the model have a significant effect on the results obtained.  Moreover, the data set in this
study consisted of just thirteen observations.  It was therefore decided that variables should be
selected from groups according to their ease of extraction and the time at which they became
available - variables that are easily determined and are available as early as possible were to be
preferred over more complicated, later-phase variables.
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Correlation tables illustrated the significantly high degree of intercorrelation within the group
of variables from the data perspective (see Table 7).  The relevant data model measures (shown
in Table 6) were all very highly correlated, except for the TAU and TAC variables.  Since these
two variables were easily extracted, were elementary rather than composite, were available very
early in the development process, and appeared to be relatively independent but still highly
correlated with the effort indicators, they were both selected for separate use in the procedures
to follow.  For the current sample this led to a final set of prospective specification variables, as
shown in Table 8.  A summary of the correlation test results is provided in Table 9. All
correlation coefficients were significant at the α = 0.001 level.

TESDM TDEPD TAU TAC TMLS TAM TIDM TSDM

TESDM 1.0000

TDEPD 0.9921# 1.0000

TAU 0.9223# 0.9346# 1.0000

TAC 0.6695~ 0.6713~ 0.4896 1.0000

TMLS 0.9893# 0.9843# 0.9084# 0.7258~ 1.0000

*TAM 0.8792# 0.8860# 0.7857# 0.9241# 0.9131# 1.0000

*TIDM 0.9749# 0.9706# 0.9321# 0.7071~ 0.9750# 0.9103# 1.0000

*TSDM 0.9916# 0.9858# 0.9337# 0.6955~ 0.9871# 0.9027# 0.9955# 1.0000

Table 7:  Intercorrelation matrix for data perspective measures
(~ significant at α = 0.01;  # significant at α = 0.001)

Perspective Size measures

Transaction TRE

Functional TD

User Interface TDSCR

Data TAU or TAC

Table 8:  Independent size measures related to effort measures
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Size measure Effort measure Pearson correlation Spearman correlation

TRE TOTAL 0.8058 0.6923

TD TOTAL 0.8876 0.7912

TDSCR AN_DES 0.9053 0.7180

TOTAL 0.7800 0.8748

TAC PROG_UT 0.8471 0.8736

TOTAL 0.9160 0.9341

TAU AN_DES 0.9372 0.8077

Table 9: Size-effort variable pairs correlation summary

Based on the results obtained from the correlation tests, a set of possible regression relationships
was formulated.  The popular least-(mean-)squares regression method (LS) was then used in
conjunction with the less common least-median-squares technique (LMS) in an attempt to ensure
that robust estimates, that is, estimates that are not overly influenced by outliers, were developed.
The LS method has become the cornerstone of classical statistics, due to both ease of
computation and tradition31.  In cases where outliers seldom occur, the LS method is often more
than adequate.  However, outliers are a common feature of software engineering data sets29.  The
LMS method, as discussed by Rousseeuw and Leroy31, was therefore also used. The PROGRESS
system (Program for RObust reGRESSion) computes both the least-squares and
least-median-squares equations, and then automatically computes reweighted least-squares (RLS)
equations based on the LMS analysis results.  The RLS procedure removes the outliers identified
in the LMS regression and computes a new LS equation based on the remaining data points.

Effort variable Size variable

AN_DES TDSCR

TAU

PROG_UT TAC

TOTAL TRE

TD

TDSCR

TAC

Table 10: Effort-size goodness of fit pairs
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All of the independent variable coefficients computed in the goodness of fit tests were shown
to be significant by the PROGRESS system.  This indicated that, in cases where the residuals
adhered to certain restrictions, the independent (size) variable in each equation did indeed
account for the response (effort) variable in a significant way.  These restrictions require that
estimation model residuals must be independent of one another while being evenly dispersed
about the mean (at zero on the vertical axis) and that they should reflect a constant variance.
Linear regression models that produce residuals that fail to conform to these requirements are
generally inadequate, in that they may be improved only through the inclusion of weighted
and/or transformed terms.

Effort

variable

Size

variable

Least squares

(LS)

Least median

squares (LMS)

Reweighted least squares (RLS)

R2 Resid.

OK?

R2 Resid.

OK?

R2 Resid.

OK?

