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Abstract 
 
This paper explores two different methods for improved learning in multimodular fuzzy neural network systems for 
classification.  It demonstrates these methods on a case study of satellite image classification using 3 spectral inputs and 
10 coastal vegetation covertype outputs.  The classification system is a multimodular one; it has one fuzzy neural 
network per output.  All the fuzzy neural networks are trained in parallel for a small number of iterations.  Then, the 
system performance is tested on new data to determine the types of interclass confusion.  Two strategies are developed 
to improve classification performance.  First, the individual modules are additionally trained for a very small number of 
iterations on a subset of the data to decrease the false positive and the false negative errors.  The second strategy is to 
create new units, ‘experts’, which are individually trained to discriminate only the ambiguous classes.  So, if the main 
system classifies a new input into one of the ambiguous classes, then the new input is passed to the ‘experts’ for final 
classification.  Two learning techniques are presented and applied to both classification performance enhancement 
strategies; the first one reduces omission, or false negative, error; the second reduces comission, or false positive, error.  
Considerable improvement is achieved by using these learning techniques and thus, making it feasible to incorporate 
them into a real adaptive system that improves during operation. 
 
 
1. Introducing the case study of 
satellite image classification 

1.1 Sampling image data for the experiment 
A System Pour l’Observation de la Terre (SPOT) image 
of the Otago Harbour, Dunedin, New Zealand, provided 
the inputs for the classification.  The SPOT image has 20 
metre spatial resolution and 3 spectral bands sensing the 
green, red and infrared portions of the electromagnetic 
spectrum.  Ten covertypes, containing intertidal 
vegetation and substrates, were recorded during a ground 
reference survey.  From the SPOT image, three spatially 
separable reference areas were extracted for each of ten 
covertypes.  All of the sample pixels for a given 
covertype were amalgamated and randomly sorted into 
training and test sets. 

1.2 Natural confusion among classes 
The biggest problem with mapping natural systems 
(inputs) to human determined classes (outputs) is that 
some confusion will occur.  There are 2 major types of 
confusion: (1) errors of omission, false negative errors,  

and (2) errors of comission, false positive errors.  For the 
case study problem, considerable confusion exists among 
classes 3, 4 and 5 (hisand, lowsand and lowzost 
respectively).  To graphically illustrate this confusion 
among the classes, scatterplots were produced (Figure 1, 
Figure 2, and Figure 3) 
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Figure 1  Scatterplot of 3 Sample Classes (infrared versus 

green feature space) 
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Figure 2  Scatterplot of 3 Sample Classes (red versus 

green feature space) 
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Figure 3  Scatterplot of 3 Sample Classes (infrared versus 

red feature space) 

 
1.3 Classification 
For image classification, a variety of different algorithms 
have been explored, among them: statistical methods, 
connectionist methods, and fuzzy inference methods.  
Independent of the algorithm used, sample classification 
is determined as the highest score among the individual 
class transfer functions that associate inputs to outputs.  
The most common traditional classifier is the maximum 
likelihood classifier [1,2,3].  It operates by performing 2 
passes through the data.  The first pass creates the transfer 
function between the input and output classes; the second 
one performs the classification.  Statistical techniques in 
general are not adaptive.  For example, in order for a 
system to adapt to new data, the entire training set and 
new data must be analysed and updated in an iterative 
process [4]. 
 
Connectionist systems have been used for classification 
[5,6,7,8,9,18].  These systems require a large number of 
iterations to adjust connection weights for error 
minimisation.  This coupled with large training sets 
associated with image reference data, places a large 
processing load on computing resources.  Very often, 
connectionist systems cannot be adapted to improve the 
performance on individual classes.  These systems are 
designed to reduce the RMS error of the neural networks 
which does not insure a corresponding increase in 
classification accuracy. 
 
Fuzzy inferences methods have been used extensively for 
pattern recognition [9,11].  The difficulty with fuzzy 
systems is the vaguely known expert fuzzy rules and 

membership functions must be adapted to the new data.  
However, once the systems are created, classification is 
very efficient.  Fuzzy inferences have also been combined 
with connectionist techniques as hybrid techniques 
[10,13,18].  Fuzzy rules may be extracted from hybrid 
systems to determine what the system has learned 
[13,17,18].  Previous experiments compared the utility of 
connectionist-based systems to conventional parametric 
classifiers and to fuzzy classifiers [9,11,14,15,16].  
However, this research will introduce effective methods 
to reduce interclass confusion and to improve adaptation. 

