
 1

Measurement of Database Systems:
 An Empirical Study

Stephen G. MacDonell
Computer and Information Science

University of Otago
P.O. Box 56

Dunedin, New Zealand
+64 3 479 8142

stevemac@commerce.otago.ac.nz

 Martin J. Shepperd
Department of Computing
 Bournemouth University

Talbot Campus
Poole, BH12 5BB UK

+44 1202 595034
mshepper@bmth.ac.uk

Philip J. Sallis
Computer and Information Science

University of Otago
P.O. Box 56

Dunedin, New Zealand
+64 3 479 8142

fillup@otago.ac.nz

ABSTRACT
There is comparatively little work, other than function
points, that tackles the problem of building prediction
systems for software that is dominated by data
considerations, in particular systems developed using
4GLs. We describe an empirical investigation of 70 such
systems. Various easily obtainable counts were extracted
from data models (e.g. number of entities) and from
specifications (e.g. number of screens). Using simple
regression analysis, prediction systems of implementation
size with accuracy of MMRE=21% were constructed. Our
work shows that it is possible to develop simple and
effective prediction systems based upon metrics easily
derived from functional specifications and data models.

Keywords
Metrics, entity-relationship models, 4GL, empirical,
prediction

CONTEXT AND RELATED WORK
Software metrics — that is, measures derived from aspects
of software engineering products or processes — have been
promoted as useful adjuncts for the software developer
since the early 1970s. Whilst the results have been mixed
there is no denying the considerable amount of activity
undertaken beneath this umbrella. Generally, the emphasis
has tended to be upon procedural aspects of systems.
DeMarco [5] made a distinction between systems that were
characterised as being ‘function strong’ and those that were
‘data strong’. An example of the former would be the
control software for a robot arm whilst a management
information system would be an example of the latter.
In practice systems contain elements of both functionality
and data, however, in many cases either the functionality or
the data tends to dominate. Most metrics research has
concentrated upon ‘function strong’ systems or the function
aspects of systems. This is particularly evident for the
design stage where measurement of data-oriented models
has been neglected. Another specific area of neglect is

fourth-generation languages (4GLs) which tend to be
utilised for ‘data strong’ applications.

Why measure data aspects of a system? The size and
nature of the data model and its associated transaction
requirements — implicit or explicit — contribute to many
aspects of a system including its size and the amount of
effort to develop. Measuring aspects of the data model and
its manipulation within data-centered transactions can
potentially help control and predict these aspects of the
software development process.

The earliest published attempt to measure a data model was
by DeMarco [5] who proposed a so-called bang metric for
data strong systems. This is based upon the entity-
relationship (ER) diagram. Unfortunately, the authors are
unaware of any published independent validations of
prediction systems based upon the Bang metric. At about
the same time Albrecht published his work based upon
function points [1]. This is based upon the amount of data
which crosses a system boundary plus internal file
accesses. A subsequent adaptation, known as Mk II
function points [14], is more closely based on transactions
applied to ER models. In both cases there have been
extensive attempts to use these measures to predict system
size and development effort.

More recently, Verner and Tate [15] reported upon their
attempts to predict the size and effort required for a 4GL
implementation. Their solution was to use function points
to estimate the size of the application, convert this into
lines of code (LOC) and then to use this figure as an input
to the COCOMO model [2]. The results, especially the
size prediction, appear to have been quite accurate
although a note of caution is required since Verner and
Tate were only studying a single system.

Bourque and Côté [3] describe an empirical study where
they attempted to predict the size of 4GL systems based

 2

upon various metrics derived from an ER diagram. Using
linear regression they were able to develop effective
prediction systems although they noted the need to
calibrate the models to the specific measurement
environment. A similar approach was suggested by Ince et
al. [7] and Gray et al. [6]. However, the associated
prediction systems remain unvalidated.

More recently, Wittig and Finnie [16] used neural networks
to predict 4GL system development effort using function
point measures. This was shown to be quite successful,
with prediction achieving errors of less than 10%. The
validation sample, however, was small (just two systems).