Points

removed

AN_DES TDSCR 0.90 U 0.85 N 0.78 U 12, 13

TAU 0.93 U 0.94 Y 0.97 Y 13

PROG_UT TAC 0.86 U 0.97 U 0.96 U 7, 9, 13

TOTAL TRE 0.85 U 0.93 N 0.93 U 13

TD 0.86 N 0.87 N 0.91 N 9

TDSCR 0.79 N 0.96 Y 0.96 Y 12

TAC 0.92 N 0.96 U 0.97 Y 11

Table 11: Effort-size regression test results

The overall results of the regression tests, including the R2 values, are shown in Table 11.  Based
on the information presented, final goodness of fit equations were chosen for each of the effort
variables investigated.  Of the two regressions of analysis and design effort (AN_DES), the
model based on the TAU variable was the most accurate. The three R2 values obtained from the
regressions using this variable were higher than those achieved with the equations based on the
TDSCR variable.  Furthermore it was unclear as to whether the residual plots of the TDSCR
models were satisfactory (where the 'Resid. OK?' column contains the letter 'U'), whereas those
obtained from the TAU models were adequate ('Resid. OK?' is 'Y').  Goodness of fit for program
and unit test effort (PROG_UT) was only performed in this study with the TAC variable. The
results of these tests were mixed, in that the R2 values obtained were very high but the residual
plots were not satisfactory.  Moreover, three of the thirteen data points were removed (as
outliers) in the final goodness of fit using the reweighted least squares (RLS) technique.  The
choice of model for total development effort (TOTAL) was between the models based on
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TDSCR and TAC.  Both returned very high coefficients of determination, indicating good
explanatory ability, and both models produced adequate or good residual plots.

The accuracy of the models was then assessed using the MRE and pred measures now common
in software metrics analysis25,28,32,33.  A high value for the R2 indicator is evidence of a strong and
consistent linear relationship among two data sets, but does not tell us how well individual data
pairs relate.  The magnitude of relative error (MRE), on the other hand, is a normalised measure
of the discrepancy between actual values (VA) and fitted values (VF):

MRE = Abs((VA - VF)/VA)

The pred measure provides an indication of overall fit for a set of data points, based on the MRE
values for each data pair:

pred(l) = i/n

where l is the selected threshold value for MRE, i is the number of data pairs with
MRE less than or equal l, and n is the overall number of data pairs in the set.

As an illustration, if pred(0.40) = 0.666, then we can say that 67% of the fitted values fall within
40% of the actual values.  The mapping of actual and fitted values for the AN_DES and TOTAL
models are shown in Tables 12 through 14.  (Since the PROG_UT model appeared to be
inadequate from the regression tests, no further analysis was performed on its accuracy.)
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AN_DESA AN_DESF Error MRE

6.0 3.3 2.7 0.45

9.5 10.4 0.9 0.09

12.0 34.7 22.7 1.89

15.5 18.8 3.3 0.21

20.0 26.0 6.0 0.30

51.5 30.8 20.7 0.40

40.0 24.6 15.4 0.39

56.0 40.4 15.6 0.28

38.5 43.6 5.1 0.13

88.5 98.7 10.2 0.12

50.0 23.4 26.6 0.53

220.0 220.1 0.1 0.00

Mean MRE 0.40

pred(0.10) 0.166

pred(0.20) 0.333

pred(0.30) 0.583

pred(0.40) 0.750

pred(0.50) 0.833

Table 12:  Goodness of fit for AN_DES based on TAU (AN_DES = 0.171TAU)

Analysis and Design Effort
Graph of Actual and Fitted Values

AN_DES(F)

250200150100500
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_D
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50

0
Rsq = 0.9662 
thru origin

Figure 3:  Goodness of fit for AN_DES effort using the number of attributes updated
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TOTALA TOTALF Error MRE

11.5 57.6 46.1 4.01

21.0 46.1 25.1 1.20

26.0 103.7 77.7 2.99

27.5 61.5 34.0 1.24

39.5 53.8 14.3 0.36

81.5 46.1 35.4 0.43

113.5 122.9 9.4 0.08

119.5 142.1 22.6 0.19

189.5 169.0 20.5 0.11

216.5 195.9 20.6 0.10

290.0 288.1 1.9 0.01

355.5 326.5 29.0 0.08

Mean MRE 0.90

pred(0.10) 0.333

pred(0.20) 0.500

pred(0.30) 0.500

pred(0.40) 0.583

pred(0.50) 0.666

Table 13:  Goodness of fit for TOTAL based on TDSCR (TOTAL = 3.842TDSCR)

Total Effort (TDSCR Model)
Graph of Actual and Fitted Values

TOTAL(F)
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Rsq = 0.9586 
thru origin

Figure 4:  Goodness of fit for TOTAL effort using the number of screens
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TOTALA TOTALF Error MRE

