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Abstract 
 

The almost exclusive use of regression analysis to derive predictive equations for 
software development metrics found in papers published before 1990 has recently 
been complemented by increasing numbers of studies using non-traditional 
methods, such as neural networks, fuzzy logic models, case-based reasoning 
systems, rule-based systems, and regression trees.  There has also been an 
increasing level of sophistication in the regression-based techniques used, 
including robust regression methods, factor analysis, resampling methods, and 
more effective and efficient validation procedures.  This paper examines the 
implications of using these alternative methods and provides some 
recommendations as to when they may be appropriate.  A comparison between 
standard linear regression, robust regression, and the alternative techniques is also 
made in terms of their modelling capabilities with specific reference to software 
metrics. 
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1 Introduction 
 
Almost all research carried out to develop predictive software metrics has focused on linear 
regression analysis for implementation, often after using various transformations to permit non-
linearities, leading to models expressed as mathematical equations.  Such models include SLIM 
(Putnam, 1978), and COCOMO (Boehm, 1981).   While there are many advantages to using such 
techniques, especially in the simplicity of model building and implementation, it can be argued 
that by using other techniques, to be discussed in this paper, more useful models may be derived 
in at least some circumstances.  As Briand et al. (1992) state, classical statistical methods have 
limited model building capabilities with regard to software development models.  With this in 
mind a thorough consideration of the alternative techniques available can be regarded as essential 
for selecting the methods that are most suited to the particular model development task at hand. 
 
Given the large expenditures made by many companies for the development of software, even 
small increases in prediction accuracy are likely to be worthwhile.  Underestimating costs can 
lead to accepting projects that do not provide sufficient returns or that overrun schedules, 
possibly with catastrophic consequences.  Overestimating costs can lead to sound projects being 
rejected, and can lead to gaps between one project ending and another starting.  This idle time  
can be expensive in competitive time-to-market industries.  Either way, it is clear that more 
accurate estimates have considerable value to a corporation involved in software development.  
Once an estimation model has been derived it is important that the limitations of the techniques 
used to develop and implement the model are understood in order to ensure that it is only used 
within its limitations.  For example, extrapolations outside the range of data used for 
development should not be attempted. 
 
Three broad areas of concern can be cited with regard to software development models, with the 
first set of difficulties perhaps the most problematic.  Software engineering data sets often have a 
number of qualities that make analysis difficult including missing data,  large numbers of 
variables (leading to lower degrees of freedom), strong collinearity between the variables, 
heteroscedasticity, complex non-linear relationships, outliers, and small data sets.  These factors 
all make the modelling process that much more difficult and the models derived by the process 
less reliable.  Some of these problems can be at least partially overcome.  For example 
heteroscedasticity can be reduced, or even eliminated, by various transformations; and 
collinearity can be removed by factor analysis.  Other problems, such as missing data and a low 
number of degrees of freedom (arising from a large number of parameters to be estimated as 
compared to the number of available observations) cannot be easily overcome, and certain 
techniques may be unsuitable for a particular data set affected by these problems.   
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A second area of concern is the acceptability and validation of the models.  This includes the 
issue of the model explaining its predictions.  Software metrics expressed as equations are often 
less than meaningful, especially with several variables being used in the model, sometimes 
including interaction terms and non-linear transformations, and without sufficient semantic 
meaning attached to the model a satisfactory level of  validation is unlikely to be achieved.  This 
problem is made more serious by the small data sets commonly used for developing these 
models.  An absence of validation can result in minimal or no acceptance of a model and its 
underlying metric and therefore the model may not be used for project planning purposes.  With 
small data sets it is entirely possible for a model to be developed that while it may fit the data, 
violates common sense, for example slopes may be counter-intuitive to what would be expected.  
This can include a slope being of a different magnitude than expected, especially in relation to 
other variables, or a slope may even have the opposite sign to what common-sense would 
suggest. 
 
The final area of concern considered here is that of generalisability.  Since the first predictive 
software metrics were derived, attempts have been made without great success to apply the 
models associated with them, without recalibration, to other types of projects within the 
developing organisation and even to other organisations, the use of standard COCOMO 
coefficients being a case in point.  The necessity of being able to easily recalibrate a model for 
another environment is supported by numerous authors, including Jeffery and Low (1990).   
Kemerer (1987) found that models that were uncalibrated resulted in relative errors of up to 
600%.  Linear regression models are easily regenerated, but they do not always generalise well 
given their susceptibility to influence by outliers. 
 