The aim of our investigation is to explore the possibility of
developing useful prediction systems for software size for
applications dominated by data considerations, in this case
4GL systems. The focus of our work is empirical; we
believe it important to validate, as well as propose, models.
The remainder of this paper goes on to describe the
background to our study, the data collection, the analysis
and concludes with discussion of our findings, how they
relate to other work and how the results might be utilised
by practitioners.

DETAILS OF THE STUDY

General System Characteristics
The systems comprising the sample were built annually
over a period of five years by groups of senior students in
the Department of Information Science at the University of
Otago. Every system was built to satisfy the real
requirements of an external client, normally a small
business or a department in a larger organisation. The
students were required to use a prototyping process in
development, meeting with their client on around three
occasions over the nine week development period. Each
system addressed transaction processing, data retrieval and
reporting, and file maintenance activities performed by the
organisation. Under the software process employed, a
formal System Proposal outlining the functionality to be
delivered was signed off by the client after between one
and two weeks. On system delivery, the client performed
an acceptance test and system review. All projects
satisfied the requirements of both the client, as evidenced
by the reviews, and the course administrators, as indicated
by the marks awarded (although marks varied over the
sample). Note that failures were excluded.

A wide variety of systems was constructed over the period.
A few examples should help to provide an indication of
their general nature. The set included: client management
systems for two dental surgeries, a law firm and an
accountant; stock/inventory management systems for five
utility firms and four retail stores; membership record
systems for two leisure clubs; exhibit management systems

for two museums; a freight scheduling system for a
transport firm; and three school course and student
administration systems. In total, more than seventy
working systems were developed and reviewed.

The systems were all of small to medium size, as illustrated
by the following indicators of scale: each system included
an average of eleven data entities and sixty attributes; six
reports were produced on average by each system, while
eleven data entry and update functions were provided. In
terms of code product size, the smallest system was
comprised of 309 4GL source statements, the largest
contained more than 2600 statements, and the average size
was approximately 1100 code statements. Thus whilst the
systems were not large by any means, they were not trivial,
nor purely academic exercises.

Although the developers were indeed students, they were in
the final segment of their degree and could therefore be
considered as equivalent to recently employed professional
developers. Almost all of those completing their degrees
went on to hold development positions within three months
of the completion of the projects in the sample. More
importantly, the systems developed were functionally
sound, providing an actual working solution to an actual
client problem. The students all had an equivalent amount
of previous experience with the tool and with the
methodology used. Each project was overseen by a
supervisor, a staff member in the Information Science
department, to ensure delivery of a quality solution.

One of the positive features of the sample is the degree of
commonality of several process attributes across the set.
All but a few of the systems were built by groups of four
developers; the same development methodology was
employed in every case; all systems were implemented
using the same tool, the Cognos 4GL PowerHouse; and the
systems were all of the same generic class - transaction-
oriented data processing and retrieval systems. This
commonality is advantageous in that these factors can be
considered as constant in the analysis, a condition not often
encountered in software size research. When they vary,
factors such as these can clearly have an impact on system
size. Given that these potential contributors may be
considered as constant in this work, the degree of
confidence adopted in regard to any size relationships
supported by the data will consequently be greater.

Data Collection
Two product sets, the system documentation and the
implemented code, were examined in order to collect the
appropriate data. Specification/design size measures were
manually collected from the relevant system
documentation. Two of the authors performed this task so
as to obtain as correct a data set as possible. Within each

 3

set of documents a number of measures were extracted in
order to address the following questions:
• is data model size related to the size of the implemented

system?
• is functional model size related to the size of the

implemented system?
This approach was based on the assumption that
consideration of the two dimensions of data and function
could provide adequate independent indicators of system
size. The measures collected were coarse, in line with one
of the objectives of the study; that is, to test for the
existence of size relationships using high-level, objective,
and easily extracted indicators. The measures of data
model size collected in this study were therefore:
1. the number of entities depicted in the entity-relationship

diagram (ENT)
2. the number of relationships depicted in the entity-

relationship diagram (RSHIP)
3. the number of attributes associated with the entity-

relationship diagram (ATTRIB).