2. Fuzzy Neural Networks 
2.1 Different types of fuzzy neural networks 
A fuzzy neural network (FNN) is a connectionist model for 
fuzzy rules implementation and inference.  There are a wide 
variety of architectures and functionalities of FNN 
[10,17,18,21].  They differ mainly in the following 
parameters: 
 
• type of fuzzy rules implemented; this reflects in the 

connectionist structure used; 
• type of inference method implemented; this reflects in 

the selection of different neural network parameters and 
neuronal functions, such as summation, activation, 
output function; it also influences the way the 
connection weights are initialised before training, and 
interpreted after training; 

• mode of operation; we shall consider here three major 
modes of operation : 

⇒ Fixed mode - fixed membership functions-fixed set of 
rules, i.e. a fixed set of rules is inserted in a network; the 
network performs inference, but does not change its 
weights.  It cannot learn and adapt.  It does not forget 
either. 

⇒ Learning mode, i.e., a neural network is structurally 
defined to capture knowledge in a certain format, e.g., 
some type of fuzzy rules.  The network architecture is 
randomly initialised and trained with a set of data.  
Rules are then extracted from the structured network.  
The rules can be interpreted either in the same network 
structure or by using other inference methods. 

⇒ Adaptation mode - A neural network is either randomly 
initialised or structurally set according to a set of fuzzy 
rules, ‘hints’, and heuristics.  The network is then  
trained with data and updated fuzzy rules are extracted 
from its structure following some rule extraction 
algorithm.  The rules can either be interpreted in a fuzzy 
inference engine or can be inserted back to the fuzzy 
neural network structure in the same way initial set of 
rules have been inserted.  The network is further trained 
with new data and new updated rules extracted, etc. 

 
 
The FNN model [17,18] facilitates learning from data, fuzzy 
rules extraction, fuzzy rules insertion, approximate 
reasoning, and adaptation.  FNN uses a multi-layered 
perceptron (MLP) network and a backpropagation training 
algorithm.  It is an adaptable FNN where the membership 
functions of the fuzzy predicates, as well as the fuzzy rules 
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inserted before training (adaptation), may adapt and change 
according to the training data.  The general architecture of 
FNN consists of five layers.  Figure 4 depicts a FNN for 
two exemplar fuzzy rules [17,18]. 
 

 
Figure 4  A FNN structure for the two fuzzy rules 

Explicitly:  R1: IF x1 is A1 (DI1,1) and x2 is B1 (DI2,1) 
THEN y is C1 (CF1); R2: IF x1 is A2 (DI1,2) and x2 is 
B2 (DI2,2) THEN y is C2 (CF2), where DIs are 
degrees of importance attached to the condition 
elements an CFs are certainty factors attached to the 
consequent parts of the rules [17,18]. 

 
In the following experiments, FNN that consist of only the 
condition element layer, the rule layer and the action 
element layer are considered.  The membership functions 
are defined by the user.  For the experiments in the next 
section, the membership functions are of the standard 
triangular type with a uniform distribution over the universe 
of discourse.  Fuzzification and defuzzification are 
performed outside the structure. 

2.2 Rules extraction from fuzzy neural 
networks 
One of the advantages of fuzzy neural networks is that 
structured information (knowledge) can be inserted and 
extracted.  A FNN can be interpreted in linguistic terms 
after training.  The structure of a FNN also restricts the 
information (knowledge) representation and interpretation. 
 
An algorithm called REFuNN (Rules Extraction From 
Neural Networks) for rules extraction from a trained FNN is 
presented in [17,18].  The method is based on the following 
assumptions: simple operations are used and a low 
computational cost achieved; hidden nodes in a MLP learn 
features, rules, and groups in the training data; fuzzy 
quantisation of the input and the output variables is 
performed outside the algorithm; automatically extracted 
rules require additional manipulation depending on the 
reasoning method applied afterwards.  The algorithm uses 
thresholds above which connection weights are kept and 
represented in a linguistic form as fuzzy rules. 

2.3 Towards adaptive learning strategies in 
modular connectionist structures 
A general architecture of an adaptive multimodular 
system is given in Figure 5.  It consists of: (1) a 
classification module built as a multimodular system, (2) 
a module for training, modification and adaptation, and 
(3) a module for rules extraction. 
 

