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ABSTRACT 
There is comparatively little work, other than function 
points, that tackles the problem of building prediction 
systems for software that is dominated by data 
considerations, in particular systems developed using  
4GLs. We describe an empirical investigation of 70 such 
systems.  Various easily obtainable counts were extracted 
from data models (e.g. number of entities) and from 
specifications (e.g. number of screens).  Using simple 
regression analysis, prediction systems of implementation 
size with accuracy of MMRE=21% were constructed.  Our 
work shows that it is possible to develop simple and 
effective prediction systems based upon metrics easily 
derived from functional specifications and data models. 
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CONTEXT AND RELATED WORK 
Software metrics — that is, measures derived from aspects 
of software engineering products or processes — have been 
promoted as useful adjuncts for the software developer 
since the early 1970s.  Whilst the results have been mixed 
there is no denying the considerable amount of activity 
undertaken beneath this umbrella.  Generally, the emphasis 
has tended to be upon procedural aspects of systems.  
DeMarco [5] made a distinction between systems that were 
characterised as being ‘function strong’ and those that were 
‘data strong’.  An example of the former would be the 
control software for a robot arm whilst a management 
information system would be an example of   the   latter.    
In practice systems contain  elements of both  functionality 
and data, however, in many cases either the functionality or 
the data tends to dominate.  Most metrics research has 
concentrated upon ‘function strong’ systems or the function 
aspects of systems.  This is particularly evident for the 
design stage where measurement of data-oriented models 
has been neglected.  Another specific area of neglect is  

fourth-generation languages (4GLs) which tend to be 
utilised for ‘data strong’ applications. 
 
Why measure data aspects of a system?  The size and 
nature of the data model and its associated transaction 
requirements — implicit or explicit — contribute to many 
aspects of a system including its size and the amount of 
effort to develop.  Measuring aspects of the data model and 
its manipulation within data-centered transactions can 
potentially help control and predict these aspects of the 
software development process. 
 
The earliest published attempt to measure a data model was 
by DeMarco [5] who proposed a so-called bang metric for 
data strong systems.  This is based upon the entity-
relationship (ER) diagram.  Unfortunately, the authors are 
unaware of any published independent validations of 
prediction systems based upon the Bang metric.  At about 
the same time Albrecht published his work based upon 
function points [1].  This is based upon the amount of data 
which crosses a system boundary plus internal file  
accesses.  A subsequent adaptation, known as Mk II 
function points [14], is more closely based on transactions 
applied to ER models.  In both cases there have been 
extensive attempts to use these measures to predict system 
size and development effort. 
 
More recently, Verner and Tate [15] reported upon their 
attempts to predict the size and effort required for a 4GL 
implementation.  Their solution was to use function points 
to estimate the size of the application, convert this into  
lines of code (LOC) and then to use this figure as an input 
to the COCOMO model [2].  The results, especially the  
size prediction, appear to have been quite accurate  
although a note of caution is required since Verner and  
Tate were only studying a single system.   
 
Bourque and Côté [3] describe an empirical study where 
they attempted to predict the size of 4GL systems based  
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upon various metrics derived from an ER diagram.  Using 
linear regression they were able to develop effective 
prediction systems although they noted the need to  
calibrate the models to the specific measurement 
environment.  A similar approach was suggested by Ince et 
al. [7] and Gray et al. [6].  However, the associated 
prediction systems remain unvalidated. 
 
More recently, Wittig and Finnie [16] used neural networks 
to predict 4GL system development effort using function 
point measures.  This was shown to be quite successful, 
with prediction achieving errors of less than 10%.  The 
validation sample, however, was small (just two systems). 
 
The aim of our investigation is to explore the possibility of 
developing useful prediction systems for software size for 
applications dominated by data considerations, in this case 
4GL systems.  The focus of our work is empirical; we 
believe it important to validate, as well as propose, models.  
The remainder of this paper goes on to describe the 
background to our study, the data collection, the analysis 
and concludes with discussion of our findings, how they 
relate to other work and how the results might be utilised  
by practitioners. 
 