The functional model size measures were of a similarly
coarse nature:
1. the number of menus depicted in the functional

decomposition chart (MENU)
2. the number of data entry/edit screens depicted in the

functional decomposition chart (EDIT)
3. the number of reports depicted in the functional

decomposition chart (REPORT)
4. the number of non-menu functions depicted in the

functional decomposition chart (NONMENU)
5. the total number of functions depicted in the functional

decomposition chart (FDCSIZE).

(The terms in brackets after each measure are the variable
names used in the presentation of results below.
Functional sizes four and five are simply the totals of sizes
two and three, and sizes one, two and three, respectively.)

The second product set examined was the implemented
code itself. All source program files were scanned
automatically by a parsing program to extract the following
size measure:
1. the total number of source statements in the system

(SIZE).

This measure excluded blank and comment lines of code,
and counted run-on lines with a continuation indicator as a
single statement. The extraction of the measure was
verified manually on a random selection of programs by
one of the authors to ensure consistency and reliability.

Of the seventy-four systems in the total sample four were
incomplete, in that full specification and design documents
were not available. Consequently a usable data set of eight
specification/design measures and one implementation
measure was collected from seventy systems. The
distribution of systems over the period was as follows:
thirteen from 1991, ten from 1992, sixteen from 1993,
thirteen from 1994 and eighteen from 1995. (The actual
data set is provided in the appendix in the interests of
further analysis.)

DATA ANALYSIS AND RESULTS

Descriptive Statistics
General descriptive statistics for each of the variables are
shown in Table 1. The descriptive indicators highlight the
absence of significant skewing for all but the MENU and
EDIT variables. Further analysis using boxplot
distributions enabled outliers to be identified, with the
frequency of outliers (O) and extreme outliers (E) shown in
the right-most column of Table 1.

Correlation Analysis
Given the small degree of skewing in some of the
distributions, correlation tests were performed using both
the Pearson and nonparametric Spearman statistics so as to
identify any potentially useful (linear) relationships
between the specification size variables and the
implementation size measure, as well as among the
specification variables themselves. The results are shown
in Tables 2 and 3. All correlations shown in Table 2 are
significant at the 0.01 level, except those relationships
which are significant at the 0.05 level, shown slightly
shaded.

Both sets of correlation statistics provided evidence of
strong significant relationships between several of the
specification size variables and the implementation size
measure. In particular, the relationships between the
ATTRIB, NONMENU and FDCSIZE specification
measures and implementation SIZE were strong even when
tested with the more conservative Spearman statistic. This
suggested that, for the range of system size considered here,
potential predictive relationships may have been derivable.
Some cross-correlation was also evident among the
specification size variables themselves, suggesting that
several of the measures may have in fact been assessing the
same size characteristic.

 4

Variable Median Mean Std Devn Min Max Skew Outliers?
ENT 11.0 11.6 4.55 4 26 0.78 2O
RSHIP 9.0 10.2 5.14 3 25 0.91 1O
ATTRIB 59.5 64.5 23.85 25 141 0.77 1O
MENU 5.0 5.6 2.18 4 14 2.12 4O 2E
EDIT 11.0 12.0 4.82 4 27 1.22 4O
REPORT 6.0 6.8 3.39 1 17 0.75 1O
NONMENU 17.5 18.8 6.95 10 39 1.06 3O
FDCSIZE 22.0 24.4 8.06 14 45 0.96 -
SIZE 993.5 1106.0 543.61 309 2605 1.00 2O

Table 1: Descriptive statistics for each measure

Variable SIZE ENT RSHIP ATTRIB MENU EDIT REPORT NONMENU
ENT .5809
RSHIP .5465 .9513
ATTRIB .6772 .7163 .7018
MENU .3366 .3409 .3453 .2923
EDIT .7509 .6819 .6077 .6965 .2761
REPORT .6074 .2870 .2802 .4366 .4108 .4185
NONMENU .8162 .6123 .5576 .6953 .3914 .8967 .7772
FDCSIZE .7952 .6204 .5744 .6789 .6079 .8483 .7816 .9686

