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Abstract 
 

The use of intelligent software agents is a modelling paradigm that  
is gaining increasing attention in the applications of distributed 
systems.  This paper identifies essential characteristics of agents and 
shows how they can be mapped into a coloured Petri net 
representation so that the coordination of activities both within  
agents and between interacting agents can be visualised and analysed.  
The detailed structure and behaviour of an individual agent in terms 
of coloured Petri nets is presented, as well as a description of how 
such agents interact.  A key notion is that the essential functional 
components of an agent are explicitly represented by means of 
coloured Petri net constructs in this representation. 
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1  Introduction 
 
The increasingly complex processes of the industrial world often involve real-time responses to 
complicated sequences of events.  In order to construct such systems effectively in the future, it 
will be necessary to employ advanced modelling approaches that can flexibly incorporate the 
roles of information servers, electronically controlled devices, and human actors so that the new 
systems can be embedded into existing processes.  Examples of such systems are those in the 
area of computer-supported cooperative work, where key components to be modelled are the 
human participants in the cooperative processes.  If a new modelling approach is to offer 
significant advantages, it must offer the capability of simulating the behaviour of these systems 
and that of their individual components. 
 
Object-oriented systems and high-level Petri nets are two modelling approaches that individually 
offer particular advantages for the development of complex, concurrent systems, and there has 
been continued interest in advances along both fronts.  Object-orientation offers attractive 
constructs for encapsulation and the partitioning of procedures and namespaces, while Petri nets 
offer an elegant graphical formalism for the examination and analysis of concurrent behaviour.  
Recently, there have been efforts to merge aspects of both object-oriented systems and Petri nets 
in order to realise the combined advantages of the two approaches [1-5].   
 
Modelling and development of concurrent systems with intelligent software agents is another 
promising approach.  Agents are autonomous elements endowed with intentions that are usually 
stored in a declarative manner and serve as a natural metaphor for modelling system components 
and their interactions.  They are particularly appealing for the representation of group members 
communicating over a network, where the system is open and the number and nature of 
interacting players  can change at any time. 
 
Our approach seeks to combine the notion of an intelligent agent with that of coloured Petri nets 
[6].  The goal is to gain the benefits from both the natural capability of agents for modelling real 
distributed system applications and the capability of Petri nets for modelling synchronisation and 
concurrency.  As will be discussed below, the approach differs from other efforts [7,8] by 
explicitly representing the functional make-up of an agent by means of coloured Petri nets.  The 
following section describes the nature of our agent modelling approach, and the subsequent 
section discusses the manner in which Petri nets are incorporated into it. 
 
2  Modelling With Agents 
 
Consider how the modelling of any complex dynamic system is initially performed in the 
everyday world.  We  observe that 
 
(a) it is natural to conceptualise the relevant features, i.e. the behavioural components to be 

modelled, in terms of simple or familiar elements, and 
(b) the overall model structure and the number of individual elements must be kept simple 

enough so that the entire model can be easily understood, manipulated, and modified, if 
necessary. 
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If the system to be modelled is significantly complex, restriction b means that the individual 
elements must, themselves, encompass a fair degree of complexity.  In that case it is appropriate 
to express these complex elements in terms of those dynamic entities from the real world with 
which we are most familiar: human agents; and in fact we  intuitively construct mental models  
of this nature all the time.  Software agents enable us to map these agent mental models directly 
into a computer representation, and consequently they facilitate the development of bigger and 
more complex systems [9,10].   
 
There is considerable interest in agents and consequently a range of views concerning just what 
characterises an agent, but some of the essential properties are [11] 

• autonomy: agents operate without direct (step-by-step) control of their actions from the 
outside; 

• goals or intentions: agents are perceived to have goals that they attempt to achieve and may 
achieve these goals in various ways; 

• memory: agents can remember past events (they retain state) and can possibly improve their 
behaviour as a result of this memory; 

• reactivity and proactivity: agents perceive their environment and react to changes in it or 
direct actions upon them; they are also able to take the initiative and undertake actions in 
pursuit of their goals. 