 
Figure 5  A general architecture of an adaptive intelligent 

multimodular classifier 

 
This paper discusses the classification module only.  The 
classification module has a single connectionist unit for 
each of the output classes.  Initially, all the modules are 
trained with identical data.  After that, each of the units 
can be tuned using learning techniques.  This approach 
has been presented in [18] and illustrated on a phoneme 
classification task where different learning strategies have 
been experimented, such as: additional training of class 
units with negative examples to suppress false positive 
error; using averaged over three time units data.  These 
methods are further developed and experimented here on 
an image classification case problem. 
 
 
3. A Classification System based on 
Multimodular Fuzzy Neural Network 
Classifier: Initial System for the Case 
Study Problem 

3.1 Image classification in a multimodular 
fuzzy-neural network system 
The classification module of the architecture given in 
Figure 5 is implemented here for the case study problem.  
The multimodular sub-system has one fuzzy neural 
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network per output class.  The number of the membership 
functions are fixed.  The input variables are quantised into 
5 membership functions and the output variables (the 
class variables) are quantised into 2 membership 
functions for this case study (Figure 6). 
 

 
Figure 6a 

 
Figure 6b 

 
Figure 6c 

Figure 6  (a) The single module classifier for the case 
study problem of image classification; (b) Membership 
functions of the input variables and (c) the output, class 

variables 

 
3.2 Training and testing the multimodular 
neuro-fuzzy classifier 
All the neural networks are trained in parallel for a small 
number of iterations.  Then, the performance of the 
system is tested and the poorly performing class units are 
identified.  Training and testing sets are identical for all 
classes. 
 
 

training data
random sort data 10 fuzzified neural network 15-10-2 in parallel - maximum of 200 iterations or 0.001 rms error

denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent
denzost 251 0 0 0 0 0 0 0 3 2 256 98
dryzost 2 40 0 0 0 0 0 1 1 5 49 82
hisand 0 0 102 0 1 0 0 0 0 0 103 99
lowsand 0 0 0 15 0 0 0 0 0 0 15 100
lowzost 0 1 24 67 77 0 0 2 0 1 172 45
red 1 0 0 0 0 303 0 0 0 0 304 100
shalsub 0 0 0 0 0 0 58 0 0 0 58 100
shell 0 2 0 0 0 0 0 100 0 0 102 98
shellzost 0 0 0 1 0 0 0 0 64 2 67 96
wetzost 10 0 0 0 0 3 0 0 8 80 101 79

1090
sum 264 43 126 83 78 306 58 103 76 90 1227
percent 95 93 81 18 99 99 100 97 84 89 88.83456
iterations 200 200 200 200 200 200 26 200 200 200

test data

denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent
denzost 129 0 0 0 0 0 0 0 1 0 130 99
dryzost 0 16 0 0 0 0 0 0 1 0 17 94
hisand 0 0 50 0 0 0 0 0 0 0 50 100
lowsand 0 0 0 5 0 0 0 0 0 0 5 100
lowzost 0 2 12 35 38 0 0 3 0 0 90 42
red 0 0 0 0 0 149 0 0 0 0 149 100
shalsub 0 0 0 1 0 0 29 0 0 0 30 97
shell 0 3 0 0 0 0 0 47 0 0 50 94
shellzost 0 0 0 0 0 1 0 0 33 2 36 92
wetzost 1 0 0 0 0 1 0 0 2 43 47 91

539
sums 130 21 62 41 38 151 29 50 37 45 604
percent 99 76 81 12 100 99 100 94 89 96 89.23841  

Figure 7  Initial Confusion matrix of the 10 classes  
Note the confusion between classes 3, 4, and 5 (hisand, lowsand, and lowzost respectively).  The reduction of this 
confusion will be the discussed further.  The columns represent the input classes and the rows represent the “as 
classed” values. 

The reflectance information from each of the satellites 
spectral bands (inputs for the networks) were fuzzified.  
This effectively increased the ratio between inputs and 
outputs.  The initial training data was identical for each 
network.  All connectionist-based processing was 

performed using a hybrid software environment 
FuzzyCOPE [13].  Acceptable conversion tolerance and 
error were considerably less than the optimum tolerance 
and required fewer iterations.  For this case, acceptable 
training was chosen to be an RMS error of 0.001 or 200 
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iterations for each class.  Figure 7 shows the confusion 
matrix for the training and test data for the ten output 
classes.  Intuitively, the greater number of samples, the 
fewer iterations are required. 
 
After the interclass confusion was identified, the next step 
of the process was to reduce it.  For this, two strategies 
are described.  The first is highly specific additional 
training on the ambiguous class modules.  The second is 
the creation of new expert systems for those classes 
where sufficient confusion exists.  For both strategies, 
two learning techniques were applied.  The learning 
techniques involve the reduction of comission and 
omission errors. 
 