DETAILS OF THE STUDY 
 
General System Characteristics 
The systems comprising the sample were built annually 
over a period of five years by groups of senior students in 
the Department of Information Science at the University of 
Otago.  Every system was built to satisfy the real 
requirements of an external client, normally a small 
business or a department in a larger organisation.  The 
students were required to use a prototyping process in 
development, meeting with their client on around three 
occasions over the nine week development period.  Each 
system addressed transaction processing, data retrieval and 
reporting, and file maintenance activities performed by the 
organisation.  Under the software process employed, a 
formal System Proposal outlining the functionality to be 
delivered was signed off by the client after between one  
and two weeks.  On system delivery, the client performed 
an acceptance test and system review.  All projects  
satisfied the requirements of both the client, as evidenced 
by the reviews, and the course administrators, as indicated 
by the marks awarded (although marks varied over the 
sample).  Note that failures were excluded. 
 
A wide variety of systems was constructed over the period.  
A few examples should help to provide an indication of 
their general nature.  The set included: client management 
systems for two dental surgeries, a law firm and an 
accountant; stock/inventory management systems for five 
utility firms and four retail stores; membership record 
systems for two leisure clubs; exhibit management systems  

for two museums; a freight scheduling system for a 
transport firm; and three school course and student 
administration systems.  In total, more than seventy 
working systems were developed and reviewed. 
 
The systems were all of small to medium size, as illustrated 
by the following indicators of scale:  each system included 
an average of eleven data entities and sixty attributes; six 
reports were produced on average by each system, while 
eleven data entry and update functions were provided.  In 
terms of code product size, the smallest system was 
comprised of 309 4GL source statements, the largest 
contained more than 2600 statements, and the average size 
was approximately 1100 code statements.  Thus whilst the 
systems were not large by any means, they were not trivial, 
nor purely academic exercises. 
 
Although the developers were indeed students, they were in 
the final segment of their degree and could therefore be 
considered as equivalent to recently employed professional 
developers.  Almost all of those completing their degrees 
went on to hold development positions within three months 
of the completion of the projects in the sample.  More 
importantly, the systems developed were functionally 
sound, providing an actual working solution to an actual 
client problem.  The students all had an equivalent amount 
of previous experience with the tool and with the 
methodology used.  Each project was overseen by a 
supervisor, a staff member in the Information Science 
department, to ensure delivery of a quality solution. 
 
One of the positive features of the sample is the degree of 
commonality of several process attributes across the set.  
All but a few of the systems were built by groups of four 
developers; the same development methodology was 
employed in every case; all systems were implemented 
using the same tool, the Cognos 4GL PowerHouse; and the 
systems were all of the same generic class - transaction-
oriented data processing and retrieval systems.  This 
commonality is advantageous in that these factors can be 
considered as constant in the analysis, a condition not often 
encountered in software size research.  When they vary, 
factors such as these can clearly have an impact on system 
size.  Given that these potential contributors may be 
considered as constant in this work, the degree of 
confidence adopted in regard to any size relationships 
supported by the data will consequently be greater. 
 
 
Data Collection 
Two product sets, the system documentation and the 
implemented code, were examined in order to collect the 
appropriate data.  Specification/design size measures were 
manually collected from the relevant system 
documentation.  Two of the authors performed this task so 
as to obtain as correct a data set as possible.  Within each  
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set of documents a number of measures were extracted in 
order to address the following questions: 
• is data model size related to the size of the implemented 

system? 
• is functional model size related to the size of the 

implemented system? 
This approach was based on the assumption that 
consideration of the two dimensions of data and function 
could provide adequate independent indicators of system 
size.  The measures collected were coarse, in line with one 
of the objectives of the study; that is, to test for the 
existence of size relationships using high-level, objective, 
and easily extracted indicators.  The measures of data 
model size collected in this study were therefore: 
1. the number of entities depicted in the entity-relationship 

diagram (ENT) 
2. the number of relationships depicted in the entity-

relationship diagram (RSHIP) 
3. the number of attributes associated with the entity-

relationship diagram (ATTRIB). 
 
The functional model size measures were of a similarly 
coarse nature: 
1. the number of menus depicted in the functional 

decomposition chart (MENU) 
2. the number of data entry/edit screens depicted in the 

functional decomposition chart (EDIT) 
3. the number of reports depicted in the functional 

decomposition chart (REPORT) 
4. the number of non-menu functions depicted in the 

functional decomposition chart (NONMENU) 
5. the total number of functions depicted in the functional 

decomposition chart (FDCSIZE). 
 