Table 2: Pearson correlation coefficients

Variable SIZE ENT RSHIP ATTRIB MENU EDIT REPORT NONMENU
ENT .4948

.000

RSHIP .4670
.000

.9525
.000

ATTRIB .6635
.000

.6643
.000

.6307
.000

MENU .3827
.001

.3790
.001

.3741
.001

.3443
.002

EDIT .6677
.000

.6834
.000

.6382
.000

.6709
.000

.4818
.000

REPORT .5271
.000

.2058
.044

.1750
.074

.3537
.001

.2989
.006

.3631
.001

NONMENU .7171
.000

.5512
.000

.4977
.000

.6219
.000

.5024
.000

.8473
.000

.7800
.000

FDCSIZE .7227
.000

.5616
.000

.5236
.000

.6123
.000

.6758
.000

.8251
.000

.7422
.000

.9632
.000

Table 3: Spearman correlation coefficients

 5

Regression
Given the strong correlations identified between the two
variable types a regression model to determine
implementation size from specification size measures was
sought. When appropriate, linear models, with their
inherent simplicity and intuitive appeal, are generally
preferred over more complex non-linear models - evidence
of a strong linear relationship in this data set was illustrated
by the significantly strong positive values for the Pearson
correlation statistic.

Stepwise linear regression was therefore undertaken on a
randomly selected set of 50 observations, with the
following model being produced (using the variable
inclusion parameter PIN at the threshold value of 0.050):

SIZE = -155.0 + 45.5(NONMENU) + 6.2(ATTRIB)

This model had an associated adjusted R2 value of 0.65,
indicating that it explained 65% of the variance in
implementation size. The R2 value provides a measure of
the consistency of a specific regression model. This was a
particularly pleasing result, suggesting that a significant
degree of implementation size variation can indeed be
attributed to (or at least be predicted from) earlier product
size.

A question may be raised as to the acceptability of the
model, given the inclusion of two ‘independent’ terms that
were in fact themselves related (as illustrated in the
correlation matrices presented above). Models that
incorporate related terms may be unstable or less easily
generalised to other data sets - this implies that caution
should be exercised in accepting models of this nature [4,
10]. A regression model that included just the most
significant independent variable (NONMENU) was
therefore also computed. The form of this model is as
shown:

SIZE = -59.8 + 62.3(NONMENU)

This model’s associated adjusted R2 value was 0.61, a
small decrease in explanatory ability when compared to the
two-variable model.

It may be asserted that both terms (NONMENU and
ATTRIB) should be included - the strength of the
intercorrelation may be considered as moderately strong (at
0.7 Pearson and 0.62 Spearman), but equally it could be
suggested that the two variables are still measuring
somewhat different aspects of the common overall
characteristic of specification size. This seems plausible,
given that NONMENU is a function-based measure and
ATTRIB is a data-oriented measure.

One technique that can assist in determining the gain
associated with including extra terms in a regression model
is the R2-adequate test [13]. A subset of predictor variables
is said to be R2-adequate (at significance level α) if:

R2
sub > 1 - (1 - R2

full)(1 + dn,k)
where

R2
sub is the R2 value achieved with the subset of

predictors
R2

full is the R2 value achieved with the full set of
predictors
dn,k = (kFk, n-k-1)/n-k-1

where
k = number of predictor variables in the model
n = the number of observations
F = the F statistic for significance α for n,k
degrees of freedom

In this case:
 k = 2, n = 50, α = 0.05
 R2

full = 0.65 (for the two-predictor model)
 R2

sub = 0.61 (for the single-predictor model)

 ⇒ d50,2 = (2F2, 47)/50-2-1
 = (2*3.2)/47
 d50,2 = 0.136

 ⇒ R2

sub > 1 - (1 - R2
full)(1 + dn,k)

 1 - (1 - 0.65)(1 + 0.136)
 1 - (0.35)(1.136)
 1 - 0.3976
 0.6024

Given that the R2 value of the single-predictor model (at
0.61) is indeed greater than the minimum threshold R2-
adequate value for the full (two-predictor) model (at 0.60),
we can say that the model including just the NONMENU
term is as effective in terms of consistency as the model
containing both NONMENU and ATTRIB. Moreover,
adopting this single-predictor model may help to overcome
some of the problems referred to above in relation to
including related predictive terms in a regression model. In
addition, the single attribute model would seem to be more
plausible due to the smaller negative intercept. Ideally one
would expect a zero or small positive cost associated with
the implementation of a null system.