Each modelling technique to be discussed here contributes in at least one way to resolving some 
of these problems in a manner that can be seen as (or at least argued as being) superior to 
standard linear regression analysis.  This is not to say that regression analysis should not be used, 
but rather that the best technique for the specific problem at hand may not always  be regression 
and without being aware of the alternatives the best model may not always be developed. 
 
As well as using linear least squares regression some researchers have recognised the problems 
caused by outliers in software data sets and have used robust regression methods (MacDonell, 
1993; Miyazaki et al., 1994).  In other cases linear regression has been used in conjunction with 
more powerful statistical analysis techniques such as factor analysis (Coupal and Robillard, 1990; 
Mata-Toledo and Gustafson, 1992; Subramanian and Breslawski, 1993).  The presence of these 
techniques in the literature indicates the increasing statistical sophistication to be found in the 
field of software metrics. 
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Recently a number of researchers have begun to use neural networks as an alternative to 
regression analysis (Sheppard and Simpson, 1990; Karunanithi et al., 1992; Hakkarainen et al., 
1993; Wittig and Finnie 1994;  Kumar et al., 1994;  Wittig 1995; Srinivasan and Fisher, 1995; 
Khoshgoftaar and Lanning, 1995; Sherer, 1995).  While this use of a new modelling technique  
is to be encouraged, many of the studies examined in the literature contain methodological flaws 
in their application of neural networks.  This can partly be explained by the lack of understanding 
of the statistical concepts underlying neural networks, and also by the widely propagated myth  
of neural networks as automatic problem solvers.   Sarle (1994) observes that neural networks  
are often marketed as being usable without any experience, where in reality using a neural 
network to solve a problem requires an equivalent amount of knowledge to what would be 
needed to solve that problem using statistical analysis, as well as the ability to recognise the 
relationships between neural networks and statistics.  In the case of the backpropagation trained 
network, that would require some knowledge of multiple non-linear regression as well as an 
understanding of neural networks. 
 
Other techniques that have featured in recent publications include fuzzy systems (Bastani et al., 
1993; Kumar et al., 1994), case-based reasoning (Mukhopadhyay et al., 1992), regression trees 
and classification trees (Selby and Porter, 1988; Porter and Selby, 1990; Srinivasan and Fisher, 
1995), and rule-based systems (Ramsey and Basili, 1989; Lakhotia, 1993; Griech and Pomerol, 
1994).  While these techniques are less frequently used than neural networks, they are all useful 
model building methods, especially regression trees and case-based reasoning. 
 
In addition to the above selection of techniques which have already been used in published 
studies for software metrics, an additional technique is considered in this paper, that of neural 
network and fuzzy logic hybrids, here referred to as neuro-fuzzy systems.  While they have not  
as yet, to the authors' knowledge, been used for deriving models for software metrics they are 
seen as especially worthy of consideration since they promise the benefits of both neural 
networks and fuzzy systems without all of the associated drawbacks to these techniques, and are 
the subject of a study currently being performed by the authors. 
 
2 Requirements for Software Metric Modelling Techniques 
 
A number of requirements can be stated regarding modelling techniques for software metrics.  
While it may be unrealistic to expect any given technique to satisfy all requirements, the chosen 
technique should best satisfy those requirements most important to the current problem.  The 
relative importance of each requirement will vary depending on the nature of the data and the 
intended purpose of the model. 
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Given the type of data set usually available, the modelling technique used will normally be 
required to deal with complex relationships and messy data.  This messiness in software 
engineering data sets is often caused by collinearity (independent variables being related to one 
another) and heteroscedasticity (non-constant variance in the dependent variable with respect to 
one or more of the independent variables), as well as the high frequency of outliers.  Another 
problem is that of missing data values.  Thus, any technique used for developing models of 
metrics needs the capability of determining the important variables, finding appropriate 
transformations,  discarding or weighting the outliers as less important where this is justified, and 
estimating missing data values. 
 
Ideally, a modelling technique will also support easy recalibration as new data becomes available 
or the model is applied to new situations.  Jeffery and Low (1990) found that model calibration 
was required to obtain a satisfactory level of accuracy in prediction for linear models.  We would 
expect that the reasons for this requirement, the changes in project factors, will be found 
irrespective of the modelling technique employed, although different types of models will 
experience different levels of difficulty if used uncalibrated. 
 
The remainder of the paper continues with a discussion of  each modelling technique in turn.  An 
illustrative example is provided for each method (aside from least squares regression) to 
demonstrate its usefulness for modelling software metrics.  This is followed by a section 
comparing the techniques based on a number of criteria considered important for the modelling 
task.  Finally, the paper concludes with some general observations and suggestions for additional 
research. 
 