11.5 16.8 5.3 0.46

21.0 42.7 21.7 1.03

26.0 17.1 8.9 0.34

27.5 57.8 30.3 1.10

39.5 52.8 13.3 0.34

81.5 41.8 39.7 0.49

113.5 58.1 55.4 0.49

119.5 61.8 57.7 0.48

189.5 212.8 23.3 0.12

216.5 230.5 14.0 0.06

315.0 303.2 11.8 0.04

355.5 356.9 1.4 0.00

Mean MRE 0.41

pred(0.10) 0.250

pred(0.20) 0.333

pred(0.30) 0.333

pred(0.40) 0.500

pred(0.50) 0.833

Table 14:  Goodness of fit for TOTAL based on TAC (TOTAL = 0.281TAC)

Rsq = 0.9696 
thru origin

Total Effort (TAC Model)
Graph of Actual and Fitted Values
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Figure 5:  Goodness of fit for TOTAL effort using the number of attributes consumed
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In summary it is evident that the three models are not entirely satisfactory in terms of their
accuracy, as illustrated by the values attained for the MRE, Mean MRE and pred(l) measures.
Conte et al.32 have suggested that, for a model to be considered acceptable, Mean MRE should
be less than or equal to 0.25 and pred(0.25) should be greater than or equal to 0.75.  Tate and
Verner34, on the other hand, suggest that a more realistic level of performance for the pred(l)
measure is pred(0.30) ® 0.70.  None of the three models developed here satisfies either
condition.  The strong underlying linear relationships illustrated by the very high R2 values,
however, would suggest that improvements in indicators like MRE and pred(l) would be possible
given calibration of the models under specific conditions e.g. for projects of a given size or effort
range.

The univariate regression tests were of limited success for this small sample. The explanatory
power of each of the three final equations was greater than 95% and the residual plots all
conformed to the requirements of valid goodness of fit models.  These factors suggest that the
models are reasonably consistent1.  However, the accuracy of the models, as represented by the
MRE and pred indicators, was not as high as might have been expected.  Although disappointing,
this does not represent a complete failure, as model accuracy should improve as larger data sets
become available and effective calibration is enabled.  Under these circumstances it may also
be more effective to split the sets of observations according to distributions of system size.  Even
in the present study, TDSCR-based fitting of TOTAL effort was substantially more effective for
the larger systems in the sample.  Given that larger systems are likely to represent greater
investment by organisations, a lesser degree of fit for small systems may be acceptable to
development managers as a trade-off to consistent estimation for large systems.

It could be suggested that multidimensional relationships should have been investigated in order
to improve model accuracy.  Given that the univariate relationships were so strong, however, it
was felt that including further variables would simply complicate the models whilst adding little
real value to the actual relationships.  Moreover, with such a small set of observations, the use
of such multidimensional relationships would have been statistically inappropriate.  This is likely
to change with larger sets of data.  For the present sample of small- to medium-sized CASE-
based TP/MIS systems, however, the single variable models were adequately consistent.

4 Summary and Recommendations

This study aimed to test the strength of possible relationships between measures of specification
size and process effort within CASE environments.  The proposed assessment scheme was
developed as a direct response to the inadequacies and inappropriateness of previous methods,
addressing issues such as subjectivity and excessive environment dependence. The scheme was
then applied to data sets collected from thirteen projects developed at ten different sites.
Evidence of significant, consistent relationships was provided using robust statistical analysis
methods, confirming the assertion that specification size measures are related to process effort,
at least within extensively automated development environments.
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Refinement of the results obtained from small and medium sized systems will be forthcoming
as larger samples become available for analysis and as collection becomes increasingly
automated within development tools.  It is hoped that the current approach will itself be
incorporated into a CASE/project management tool.  This will introduce two advantages over
the current study: first, it will enable more objective, non-intrusive, less error-prone collection
of the specification-based data to be carried out; second, it will mean that analysis and prediction
may be performed and refined in the background of development as an integral and ongoing part
of a project. Tate35 and Tate and Verner17 also suggest that on-workbench data, relating to
process effort, may soon be collected automatically within CASE environments.  Collection of
project management data will therefore also be more precise and cost-effective.  All of these
factors will encourage continuing refinement of estimates, providing relevant feedback to
managers whenever required.

Until software development in the commercial environment becomes a totally automated
procedure, system size will continue to have an important influence on the progress and
outcomes of the software process.  Continually rising development costs, coupled with more and
more demands for increasingly complicated systems, will encourage extensive research into both
quantifiable assessment/estimation methods and development automation.  It is hoped that this
study, which has empirically considered the interaction of these factors, will provide some form
of impetus for continued research in this area.
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