Sufficient model consistency as illustrated by the R2

statistic is an important and desirable aspect of a regression
model, but it is by no means the only sought-after
characteristic. In fact, a model may very well be consistent
but it may still be excessively inaccurate, in terms of the
correspondence of individual value pairs. Indicators
commonly used in software metrics data analysis to
evaluate the accuracy of regression models are the mean

 6

magnitude of relative error (MMRE) and the threshold-
oriented pred measure.

The magnitude of relative error (MRE) is a normalised
measure of the discrepancy between actual values (VA) and
fitted values (VF):

MRE = Abs((VA - VF)/VA)

The mean MRE is therefore the mean value for this
indicator over all observations in the sample. A lower
value for MMRE generally indicates a more accurate
model.

The pred measure provides an indication of overall fit for a
set of data points, based on the MRE values for each data
pair:

pred(l) = i/n

where l is the selected threshold value for MRE, i
is the number of data pairs with MRE less than or
equal to l, and n is the total number of data pairs.

As an illustration, if pred(0.30) = 0.6, then we can say that
60% of the fitted values fall within 30% of their
corresponding actual values.

For this part of the study, the two regression models were
applied to the validation set of twenty observations that was
randomly extracted prior to model development. The
relevant predictive accuracy values are presented for the
models in Table 4. These results again suggest that the
single variable model may be preferred in terms of obtaining
a simple and effective predictive equation for
implementation size.

Residual Analysis
Residual analysis, in which predictive errors are considered
in relation to both the estimated and actual values,
indicated a slight tendency to overestimate for smaller
systems. However, residual plot examination did not show
any significantly problematic trends in the error
distributions, except to suggest that the models were not
fully accounting for the variation in size (a fact already
evident in the other statistical indicators of model
adequacy).

DISCUSSION
This work shows that it is possible to predict system size at
a fairly early stage in a project using simple counts derived
from a functional specification and data model. In
particular, we found that the numbers of non-menu screens
and attributes were the primary inputs for prediction
systems derived from regression analysis of our data set.
Such relationships are both simple and intuitive.

Outliers
A number of outlying data points were encountered in the
dataset. As a result, these points were examined in greater
depth, to determine whether the observations were valid
within the context of the sample. In particular, one
observation stood out as a significant implementation size
outlier with an associated MRE of 1.71 under the two-
variable model, a value twice the MRE of the next most
significant outlier point. This project was found to be the
smallest of the entire sample at just 309 lines of source
code. On further investigation, it was found that the system
had been developed using the maximum of default settings
and generated code, with very little programmer adaptation
to customise the functionality and user interface employed.
Although admittedly unusual, this did not make the project
invalid in terms of the study - thus the observation was left
in. Project managers should be aware, however, that
minimalist development of this nature may lead to similar
outliers in their own data sets and that predictive equations
may not be as effective for such systems.

Relationship to Other Work
The first point to note is that our results are in line with,
although somewhat better (MMRE=21% compared with
36% and 53%) than, the study by Bourque and Côté [3].
This replication of results is suggestive of the general
possibility of building prediction systems for 4GL software
for characteristics such as size. It must, however, be
stressed that we are not advocating a “single model fits all”
type solution. Models must be calibrated to suit different
measurement environments.

The next point is why not use function points? There are a
number of reasons why we avoided a function point
solution. First, they are more complex to collect and it is
not a measure that lends itself to automation since one is
trying to extract meaning from informal specification
documents. Second, there have been questions raised
concerning the objectivity of the process [8, 11, 12]. In
particular, Low and Jeffery report inter-rater discrepancies

 MMRE pred(30) pred(20) pred(10) pred(5)
NONMENU & ATTRIB .21 .80 .65 .25 .10
NONMENU only .21 .75 .65 .30 .25

Table 4: Indicators of model accuracy

 7

well in excess of 30%. Third, there is a problem of high
correlation between the individual components of the
function point count. Kitchenham and Kansala [9]
describe a procedure for disaggregating function point
counts and re-estimating weights by use of stepwise
regression. By contrast, we believe our approach of using
counts that could be automatically extracted from ER
models and functional specifications to be simpler and
more effective.