3 Least Squares Regression 
 
Linear least squares regression analysis is still the most common technique used in the literature  
(MacDonell and Gray, 1996).  Much of the appeal of this technique lies with its simplicity and 
also its easy accessibility from many of the popular statistical packages.  Linear least squares 
regression operates by estimating the coefficients in order to: 
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ˆ θ 

ri
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i=1
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where ri is equal to the residual between the observed data and the model's prediction for the ith 
observation.  Thus all observations are taken into account, allowing for a single outlier to have  
a marked influence on the regression line derived. 
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Least squares regression is well suited for use in situations where: 
• many degrees of freedom are available (that is, there are many more observations than 

parameters to be estimated),  
• the data is well-behaved (no outliers or heteroscedasticity),  
• a small number of independent variables are sufficient, after transformations if necessary, 

to linearly predict the possibly transformed output variable(s), and  
• there is no missing data. 
 
This places a severe restriction on the use of this technique for software engineering data sets that 
rarely meet all of these conditions (Briand et al., 1992).  At the very least, robust regression or 
some form of outlier detection should be used to improve the accuracy of the estimates.  Even the 
use of transformations on the data set can be capable of producing a much more useful model.  
Despite this, the majority of papers do not mention any attempts to use transformations to 
improve the data model fit (MacDonell and Gray, 1996). 
 
Experiments involving linear regression often become a matter of finding some combination of 
available variables linearly correlated to the output variable, sometimes after trying various 
transformations.  This has been referred to as the shotgun approach (Courtney and Gustafson, 
1993) or more generously, data mining (Lovell, 1983).  Courtney and Gustafson also discuss the 
dangers of relying on correlation coefficients where hypotheses have not been proposed in 
advance.  The stating of the hypothesis to be tested before any experimental work is carried out  
is required for unbiased results for all techniques to be discussed in this paper. 
 
One of the most important parts of developing a model when using a number of different trials is 
the validation of the finally selected model.  Data splitting for linear regression is discussed in 
Picard and Berk (1990), and Snee (1977) provides a more general discussion of data splitting and 
model validation issues.  Data should ideally be divided into three sets, a set of usually half to 
three-quarters of the data for developing the models, a second set for selecting the best model 
based on all models’ performance for this set, and the remainder for testing the best model's fit.  
It is only the performance on this third data set that provides an unbiased estimate of the 
predictive capabilities of the final model.  Stating the levels of  performance on non-validation 
data sets, while common practice (MacDonell and Gray, 1996), provides exaggerations of the 
model's predictive ability.  If only one model is being tested then the data should be split into two 
sets, one for development, the other for validation of accuracy.  Most of the data in this case 
should be used for development, and only a quarter to third for validation  (Picard and Berk, 
1990).  While the small size of data sets often reported in the literature prevents data splitting, 
other techniques are available, although not widely used (MacDonell and Gray, 1996).  Other  
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alternatives to data splitting are the PRESS statistic (Allen, 1971) and resampling-based methods 
such as the bootstrap (Efron, 1979; Young, 1994). 
 
Collinearity inflates the error terms of estimates, leading to less reliable models.  Such 
relationships are common in software data sets, for example the number of entities and the 
number of attributes in a data model can be quite reasonably argued as being related on the basis 
that a change in the number of entities would also be reflected in the number of attributes present 
in the data model.  While the relationship here will probably not hold perfectly (since 
normalisation may change the number of entities greatly without much change to the number of 
attributes in the data model) there is still correlation between the two variables.  This problem can 
be dealt with by reducing the number of dependent predictors used for estimation.  Factor 
analysis and other data reduction techniques can be used to reduce the number of influencing 
components under consideration when developing a software metric model (Coupal and 
Robillard, 1990).  This can be used to group variables that measure the same aspect into single 
factors, each representing a major dimension within the data.  In the data model example 
mentioned above, a single data model size factor may be extracted as a combination of the 
numbers of entities and attributes.  See Stewart (1987) for a discussion of methods of detecting 
collinearity in regression-based models. 
 
4 Robust Regression Analysis 
 
Robust regression analysis has been used in MacDonell (1993) and Miyazaki et al. (1994) to 
screen for outliers in software metric models.  The general idea behind robust regression is that 
by changing the error measure (from least squares) the model can be made more resilient to 
outlying data points.  Many different robust regression models exist, often based on median, 
rather than mean, measures of error (for example, Rousseeuw, 1984) or on some middle portion 
of the errors (for example, ignoring the top and bottom ten percent of errors, and using least 
squares on the remaining eighty percent). 
 