4. Quick Additional Training of 
Individual Class Networks for 

Reducing Comission and Omission 
Errors 
The first strategy operates on the existing ambiguous 
networks.  The individual networks contain sufficient 
information so that only tuning is required.  The 
ambiguous classes are hisand, lowsand, and lowzost.  The 
additional training was performed to reduce the confusion 
among these classes. 

4.1 Comission correction 
Once the system was trained, one can identify the 
confusion between classes.  Figure 8 shows the dramatic 
improvement of the training and test error when one 
additional training iteration is performed on the class 
“lowzost” network with all the negative examples used 
for the initial training in Figure 7.  This was the first 
technique applied. 
 

 
training data

random sort data 10 fuzzified neural network 15-10-2 in parallel - maximum of 200 iterations or 0.001 rms error + 1 it. class 5 "not" examples class 3 and 4
denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent

denzost 251 0 0 0 0 0 0 0 3 2 256 98
dryzost 2 41 0 0 1 0 0 1 1 5 51 80
hisand 0 0 118 0 15 0 0 0 0 0 133 89
lowsand 0 0 0 77 2 0 0 0 0 0 79 97
lowzost 0 0 4 5 59 0 0 0 0 0 68 87
red 1 0 0 0 0 303 0 0 0 0 304 100
shalsub 0 0 3 0 0 0 58 0 0 0 61 95
shell 0 2 0 0 1 0 0 102 0 1 106 96
shellzost 0 0 1 1 0 0 0 0 64 2 68 94
wetzost 10 0 0 0 0 3 0 0 8 80 101 79

1153
sum 264 43 126 83 78 306 58 103 76 90 1227
percent 95 95 94 93 76 99 100 99 84 89 93.96903
iterations 200 200 200 200 201 200 26 200 200 200

test data

denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent
denzost 129 0 0 0 0 0 0 0 1 0 130 99
dryzost 0 18 0 0 0 0 0 0 1 0 19 95
hisand 0 0 60 0 8 0 0 0 0 0 68 88
lowsand 0 0 0 30 0 0 0 0 0 0 30 100
lowzost 0 0 1 10 29 0 0 0 0 0 40 73
red 0 0 0 0 0 149 0 0 0 0 149 100
shalsub 0 0 0 1 0 0 29 0 0 0 30 97
shell 0 3 1 0 1 0 0 50 0 0 55 91
shellzost 0 0 0 0 0 1 0 0 33 2 36 92
wetzost 1 0 0 0 0 1 0 0 2 43 47 91

570
sums 130 21 62 41 38 151 29 50 37 45 604
percent 99 86 97 73 76 99 100 100 89 96 94.37086  

Figure 8  Advantageous forgetting using all classes; 1 iteration of training with “not” examples for class 5 (lowzost) 
network 

 
4.2 Omission correction 
The second technique uses synthetically generated data 
based upon the training set’s parametric information.  The 
synthetic data produced ‘yes’ examples bounded by ‘not’ 
examples.  Figure 9 shows the results after training the 
hisand and lowsand networks with positive examples 
only. 
 
Positive examples were randomly generated in an “n” 
dimensional space 1σ from the cluster mean, “n” is the 
number of inputs.  Negative examples were randomly 
‘placed’ in a ring 2σ from the cluster ring with a random 

variation of 2%.  Additional individual training was 
performed separately for each class.  At most, 16 
iterations were required.  This approach of placing 
examples in a neighbourhood is similar to the Mexican 
hat paradigm of updating the connections weights in the 
Kohonen self organising networks [19]. 
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• For positive examples the equation is: 

x (i) + σ(i) * Rand( ) * (-1) ^Int(Rand( )) 
 

• For negative examples the equation is: 

x (i)+[2σ(i) + (σ(i)*Rand( ))/50)] * (-1) ^Int(Rand( )) 
 

where: 

i = the input number (this process is 
performed for each input) 

x  = average of all the training samples 
σ = standard deviation of the training 

samples 
Rand( ) = a random number generated between 

0 and 1 
Int = integer rounding of real value 

 
 

training data
random sort data 10 fuzzified neural network 15-10-2 in parallel - omission correction class 3 and 4

denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent
denzost 251 0 0 0 0 0 0 0 3 2 256 98
dryzost 2 40 0 0 0 0 0 1 1 5 49 82
hisand 0 0 103 0 1 0 0 0 0 0 104 99
lowsand 0 0 0 67 1 0 0 0 0 0 68 99
lowzost 0 1 23 16 76 0 0 2 0 1 119 64
red 1 0 0 0 0 303 0 0 0 0 304 100
shalsub 0 0 0 0 0 0 58 0 0 0 58 100
shell 0 2 0 0 0 0 0 100 0 0 102 98
shellzost 0 0 0 0 0 0 0 0 64 2 66 97
wetzost 10 0 0 0 0 3 0 0 8 80 101 79