(The terms in brackets after each measure are the variable 
names used in the presentation of results below.   
Functional sizes four and five are simply the totals of sizes 
two and three, and sizes one, two and three, respectively.) 
 
The second product set examined was the implemented 
code itself.  All source program files were scanned 
automatically by a parsing program to extract the following 
size measure: 
1. the total number of source statements in the system 

(SIZE). 
 
This measure excluded blank and comment lines of code, 
and counted run-on lines with a continuation indicator as a 
single statement.  The extraction of the measure was 
verified manually on a random selection of programs by 
one of the authors to ensure consistency and reliability. 
 

Of the seventy-four systems in the total sample four were 
incomplete, in that full specification and design documents 
were not available.  Consequently a usable data set of eight 
specification/design measures and one implementation 
measure was collected from seventy systems.  The 
distribution of systems over the period was as follows: 
thirteen from 1991, ten from 1992, sixteen from 1993, 
thirteen from 1994 and eighteen from 1995.  (The actual 
data set is provided in the appendix in the interests of 
further analysis.) 
 
DATA ANALYSIS AND RESULTS 
 
Descriptive Statistics 
General descriptive statistics for each of the variables are 
shown in Table 1.  The descriptive indicators highlight the 
absence of significant skewing for all but the MENU and 
EDIT variables.  Further analysis using boxplot 
distributions enabled outliers to be identified, with the 
frequency of outliers (O) and extreme outliers (E) shown in 
the right-most column of Table 1. 
 
Correlation Analysis 
Given the small degree of skewing in some of the 
distributions, correlation tests were performed using both 
the Pearson and nonparametric Spearman statistics so as to 
identify any potentially useful (linear) relationships 
between the specification size variables and the 
implementation size measure, as well as among the 
specification variables themselves.  The results are shown 
in Tables 2 and 3.  All correlations shown in Table 2 are 
significant at the 0.01 level, except those relationships 
which are significant at the 0.05 level, shown slightly 
shaded. 
 
Both sets of correlation statistics provided evidence of 
strong significant relationships between several of the 
specification size variables and the implementation size 
measure.  In particular, the relationships between the 
ATTRIB, NONMENU and FDCSIZE specification 
measures and implementation SIZE were strong even when 
tested with the more conservative Spearman statistic.  This 
suggested that, for the range of system size considered here, 
potential predictive relationships may have been derivable.  
Some cross-correlation was also evident among the 
specification size variables themselves, suggesting that 
several of the measures may have in fact been assessing the 
same size characteristic. 
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Variable Median Mean Std Devn Min Max Skew Outliers? 
ENT 11.0 11.6 4.55 4 26 0.78 2O 
RSHIP 9.0 10.2 5.14 3 25 0.91 1O 
ATTRIB 59.5 64.5 23.85 25 141 0.77 1O 
MENU 5.0 5.6 2.18 4 14 2.12 4O 2E 
EDIT 11.0 12.0 4.82 4 27 1.22 4O 
REPORT 6.0 6.8 3.39 1 17 0.75 1O 
NONMENU 17.5 18.8 6.95 10 39 1.06 3O 
FDCSIZE 22.0 24.4 8.06 14 45 0.96 - 
SIZE 993.5 1106.0 543.61 309 2605 1.00 2O 

 
Table 1: Descriptive statistics for each measure 

 
 
 

Variable SIZE ENT RSHIP ATTRIB MENU EDIT REPORT NONMENU 
ENT .5809        
RSHIP .5465 .9513       
ATTRIB .6772 .7163 .7018      
MENU .3366 .3409 .3453 .2923     
EDIT .7509 .6819 .6077 .6965 .2761    
REPORT .6074 .2870 .2802 .4366 .4108 .4185   
NONMENU .8162 .6123 .5576 .6953 .3914 .8967 .7772  
FDCSIZE .7952 .6204 .5744 .6789 .6079 .8483 .7816 .9686 

 
Table 2: Pearson correlation coefficients 

 
 
 

Variable SIZE ENT RSHIP ATTRIB MENU EDIT REPORT NONMENU 
ENT .4948 

.000 
       

RSHIP .4670 
.000 

.9525 
.000 

      

ATTRIB .6635 
.000 

.6643 
.000 

.6307 
.000 

     