The use of robust regression is especially attractive in software development data sets since they 
are often very small, and therefore extremely sensitive to the abnormal observations they contain, 
and often contain errors in measurement.  On the other hand, the small size of the data sets 
available can make researchers reluctant to give up an observation since this also reduces the 
statistical validity of models they develop.  Least Median Squares regression (Rousseeuw, 1984) 
provides estimates which cannot be affected to an arbitrary degree by up to 50 percent 
contamination, that is to say it has a breakdown point of 0.5.  This compares to Least Squares 
regression's estimates which can be arbitrarily affected by a single outlying observation, which  
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is a breakdown point of 0.  This improvement is achieved by using the following method of 
estimating the coefficients: 
 

€ 

minimise
ˆ θ 

median
i

ri
2  

 
with ri equalling the residual as with least squares above.  The median residual can only be 
arbitrarily affected if at least half of the data changes.  This method can be used to find points that 
deviate from the median regression line, which may suggest that these points are worthy of 
consideration to ensure that they are not outliers (Massart et al., 1986). 

 
As can be seen in figure 1, a single outlier has a dramatic effect on the regression line under Least 
Mean Squares, but none under Least Median Squares.  Although, mathematically, the Least Mean 
Squares line is minimising its error function it is easy to see that the model would be of little use 
in predicting a new point like A.  Additional information about Least Median Squares regression 
can be obtained from Rousseeuw and Leroy (1987).  Some of the weaknesses of the method are 
discussed in Hettmansperger and Sheather (1992). 
 

 

 
 

Figure 1 
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An important point to remember here is that robust regression, as with any outlier detection 
method (see Rousseeuw and van Zomeren (1990) for some other outlier detection techniques), 
can only be used to indicate suspicious data points.  The term outlier refers to the observation 
having a large t or t* value (Chatterjee and Hadi, 1986).  The fact that a data point qualifies as an 
outlier under this definition is not however sufficient justification for removing it from the 
sample.  Here it is important to ensure that the population being studied is properly defined.  The 
points flagged as appearing to be different from the majority should never be rejected simply on 
the basis that they have an adverse effect on the model's fit.  Other justification must be found, 
such as an unusual project, before any removal of data is carried out.  The unjustified exclusion 
of data points has a serious biasing effect on the model developed.  For example, often some 
examples of larger systems in a data set of mainly medium sized systems will stand out as 
potential outliers, especially under a linear model.  Here, by rejecting the larger systems the 
population is being reduced to medium sized systems.  If the model is to be used for such large 
systems then they cannot be removed.  By including these observations, however, the model's 
accuracy for predicting medium systems may be inadequate.  A possible solution here would be 
to divide the data set into medium and large systems and then develop separate models for each 
population. 
 
Some of the reasons for the large number of outliers in software development data sets include 
the lack of agreement on terminology leading to differing definitions for variables, the 
inconsistencies between data counters, the wide variety of software development processes and 
the wide range of system sizes (Miyazaki et al., 1994). 
 
5 Neural Networks 
 
The most common model-building technique used in the literature as an alternative to Least Mean 
Squares regression is backpropagation trained feed-forward neural networks, often referred to 
simply as backpropagation networks although this is strictly speaking incorrectly confusing the 
architecture and the training method.  Even though a large number of different neural network 
architectures and training algorithms exist, almost all published studies involving software metric 
models have been limited to this type.  This can be seen as a reflection of the lack of 
understanding of neural network techniques by many software metric researchers which is 
understandable given the tremendous growth in the neural network field in the past decade.  Gray 
and MacDonell (1996) provide guidelines for model development of software metrics using 
various neural network architectures, and Li (1994) provides a good general introduction to 
neural network applications.  Neural networks have been used successfully in many software 
metric modelling studies, including Wittig (1995) where prediction accuracy was within 10%. 
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The example in figure 2 demonstrates a neural network model for a metric that predicts the 
development effort required for a system with a given set of design requirements.  The network 
shown is a feed-forward network that could be trained using the backpropagation algorithm so as 
to determine weights that attempt to minimise the predictive error.  Once the network's weights 
have been determined new instances can be presented as inputs to have the network make an 
estimate for the effort required. 
 