 
In our approach, we add an 
additional component of agents: 
tools (or internal utilities).  
Every modelling element in our 
system is essentially an agent, 
but there are two degenerate 
forms of agent to which we give 
alternative names: objects and 
utilities.  Thus the modelling 
world consists of three types of 
entity: agents, objects, and 
utilities (Figure 1).  Agents can 
operate on other agents, objects, 
and utilities can have new goals 
installed by receiving "commands" from other agents. Objects, on the other hand, are acted upon 
by agents and cannot initiate any action; they essentially store information.  Utilities are similar 
to the internal utilities possessed by agents, except that they can be commanded to act on an 
object (and on other agents) by external agents.  Figure 1 shows the lines of action available to 
the two agents P1 and P2, in the presence of an object and a utility.  This figure could represent 
two engineering groups (P1 and P2), each using a common machine (Utility) for the development 
and modification of a specific product (Obj).   
 
2.1 Examples 
 
As examples, consider how (a) a video disk player and (b) a raster display system might be 
initially modelled in terms of these agents.   
 

 
 

Figure 1: Lines of action available to agent modelling types 
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The video disk player is 
shown in Figure 2 [12].  
There are several agents 
in the diagram.  The lens 
has a servo-controller.  It 
focuses  light on the disk 
and receives the reflected 
light.  The lens uses its 
servo-controller to keep 
this reflected light in 
focus for the light-
sensitive diodes that 
convert reflected light 
signals to FM electronic 
signals for the signal 
processing electronics 
agent.  The servo-
controlled tracking 
mirrors detect and correct 
tracking errors to keep the 
light signal in the centre 
of the track and to correct 
for variations in rotation 
speed of the disk.  The optical divider utility sends light received from the laser to the light-
sensitive diodes to serve as a reference signal.  It also sends light received from the disk by way 
of the tracking mirrors.  The signal processing electronics agent compares the two light signals 
received and computes correction information that is sent to the tracking mirrors.  Each of the 
agents has a limited set of goals and capabilities with which to carry out appropriate action.  
There are, of course, many different ways to model the same system at a high level, but this 
representation identifies some of the principal actors that must be designed in further detail. 
 

 

 
 

Figure 2: Agent model of video disk player 

 
 

Figure 3: Agent model of raster display system 
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Figure 3 is a schematic representation of a single-address-space raster display system architecture 
[13].  Here the system bus is a utility that is used by the display processor, the CPU, and the 
video controller.  By means of the bus, they access objects like the frame buffer and the video 
monitor.   
 
3  Agents With Coloured Petri Nets 
 
The efforts to combine the features of object-orientation and Petri nets can be grouped around 
two basic approaches [14].  In one approach, the overall control structure of the system is 
modelled by a single Petri net, while the tokens represent object instances of abstract data types.  
In the alternative approach, nets are used to provide a model of the internal behaviour of 
individual objects.  Our approach is somewhat similar to this second line of development, except 
that we are using nets to model agents, rather than objects.  As such, the basic functional 
components of an agent (the retention of memory, the possession of goals, the containment of 
internal utilities) are explicitly represented in terms of Petri nets.  By means of this approach, a 
high-level representation in terms of agents, can be mapped down into a complete representation 
in terms of coloured Petri nets (CP-nets) and thereby take advantage of the features of CP-nets 
for modelling and analysis of concurrency.  Such a representation can assist in the refinement of 
the agent model into a more mechanical or computer-oriented representation and can be used 
here to shed further light on the agent modelling representation.    
 
Coloured Petri nets (CP-nets) have tokens which can carry a data value of potentially arbitrary 
complexity, and the data type of a token is referred to as its "colour".   Coloured Petri nets 
defined by Jensen have three essential components: 

—  a net structure, which is just like that of ordinary Petri nets 
—  a set of data declarations 
—  a set of net inscriptions 