CONCLUSIONS AND FURTHER WORK
To recap, we have conducted an empirical investigation
based upon data collection from 70 4GL systems. This
study showed that it is possible to predict the size of a
4GL implementation from metrics derived from the
functional specification and ER model. Moreover, an
MMRE of 21% was obtained which compares favourably
with much other work. It is noteworthy that this level of
accuracy was obtained without recourse to function point
analysis and its attendant problems. We believe that these
results will generalise to other 4GL systems, in the sense
that it should be possible to develop prediction systems
based upon simple measures such as number of attributes
and non-menu screens. The reason for such confidence is
that our study is based upon a large number of different
systems and is indeed in some senses a replication of the
earlier work by Bourque and Côté [3]. Clearly, other
factors including the heterogeneity of the data set and
quality of data collection will bring to bear upon the
accuracy of the predictions.

Predicting implementation size at such an early stage in a
software project is useful for the practitioner since it gives
important insights into the effort required to develop the
project (given that size is the major input to almost all effort
estimation models). Unfortunately, we were not able to
obtain reliable effort data for the projects we studied
although this would be an interesting avenue of enquiry, to
see whether project effort could be predicted using similar
metrics.

ACKNOWLEDGMENTS
Martin Shepperd was supported as a William Evans
Visiting Fellow at the University of Otago whilst this
research was being conducted.

REFERENCES
1. Albrecht, A.J. and Gaffney, J.R. Software function,

source lines of code, and development effort prediction:
a software science validation. IEEE Transactions on
Software Engineering 9, 6 (1983), 639-648.

2. Boehm, B.W., Software Engineering Economics.
Prentice-Hall: Englewood Cliffs, N.J., 1981.

3. Bourque, P. and Côté, V. An experiment in software
sizing with structured analysis metrics. Journal of
Systems and Software 15 (1991), 159-172.

4. Coupal, D. and Robillard, P.N. Factor analysis of
source code metrics. Journal of Systems and Software
12 (1990), 263-269.

5. DeMarco, T. Controlling Software Projects. Yourdon
Inc., New York NY, 1982.

6. Gray, R.H.M., Carey, B.N., McGlynn, N.A. and
Pengelly, A.D. Design metrics for database systems. BT
Technology Journal 9, 4 (1991), 69-79.

7. Ince, D.C., Shepperd, M.J., Pengelly, A. and Benwood,
H. The metrification of data designs, in Proc 3rd
Annual Oregon Workshop on Software Metrics, March
17-19, 1991, (Also reprinted in Data Resource
Management, Summer 1992).

8. Kemerer, C.F. Reliability of function point
measurements: A field experiment. Communications of
the ACM 36, 2 (1993), 85-97.

9. Kitchenham, B.A. and Kansala, K. Inter-item
correlations among function points, in Proc. 1st Intl.
Symposium on Software Metrics. Baltimore, MD:
IEEE Computer Society Press, 1993.

10. Kitchenham, B.A. and Pickard, L.M. Towards a
constructive quality model. Part II: Statistical
techniques for modelling software in the ESPRIT
REQUEST project. Software Engineering Journal
(July 1987), 114-126.

11. Low, G.C. and Jeffery, D.R. Function points in the
estimation and evaluation of the software process. IEEE
Transactions on Software Engineering 16, 1 (1990),
64-71.

12. MacDonell, S.G. Comparative review of functional
complexity assessment methods for effort estimation.
Software Engineering Journal (May 1994), 107-116.

13. Neter, J., Wasserman, W. and Kutner, M.H. Applied
Linear Regression Models. Irwin: Homewood IL,
1983.

14. Symons, C.R. Software sizing and estimating: Mk II
FPA (function point analysis). John Wiley & Sons Ltd:
Chichester, UK, 1991.

15. Verner, J. and Tate, G. Estimating size and effort in
fourth-generation development. IEEE Software 5
(1988), 15-22.

 8

16. Wittig, G.E. and Finnie, G.R. Using artificial neural
networks and function points to estimate 4GL software
development effort. Australian Journal of Information
Systems (May 1994), 87-94.