Backpropagation trained feed-forward neural networks are developed by first selecting an 
appropriate architecture of neurons.  This includes how many layers of neurons will be used, the 
number of neurons in each layer, and how the neurons will be connected to each other.  Other 
decisions are also possible regarding the precise nature of neurons, such as their transfer function, 
and parameters for the training algorithm.  Once the architecture has been created the network is 
trained by presenting it with a series of inputs and the correct output from the training data.  As 
with all empirically-based modelling techniques data should be withheld for  verification and 
validation purposes.  The network learns by adjusting its weights to decrease the distance 
between its predicted output and the actual output.  This process of training continues until the 
network's ability to generalise, as measured by its predictive performance on new data, is optimal.   

 
 
 
 

Figure 2 
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This means stopping before the network has learned the training data completely and has 
overtrained, thus losing its important ability to generalise.  Usually, various different 
architectures will be tried and the best tested on the validation data set to ensure good 
generalisability. 
 
The popularity of this single method has also been noted in other disciplines and can be  
explained by its apparent simplicity and robustness.  Often papers using this technique will be 
based on data sets which are so small or affected with collinearity that normal statistical methods 
would be unable to produce any valid results.  The authors will even on some occasions 
acknowledge these problems and suggest neural networks as the solution.  In fact, it is long 
acknowledged within the neural network community that neural networks are not immune to 
statistical problems since they are in many cases equivalent to standard statistical techniques.   
For example, a feed-forward neural network is equivalent to a multiple nonlinear regression 
model (Sarle, 1994).  In this way they are subject to the same problems as any nonlinear 
regression, such as too many free parameters for the data set size (low degrees of freedom), 
collinearity between variables, outliers in the data, and missing data values.  Some researchers  
in the neural network community have even claimed that neural networks are less resilient to 
these problems than their corresponding statistical functions.  For a more complete examination 
of the statistical properties of neural networks see Cheng and Titterington (1994). 
 
The phrase universal approximator is often used to describe this form of neural network, 
suggesting that it can capture any relationship that may exist between the variables.  There are 
several conditions attached to the proof that feed-forward neural networks are capable of 
representing any well-behaved relationship, firstly that the proofs for multilayer perceptrons 
being universal approximators only prove that there exists some two layer (the number of layers 
refers to the number of connections, so a two layer network really has an input, hidden and an 
output slab of neurons) network that can approximate any well-behaved function to an arbitrary 
degree of accuracy (Hornik et al., 1989).  The proofs do not specify the number of neurons 
required in the hidden layer.  Since training time and the minimum data set size for valid learning 
increases with the number of neurons, the theoretical existence of a network capable of capturing 
a relationship is of little use if it can not be implemented. 
 
It has been further shown that such networks are not just capable of representing such mappings, 
but these mappings are always learnable  (White, 1990).  The problem here is that even if the 
architecture provides a sufficient number of hidden layer neurons, the backpropagation training 
algorithm, which is a simple gradient descent algorithm, is notoriously unreliable at finding the 
globally optimal set of weightings and often falls into local minima which may not provide an 
accurate mapping between inputs and outputs (Sutton, 1989).  Better learning algorithms that do  
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not have such problems with local minima and often train much faster have been developed (for 
example, Baldi and Hornik, 1989; Baba, 1989).  As an alternative, schemes are available that can 
initialise the network weights so as to avoid the false minima (Wessels and Barnard, 1992; 
Denoeux and Lengellé, 1993; Weymaere and Martens, 1994).  These can be used in place of the 
normal method of initialising the network with small random values.  Modern neural network 
literature abounds with better training algorithms and initialisation techniques but still the vast 
majority of applications continue to use the slow and unreliable backpropagation method with  
the small random value initialisation rule.  This can be seen as a reflection of the slow 
dissemination of information in comprehensible formats to those applying neural networks rather 
than investigating their properties. 
 
Other architectures that are suitable for neural networks include cascade correlation networks, 
Kohonon networks, and radial basis function networks.  The only one of these that the authors  
are aware of having been used for software metrics is cascade correlation (Wittig, 1995). 
 
A failing of neural networks is that they operate as 'black boxes' and provide the user with no 
information about how outputs are reached (Diederich, 1990).  As stated by Davis et al. (1977), 
the ability to generate explanations is important in order to gain user acceptance of artificial 
intelligence techniques.  This can make it difficult to test a neural network's output gradient 
vectors with respect to the various inputs to ensure that the relationships are sensible (in other 
words increasing or decreasing as appropriate and with a suitable relative magnitude).  This is a 
simple matter with regression equations where the signs and relative magnitudes of the 
coefficients can be easily checked to ensure that the predicted output will vary in the correct way 
with respect to the inputs. 
 