 
The declarations define the colours and other  components that can be used in the evaluation of 
expressions and are represented in terms of Standard ML (SML),  which  is the language 
employed in the commercial implementation of coloured Petri nets [15].  The inscriptions, also 
expressed in SML, are expressions which can be attached to a place, a transition, or an arc.  
When the input arc expressions of a transition are evaluated, the expression variables are bound 
to the appropriate colours, and the value of the expression must be equal to a multi-set of the 
colour that is attached to the input  place.  Transitions can have attached to them additional SML 
expressions,  which are boolean guards.  For a CP-net transition to be enabled and fire, it is 
necessary to examine the possible bindings of all the transition variables (in the guards and on 
the arc inscriptions); and for each such binding, the guard and all the input arc expressions are 
evaluated.  If the resulting guard evaluates to 'true' and each place has at least as many tokens as 
are indicated by the evaluation of the input arc expressions, then the transition is enabled.  If the 
enabled transition does fire (for a particular binding), then the output arc expressions are 
evaluated to determine the number of tokens to be added to the corresponding output places.  
 
The combination of an inscription language and the distributed net representation of Petri nets 
offers a powerful high-level modelling facility.  Hierarchical modelling can be performed by 
employing "substitution transitions".  This mechanism allows a user to replace a single CP-net 
transition (and its adjacent arcs) with a more complex and detailed CP-net.  In this way one can  
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progressively refine a high-level coloured Petri net representation into more detailed models and 
develop a consistent modelling hierarchy.  An agent scheme can then be placed at the top of this 
hierarchy by modelling it in terms of coloured Petri nets. 
 
At the simplest level of Petri net modelling, the three object types shown in Figure 1 can each  
be represented as a single Petri net transition connected to an input place and output place, which 
can then be refined by means of a substitution transition.  Figure 4 shows a more detailed CP-net 
representation of an agent.  In the upper left of the figure is the input place, and in the lower right 
is the output place.  The original single transition has now been replaced by the other nodes and 
arcs shown in the figure.  The scope of the declarations for this CP-net is local to this particular 
agent. 
 
As is true of most complex, dynamic systems, there are several separate process groups that 
operate concurrently in this model.  In the upper left corner of Figure 4, is the process that 
collects input information and distributes it internally.  This  operates whenever new input 
information is available, irrespective of what may be occupying other components of the agent.  
On the right side of Figure 4, near the bottom, is a set of processes associated with the operation 
of the internal utilities of the agent.  (Note that, with Standard ML, the expression 
1`u1+1`u2+1`u3 indicates a multiset  comprising singles instances of u1, u2, and u3).  For a 
human this might mean the operation of the arms and legs; for an operating system it might mean 
the operation of some line printers.  The main set of processes  of the agent run vertically down 
the centre of Figure 4. 
 
Associated with each place in Figure 4 is a colour set, which is written in italic script in the 
figure.  The colour set for the "Input"  place  is Information, which is as a record containing two 
fields, info and mode.  These two fields each have associated colour sets, info_data and 
info_mode.  The info field contains the actual information content, and the mode field identifies 
whether the information record is a routine message or a command.  In principle, the info_mode 
colour set could be expanded to cover many different types of information records, such as 
alarms or questions.  The purpose here is  to demonstrate the basic possibilities while keeping  
the diagram as simple as possible. 
 
When the "Input Information" place has a token present, the "Process Info" transition will be 
enabled.   When it fires, it will pass a new token containing just the info part of the original token 
to either the "Goals" place or the "Info Data Available" place, depending on the mode field of the 
original Information token.  This selection is accomplished by the arc inscriptions shown in the 
diagram. If the mode of the original token is a command (mode=c), the info data will be installed 
as a new token in the "Goals" place.  On the other hand, if the  mode of the original Information 
token is a message (mode=m), then the info data will be sent to the "Info Data Available" place 
by inserting it at the front of a list that was obtained from the "Info Data Available" place.  The 
"Info Data Available" always contains a single token, which is a list of items of type info_data.  
Although this list could be the empty list, this place always has a list and so always has exactly 
one token in it. 
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Figure 4:  Coloured Petri net representation of an agent 
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The initial markings of the Petri net places in Figure 4 are indicated by underlined text.  The 
initial  marking of the Input Information place contains three tokens: two are of type message 
("m") and one is of type command ("c").  The "Goals" place initially has two tokens that identify  
two goals, "g1" and "g2", where, again, for illustrative purposes, the structures of the goals is 
kept very simple.   
 