1142
sum 264 43 126 83 78 306 58 103 76 90 1227
percent 95 93 82 81 97 99 100 97 84 89 93.07253
iterations 200 200 216 203 200 200 26 200 200 200

test data

denzost dryzost hisand lowsand lowzost red shalsub shell shellzost wetzost sums percent
denzost 129 0 0 0 0 0 0 0 1 0 130 99
dryzost 0 16 0 0 0 0 0 0 1 0 17 94
hisand 0 0 51 0 0 0 0 0 0 0 51 100
lowsand 0 0 0 27 0 0 0 0 0 0 27 100
lowzost 0 2 11 14 38 0 0 3 0 0 68 56
red 0 0 0 0 0 149 0 0 0 0 149 100
shalsub 0 0 0 0 0 0 29 0 0 0 29 100
shell 0 3 0 0 0 0 0 47 0 0 50 94
shellzost 0 0 0 0 0 1 0 0 33 2 36 92
wetzost 1 0 0 0 0 1 0 0 2 43 47 91

562
sums 130 21 62 41 38 151 29 50 37 45 604
percent 99 76 82 66 100 99 100 94 89 96 93.04636  

Figure 9  Omission correction using positive examples to train class 3 and class 4 networks 

 
Both the omission and comission corrections operate very 
quickly.  In this experiment, presenting the system with 
negative (not) examples required 1 iteration and 16 
iterations at the most for the positive (yes) examples. 

5. Creating Individual ‘Expert’ Class 
Networks 
If a significant amount of confusion existed between a 
small number of classes, the following procedures were 
followed.  A new set of network ‘experts’ were trained 
using a reduced number of classes (the ambiguous classes 
only) for a small number of iterations.  The training data 
was limited to the training data of those covertypes alone.  
If the initial system classifies a new input into one of the 
ambiguous classes, then the input was passed to the 
‘experts’ for final classification.  Figure 10 shows the 
confusion table of the classification of training and test 
data for expert networks for hisand, lowsand and lowzost.  
The RMS convergence was noted to be higher; however, 
confusion between classes was less.  Training times for 
the expert systems are significantly less due to the smaller 

training set.  As with the first strategy to improve 
classification performance, learning data will be 
presented to reduce both omission and comission error. 
 

training data
random sort (3) 15-10-2 fuzzy neural networks in parallel
hisand lowsand lowzost sums percent

hisand 116 0 1 117 99
lowsand 0 80 2 82 98
lowzost 10 3 75 88 85

271
sum 126 83 78 287
percent 92 96 96 94.42509
iterations 200 200 300

test data

hisand lowsand lowzost sums percent
hisand 53 0 1 54 98
lowsand 0 33 0 33 100
lowzost 9 8 37 54 69

123
sums 62 41 38 141
percent 85 80 97 87.23404  
Figure 10  Newly trained class ‘experts’ for the classes 

that contained significant confusion 

 



7 

5.1 Expert system - comission correction 
A single additional training iteration was performed on 
the “lowzost class” using ‘not’ examples from the other 
ambiguous classes.  The results have improved as shown 
in Figure 11.  If required, additional individual training 
should be performed.  For both the initial and expert 
classifier strategies, the user is taking advantage of 
system forgetting. 
 

training data
random sort (3) 15-10-2 networks in parallel + 1 its class 5 with 3 & 4 nots

hisand lowsand lowzost sums percent
hisand 121 0 9 130 93
lowsand 0 83 5 88 94
lowzost 5 0 64 69 93

268
sum 126 83 78 287
percent 96 100 82 93.37979
iterations 200 200 301

test data

hisand lowsand lowzost sums percent
hisand 58 0 4 62 94
lowsand 0 39 1 40 97
lowzost 4 2 33 39 85

130
sums 62 41 38 141
percent 94 95 87 92.19858  
Figure 11  After additional training of class 5 ‘expert’ 

network for 1 iteration with all the negative examples on 
classes 3 and 4 

 
However, additional iterations using negative examples 
may lead to deteriorating the performance of the trained 
network expert, as shown in Figure 12 and Figure 13. 
 