While certain types of neural networks are prone to the phenomenon of catastrophic forgetting 
(Robins, 1995), where training the neural network on new data causes the network to forget 
previously learned data, this can be overcome by repeating the training with a new unified data 
set.  Given the small data sets that are often used for software metrics and the non-real time 
nature of the models it is recommended that using the combined data set to redevelop the neural 
network should not present problems in terms of training time. 
 
6 Fuzzy Systems 
 
Fuzzy systems have only been used in a few publications for software development models 
which is surprising given their rapid adoption into other areas.  A fuzzy system is a mapping 
between linguistic terms, such as "very small", attached to variables.  Munakata and Jani (1994) 
provide a good introduction to fuzzy systems.  Thus an input into a fuzzy system can be either  
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numerical or linguistic, with the same applying to the output.  A number of different types of 
fuzzy systems have been shown to act as universal approximators in the same sense as neural 
networks (Kosko, 1994; Wang and Mendel, 1992; Castro, 1995). 
 
A fuzzy system as considered here, although as noted above there are different types, is made up 
of three main components.  The first, the membership functions,  represent how much a given 
numerical value for a particular variable fits the term being considered.  The second component  
is the rule base.  This performs the mapping between the input membership functions and the 
output membership functions.  The greater the input membership degree, the stronger the rule 
fires, and thus the stronger the pull towards the output membership function.  Since several 
different output memberships could be contained in the consequents of rules fired, a 
defuzzification process, the third component, is carried out to combine the outputs into a single 
label or numerical value as required. 
 
This approach is demonstrated in figure 3.  In this simple example numerical inputs are provided 
for the data model size (30), number of screens (26), and process model size (74).  These 
numerical values are plotted on the membership functions, with the height of intersection with  
the membership curve indicating the degree to which the value belongs to the respective label.   

 
 

Figure 3 
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For the particular type of fuzzy logic system described here this step is called fuzzification.  In 
this case the data model size is medium to a degree of 0.5 and large to a degree of 0.5, while the 
process model size is small to a degree of 0.8.  The membership degree determines how much 
weight to give to the rules involving the membership label in its antecedent.  There are various 
methods for weighting the rules in this case.  The consequents of each rule are then combined,  
for the type of fuzzy system described here this process is called defuzzification, and a single 
output value is determined, in this case 254. 
 
The most obvious strength of fuzzy systems is that by using linguistic mappings a highly intuitive 
model can be created that anyone, even without any training, can understand and if necessary 
criticise.  As with neural networks there are a large number of different types of fuzzy system, 
and again when developing a model it is necessary to understand the various choices available.  
Many different schemes have been devised to extract fuzzy membership functions and rules 
directly from data including that described by Wang and Mendel (1992).  They suggest that this 
then allows for an expert to fine-tune and add to the resulting system rather than starting from 
scratch. 
 
7 Hybrid Neuro-Fuzzy Systems 
 
Recently researchers have attempted to combine the strengths of neural networks and fuzzy 
systems while avoiding most of the disadvantages of each (Jang, 1993; Horikawa et al., 1992).  
This has resulted in a wide range of possibilities for hybridizing the two techniques.  While all of 
these techniques are different in some way, they share the same basic principles: an adaptive 
system that can deal with easily comprehended linguistic rules and that permits initialisation of 
the network based on available knowledge. 
 
The standard neuro-fuzzy hybrid system is based on inputs into the network being transformed 
into membership degrees that can then activate rules, leading to membership degrees for the 
outputs that can be defuzzified.  Thus the five layers of neurons (technically slabs, since layers 
refers to connections) in such a network represent the crisp inputs, input fuzzy membership 
degrees, rule firing, output memberships, and crisp outputs.  One problem with a fully trainable 
neuro-fuzzy system is that the membership functions can drift such that they no longer represent 
their linguistic label.  One approach to avoiding this problem is the separation of the rule learning 
and membership extraction operations as discussed in Gray and MacDonell (1996). 
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An example of a neuro-fuzzy system is presented in figure 4.  Here two inputs (data model size 
and process model size) are presented to the network's input neurons which are then fed through 
the first layer of connections.  The outputs to the second layer of connections represent the 
membership degrees, leading to the rules where positive input weights represent affirmative rules.  
The outputs from the rule neurons represent the degree to which the rule has been fired and 
determine the activation of the output membership neurons.  The results from these output 
neurons are combined into a single numerical value. 
 