The lower left corner of Figure 4  holds the record-keeping (memory) component of the agent.  
The  process "Assess Task Result" sends a history item to the "History Items" place.  The 
"Update History" transition places this item at the front of the token of type History_list that is 
held in the "History Record" place.   
 
The main sequence of processes (transitions) in this agent model is initiated when a token is 
present in the "Ready" place in the upper right corner of Figure 4.  In principle, there could be 
several tokens going  concurrently through this sequence, but in this illustration we show only  
a single token in the initial marking.   A goal is acquired from the "Goals" place  and made 
available to the "Process Info+Goals" transition.   This transition also has available to it the list 
of information present in the "Info Data Available"  place and the list of history items present in 
the "History Record" place.  Both of these lists could be empty, but since a list is always present 
in each of those two places, the "Process Info+Goals" transition is enabled as soon as there is a 
goal available in the "Current Goal Acquired" place.   The firing of this transition sends a new 
token containing both the goal and the information to the "Info+Goals Acquired" place.   
 
In light of the token containing the current goal and information that reaches it, the "Engage 
Utility" process may request a particular utility operation.  It puts this request in the "Wait for 
Utility" place and transfers the goal and information by putting a token into the "Ready for Task" 
place.   The "Perform Task" process (transition) then executes  the operation that attempts to 
achieve the current goal.  This key process is the one that will probably be most elaborately 
refined in subsequent design refinements.  When the task is completed, the transition passes a 
single token containing the goal, the current information, and a task-result item (tr) to the "Task 
Performed" place.    
  
The "Assess Task Result" process examines its input tokens to determine whether the goal was  
successfully achieved at this stage or not.  If not, it sends the goal g back to the "Goals" place so 
that its achievement can be attempted during another sequence.  This process also (1) sends 
information (operations, commands, or messages, to be applied to other objects) to the "Output 
Information" place, (2) sends a history information to be stored in the "History Items" place, and 
(3) returns a token to the "Ready" place. 
 
There can be many variations on the basic structure of the agent shown here.  For example, a 
separate set of nodes that model fuel consumption of a stored fuel supply could be included as a 
subsystem.  When the fuel supply runs low, it could trigger a goal (with high Priority) to be 
installed in the "Goals" place to carry out tasks aimed at replenishing the fuel supply.   
 
Note that the utilities subsystem runs in parallel with the "Perform Task" processes.  With 
reference to the anthropomorphic inspiration of agents, one can imagine the internal utilities of 
an agent acting like its "arms and legs".  One could extend this "mind/body" analogy by viewing 
the internal utilities subsystem as representing the electronic hardware of a hardware/software  
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system under design: the utilities  subsystem  would then serve as the hardware "body" of the 
agent.  Since research in hardware/software codesign  has identified the early stages of 
hardware/software system design as the critical area where help is needed [16], the agent 
representation shown here could serve as an intuitive and flexible modelling platform for the 
high-level design of hardware/software systems. 
 
The coordination among agents can also be represented in terms of a coloured Petri net.  This is 
shown schematically in Figure 5 with three interacting agents, where a coordinator subnet is 
responsible for dispatching information appropriately so that an individual agent, say P1, can 
send a message to another agent, P2.  This arrangement does not preclude the specification of 
synchronisation between interacting agents: that can be accomplished by appropriate inscriptions 
in the coordinator subnet. 

 
 
As a result, the entire agent representation can be mapped into the coloured Petri net notation for 
the purposes of analysis. 
 
4  Conclusions 
 
At the present time the agent framework is implemented internally in terms of coloured Petri nets 
by means of Design/CPN [15].  Current work is now being devoted to implementing the entire 
approach using Common Lisp so that the dynamic creation of agents can be more easily 
facilitated.  This will also facilitate the intended extension whereby behavioural nets of agents 
are encapsulated inside the agent objects.  It will then be easier to represent agents in terms of 
composite-part objects, such as a memory maintenance entity, a goal management entity, etc.  
Each of these part objects could then have an encapsulated subnet for behavioural simulation and 
analysis as one of it constituent elements. 

 
 

Figure 5: Coordination among three agents 
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