training data
random sort (3) 15-10-2 networks in parallel + 2 its class 5 with 3 & 4 nots

hisand lowsand lowzost sums percent
hisand 121 0 14 135 90
lowsand 0 83 11 94 88
lowzost 5 0 53 58 91

257
sum 126 83 78 287
percent 96 100 68 89.54704
iterations 200 200 302

test data

hisand lowsand lowzost sums percent
hisand 59 0 6 65 91
lowsand 0 41 6 47 87
lowzost 3 0 26 29 90

126
sums 62 41 38 141
percent 95 100 68 89.3617  

Figure 12  Less advantageous forgetting; 2 iterations of 
“not” examples to additionally train class 5 network 

 
training data

random sort (3) 15-10-2 networks in parallel + 5 its. class 5 with 3 & 4 nots
hisand lowsand lowzost sums percent

hisand 122 0 25 147 83
lowsand 0 83 13 96 86
lowzost 4 0 40 44 91

245
sum 126 83 78 287
percent 97 100 51 85.36585
iterations 200 200 305

test data

hisand lowsand lowzost sums percent
hisand 61 0 12 73 84
lowsand 0 41 7 48 85
lowzost 1 0 19 20 95

121
sums 62 41 38 141
percent 98 100 50 85.8156  
Figure 13  Reduced performance; 5 iterations of “not” 

examples to additionally train class 5 network 

 
5.2 Expert system - omission correction 
The omission correction was applied to the hisand and 
lowsand networks (Figure 14).  The result is an 
improvement on the initial state (Figure 10).  It was noted 
that as the ratio of positive to negative examples 
increased, the optimum number of iterations reduced.  For 
this case study, 50 positive to 10 negative examples was 
empirically determined as optimum. 
 

training data
random sort (3) 15-10-2 networks in parallel +omission correction

hisand lowsand lowzost sums percent
hisand 116 0 3 119 97
lowsand 3 83 6 92 90
lowzost 7 0 69 76 91

268
sum 126 83 78 287
percent 92 100 88 93.37979
iterations 201 203 301

test data

hisand lowsand lowzost sums percent
hisand 57 0 2 59 97
lowsand 0 39 2 41 95
lowzost 5 2 34 41 83

130
sums 62 41 38 141
percent 92 95 89 92.19858  
Figure 14  Confusion matrix after additional training of 

the class expert networks with synthetic data 
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Trial FN FP RP/N Iterations Improvement 
Initial       
hisand 1101 126 0.114 200 ------ 

lowsand 1144 83 0.073 200 ------ 
lowzost 1149 78 0.068 200 ------ 

Comission       
lowzost 209 1 0.005 +1 31 

Omission       
hisand 10 24 2.4 +16 1 

lowsand 10 50 5 +3 22 
Expert       

Initial hisand 161 128 0.8 200 3 
Initial lowsand 204  0.407 200 28 
Initial lowzost 209 78 0.373 300 -1 

Comission       
lowzost 209 1 0.005 +1 Initial 37 

Expert 7 
Omission       

hisand 10 50 5 +1 Initial 7 
Expert 4 

lowsand 10 50 5 +3 Initial 34 
Expert 6 

lowzost 10 50 5 +1 Initial -4 
Expert -3 

Figure 15  The relationship among positive and negative examples used for learning, the iterations required, and the 
improvement on the system for each trial. 

Note:  FN and FP are the number of negative and positive examples respectively, RP/N is the ratio between positive 
and negative examples, and Improvement is given as additional correctly classed examples; for omission it is based 
on the particular class and for comission it is based on the whole system. 

 
6. Conclusion and Directions for 
Further Research 
This paper offers two distinct strategies to improve 
classification performance and two different methods of 
learning that were applied to both strategies.  The omission 
and comission error reduction techniques both performed 
adequately and the application of these techniques depend 
upon the user’s precision requirements.  The two strategies 
of operation, using the entire data stream, or new expert 
classes for error reduction, also depend upon the ambiguity 
of the data.  If ambiguity exists between a small selected 
group of classes, the ‘expert’ strategy is feasible.  The  
initial expert system accuracy over the ambiguous classes 
was 30%.  After using either the omission or comission 
correction, the improvement was approximately 8%  
(Figure 15). 
 
Further research has been planned in the following 
direction.  Further development of the learning strategies in 
relation with rules extraction techniques; tuning the 
individual class-units to perform in an automated mode, 
thus achieving real adaptive image classification systems. 
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