Once  a network has been trained it is possible to extract the rules contained within it which can 
then be checked for acceptability, and if desired used in a standard fuzzy system.  The ability to 
extract rules in this manner can be used to check for catastrophic forgetting, where the network 
learns new relationships from new data but forgets the old relationships from old data (Robins, 
1995). 
 
Ironically, although neural networks and fuzzy systems are both universal approximators, 
standard neuro-fuzzy systems are not. Despite this, neuro-fuzzy systems are capable of  

 
 

Figure 4 
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approximating well enough and alterations to the standard architecture are possible to ensure 
universal approximation should the model require this (Buckley and Hayashi, 1994).  However  
it seems unlikely that any metric would be unable to be modelled using a neuro-fuzzy system 
since this inability seems limited to unusual functions. 
 
8 Rule-Based Systems 
 
Rule-based systems have been used in very few cases for modelling software development.  
Fuzzy rule systems are a superset of crisp rule systems and any such system can be simulated by 
a fuzzy system.  For this reason it may be considered that crisp systems are redundant.  However, 
the greater simplicity of a crisp-rule base can be seen as an attractive feature, especially where 
many input variables are involved. 
 
A rule-based system is organised around a set of rules that are activated by facts being present  
in the working memory, and that activate other facts, as shown in figure 5.  In this way chaining 
can occur with one rule enabling another rule to fire.  This would, for example, allow for rules  
to be developed to recognise a high error module along the lines of: 
 

IF module length > 40 LOC or 
 IF module length>20 LOC AND development time > 2 hours 
 THEN module is high error risk 

 
Such a system has the disadvantage, compared to a fuzzy system, that all antecedents and 
consequents must be either true or false, with no degrees of true or false allowed.  This can cause 
problems when a module with 21 LOC and a module with 20 LOC, both taking four development 
hours, are put through the above rule.  The two modules are very similar but only the first will 
fire the rule. 
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9 Case-Based Reasoning 
 
Case-based reasoning is a method of storing observations, such as data about a project's 
specifications and the effort required to implement it, and then when faced with a new 
observation retrieving those stored observations closest to the new observation and using the 
stored values to estimate the new value, in this case effort.  Thus a case-based reasoning system 
has a pre-processor to prepare the input data, a similarity function to retrieve the similar cases, a 
predictor to estimate the output value, and a memory updater to add the new case to the case base 
if required (Aha, 1991).  This is shown in figure 6.  Case-based reasoning systems are intended to 
mimic the process of an expert making a decision based on their previous experience 
(Mukhopadhyay et al., 1992).  It was found by Vicinanza et al. (1991) that experience assisted 
with software development estimates and that experts at this used comparisons with past cases. 
 

 
 

Figure 5 



 18 

Problems have been encountered with some case-based reasoning systems.  As stated by Breiman 
et al. (1993) they are intolerant of noise and irrelevant features.  The authors also claim that the 
similarity function used has a strong influence on the algorithm's performance.  This makes the 
creation of a case-based reasoning system a non-trivial task.  However, extensions to standard 
case-based reasoning algorithms performed by Aha (1991) resulted in much more noise-tolerant 
systems. 
 
An experiment by Mukhopadhyay et al. (1992) compared the performance of a case-based 
reasoning system, a human expert, and standard models using function points and COCOMO.   
The case-based reasoning system (ESTOR) and the expert were limited to using the standard 
inputs to the function point and COCOMO models.  The performance of the case-based  
reasoning system exceeded that of the function point and COCOMO models, and was close to  
the level of the expert.  The authors concluded that the case-based reasoning approach was worth 
further study due to its encouraging results. 
 

 
 

Figure 6 
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10 Regression and Classification Trees 
 
Regression and classification trees, while based on the same principle, each have a different aim.  
Regression trees can be used when the output value to be predicted is from the interval domain, 
while classification trees (also known as decision trees) are used to predict the output class for an 
observation, that is to say, from the nominal or ordinal data scale.  Both algorithms work by 
taking a known data set and learning the rules needed to classify it.  For an overview of the 
techniques see Breiman et al. (1993). 
 
As an illustration, refer to figure 7 where a regression tree algorithm has been used to extract the 
important rules that can be used to predict testing time for software developed using particular 
tools.  The mean testing time for each class has been recorded as the leaf nodes.  In order to 
create the tree the algorithm looks at which attributes can be used to best classify the data and 
iteratively constructs the tree, splitting nodes when required.  While splits of two are most 
common, algorithms exist for splitting ranges into greater numbers of partitions.  This method 
has the advantage of being easily comprehended and checked for logical errors. 
 