APPENDIX

The raw data is presented below in the following order:
Project, ENT, RSHIP, ATTRIB, MENU, EDIT, REPORT,
NONMENU, FDCSIZE, SIZE

91A 10 6 92 4 11 8 19 23 898
91B 15 10 57 4 11 5 16 20 498
91C 7 5 33 4 7 3 10 14 510
91D 19 16 76 5 14 2 16 21 898
91E 8 6 34 4 9 9 18 22 597
91F 6 4 25 5 13 3 16 21 535
91G 14 12 83 7 20 7 27 34 2237
91H 13 11 49 4 13 12 25 29 1853
91I 10 8 34 4 8 5 13 17 555
91J 8 6 41 6 7 3 10 16 438
91K 19 18 59 11 10 3 13 24 1444
91M 15 16 48 5 13 6 19 24 649
91N 5 3 97 4 9 7 16 20 1062
92A 26 25 141 6 27 12 39 45 2324
92B 8 7 49 14 9 9 18 32 1119
92C 10 9 63 5 10 9 19 24 1302
92D 18 20 105 14 14 17 31 45 2096
92F 9 8 42 6 10 8 18 24 512
92G 16 16 72 5 12 6 18 23 1178
92H 17 16 80 7 17 5 22 29 1340
92I 13 10 96 9 17 13 30 39 1508
92J 17 16 80 9 21 8 29 38 1324
92K 6 4 51 5 11 5 16 21 1336
93A 7 5 51 4 6 4 10 14 1573
93B 17 16 97 5 25 13 38 43 2605
93C 13 11 64 6 9 6 15 21 679
93D 12 9 67 5 13 7 20 25 1831
93E 8 7 88 6 15 1 16 22 993
93F 14 12 73 5 12 7 19 24 1150

93G 8 6 71 8 8 11 19 27 1143
93H 20 16 115 6 26 8 34 40 2205
93I 11 9 53 5 12 9 21 26 916
93J 14 11 91 6 15 8 23 29 1192
93K 10 6 60 6 17 5 22 28 1112
93L 15 10 69 7 17 7 24 31 1431
93M 17 16 92 10 15 14 29 39 1367
93N 14 12 80 5 23 10 33 38 2177
93O 7 6 43 6 9 3 12 18 824
93P 13 13 65 7 16 4 20 27 719
94A 13 15 67 4 13 9 22 26 1646
94C 7 5 35 4 7 4 11 15 883
94D 24 25 114 8 18 14 32 40 2577
94E 11 12 73 6 16 10 26 32 1501
94G 10 7 48 4 9 5 14 18 649
94H 9 7 42 4 9 2 11 15 994
94I 11 8 58 6 10 10 20 26 1224
94J 12 10 57 4 11 7 18 22 1246
94K 6 4 34 4 5 5 10 14 426
94L 10 8 40 7 14 9 23 30 1263
94M 4 3 73 4 15 13 28 32 1481
94N 5 3 48 4 8 10 18 22 852
94O 8 7 32 4 8 5 13 17 443
95A 10 10 46 4 9 8 17 21 641
95B 15 17 83 4 13 4 17 21 1184
95C 11 10 46 4 12 2 14 18 591
95D 16 17 101 4 12 3 15 19 1210
95E 8 6 53 4 7 7 14 18 621
95F 7 7 30 6 7 3 10 16 632
95G 18 22 107 4 12 5 17 21 975
95H 14 13 74 4 10 3 13 17 585
95I 9 7 46 4 10 6 16 20 985
95J 8 8 57 4 7 7 14 18 731
95K 12 12 86 7 11 5 16 23 931
95L 6 4 50 4 8 4 12 16 614
95M 10 9 50 6 10 5 15 21 309
95N 9 7 54 4 8 5 13 17 928
95O 13 9 55 4 8 5 13 17 722
95P 11 11 60 4 10 3 13 17 1041
95Q 6 4 46 4 4 6 10 14 549
95R 12 11 62 8 10 8 18 26 856