Classification trees operate in much the same way as regression trees except that instead of 
interval scale data being attached to the leaf nodes, labels are used instead.  Thus a classification 
tree could classify modules into various risk categories, for example 'high risk' and 'low risk.' 
 
An experiment by Srinivasan and Fisher (1995) found that, using mean residual error as the 
performance measure, a regression tree approach was more successful than COCOMO or SLIM 
for estimating effort, although less successful than a backpropagation trained neural network (the 
most successful) and function points.  An extension to the basic regression tree algorithm 
discussed by Srinivasan and Fisher was to replace the mean values at the leaf nodes with 
regression equations, allowing for a piece-wise regression equation over the domain.  This could 
be a successful technique given the way the behaviour of metrics changes in relation to the scale 
of the project under consideration. 
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11 Comparison of Techniques 
 
Table 1 shows a comparison between the techniques with respect to some desirable modelling 
technique attributes.  It can be seen that not all techniques are suited to all types of problems.  In 
addition, not all factors that may influence technique selection are listed here.  Others may 
include available model-building software, expertise in each field, and the time available for 
development. 
 
In the table the heading ‘model free’ refers to the ability of the modelling technique to determine 
its own structure, rather than relying on the developer to provide the form of the relationship 
between inputs and outputs.  As an example, when developing a regression model it is necessary 
to specify which variables should be transformed and what type of transformation should be used, 
for example logarithmic.  With a neural network, an appropriate approximate transformation will 
be found by the network when training. 
 

 
 

Figure 7 
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Technique Model 

Free  
Can 
Resist 
Outliers 

Explains 
Output 

Suits 
Small 
Data 
Sets 

Can be 
Adjusted 
For New 
Data  

Black/ 
Grey/ 
White 
Box 

Suit 
Complex 
Models 

Include 
Known 
Facts 

Least Squares 
Regression 

No No Yes/No No No White No No/ Yes 

Robust 
Regression 

No Yes Yes/No No No White No No/ Yes 

Neural Networks Yes No No No Yes/ No Black Yes No/ Yes 
Fuzzy Systems 
(Adaptive) 

Yes Yes Yes Yes No/Yes White Yes Yes 

Hybrid Neuro-
Fuzzy Systems 

Yes Yes/ No Yes Yes/No Yes/ No Grey Yes Yes 

Rule Based 
Systems 

No N/A Yes N/A N/A White Yes Yes 

Case-Based 
Reasoning 

Yes Yes/No Yes No/Yes Yes Grey Yes No 

Regression Trees Yes Yes Yes No/Yes Yes Grey Yes Yes 
Classification or 
Decision Tress 

Yes Yes Yes No/Yes Yes Grey Yes Yes 

 
Table 1 

 
The next entry refers to the model's robustness of estimation when faced with a model containing 
outliers.  Some techniques are capable of providing some explanation for their reasoning and this 
is noted in the next column.  Small data sets are problematic for all modelling techniques, 
however by using expert knowledge as a supplement to the data (as in fuzzy systems) an accurate 
model can still be derived.  Once a model has been developed, the issue of whether additional 
data can be added or whether the entire model must be regenerated on the combined data set  
must be faced.  Related to the explanation of a model is the ability of a user to see how a model 
arrived at its conclusions.  This can be important for the purpose of verification.  Models can be 
black box (outputs are derived from inputs via a hidden process), white box (the process is visible 
and can be understood), or grey box (partially visible).  The suitability of a technique to complex 
models is related to the issue of model free estimation and the ability to add expert knowledge.  
Finally the table covers the technique's ability to include known information into the model, that 
is to initialise the model and then use data to improve and refine it. 
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Some entries in the table are both yes and no.  Since some techniques neither completely fail to 
deal with a particular issue, or succeed entirely, entries have been made as yes/no if the technique 
is fairly successful at dealing with the issue and no/yes for cases when the technique is only 
slightly successful. 
 
12 Conclusions 
 
By considering a wide range of modelling techniques that may be suitable for developing 
software metric models a project manager can be more confident that the best (for practical 
purpose this will normally be the most accurate) model possible has been developed.  Even after 
the model has been developed it is important to keep in mind the inherent limitations of the 
technique used. 
 
Some of the artificial intelligence techniques, especially neural networks, fuzzy models, and case-
based reasoning, seem to be especially well suited to the model building problem.  It is hoped  
that continuing research in applying these methods to metrics will improve the quality of 
predictions. 
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