MENU .3827 
.001 

.3790 
.001 

.3741 
.001 

.3443 
.002 

    

EDIT .6677 
.000 

.6834 
.000 

.6382 
.000 

.6709 
.000 

.4818 
.000 

   

REPORT .5271 
.000 

.2058 
.044 

.1750 
.074 

.3537 
.001 

.2989 
.006 

.3631 
.001 

  

NONMENU .7171 
.000 

.5512 
.000 

.4977 
.000 

.6219 
.000 

.5024 
.000 

.8473 
.000 

.7800 
.000 

 

FDCSIZE .7227 
.000 

.5616 
.000 

.5236 
.000 

.6123 
.000 

.6758 
.000 

.8251 
.000 

.7422 
.000 

.9632 
.000 

 
Table 3: Spearman correlation coefficients 
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Regression 
Given the strong correlations identified between the two 
variable types a regression model to determine 
implementation size from specification size measures was 
sought.  When appropriate, linear models, with their 
inherent simplicity and intuitive appeal, are generally 
preferred over more complex non-linear models - evidence 
of a strong linear relationship in this data set was illustrated 
by the significantly strong positive values for the Pearson 
correlation statistic. 
 
Stepwise linear regression was therefore undertaken on a 
randomly selected set of 50 observations, with the  
following model being produced (using the variable 
inclusion parameter PIN at the threshold value of 0.050): 
 
SIZE = -155.0 + 45.5(NONMENU) + 6.2(ATTRIB) 
 
This model had an associated adjusted R2 value of 0.65, 
indicating that it explained 65% of the variance in 
implementation size.  The R2 value provides a measure of 
the consistency of a specific regression model.  This was a 
particularly pleasing result, suggesting that a significant 
degree of implementation size variation can indeed be 
attributed to (or at least be predicted from) earlier product 
size. 
 
A question may be raised as to the acceptability of the 
model, given the inclusion of two ‘independent’ terms that 
were in fact themselves related (as illustrated in the 
correlation matrices presented above).  Models that 
incorporate related terms may be unstable or less easily 
generalised to other data sets - this implies that caution 
should be exercised in accepting models of this nature [4, 
10].  A regression model that included just the most 
significant independent variable (NONMENU) was 
therefore also computed.  The form of this model is as 
shown: 
 
SIZE = -59.8 + 62.3(NONMENU) 
 
This model’s associated adjusted R2 value was 0.61, a  
small decrease in explanatory ability when compared to the 
two-variable model. 
 
It may be asserted that both terms (NONMENU and 
ATTRIB) should be included - the strength of the 
intercorrelation may be considered as moderately strong (at 
0.7 Pearson and 0.62 Spearman), but equally it could be 
suggested that the two variables are still measuring 
somewhat different aspects of the common overall 
characteristic of specification size.  This seems plausible, 
given that NONMENU is a function-based measure and 
ATTRIB is a data-oriented measure. 
 

One technique that can assist in determining the gain 
associated with including extra terms in a regression model 
is the R2-adequate test [13].  A subset of predictor variables 
is said to be R2-adequate (at significance level α) if: 
 

R2
sub > 1 - (1 - R2

full)(1 + dn,k) 
where  

R2
sub is the R2 value achieved with the subset of 

predictors 
R2

full is the R2 value achieved with the full set of 
predictors 
dn,k = (kFk, n-k-1)/n-k-1 

where 
k = number of predictor variables in the model 
n = the number of observations 
F = the F statistic for significance α for n,k 
degrees of freedom 

 
In this case: 
 k = 2, n = 50, α = 0.05 
 R2

full = 0.65 (for the two-predictor model) 
 R2

sub = 0.61 (for the single-predictor model) 
 
 ⇒ d50,2  = (2F2, 47)/50-2-1 
   = (2*3.2)/47 
  d50,2  = 0.136 
 
 ⇒ R2

sub  > 1 - (1 - R2
full)(1 + dn,k) 

    1 - (1 - 0.65)(1 + 0.136) 
    1 - (0.35)(1.136) 
    1 - 0.3976 
    0.6024 
 
Given that the R2 value of the single-predictor model (at 
0.61) is indeed greater than the minimum threshold R2-
adequate value for the full (two-predictor) model (at 0.60), 
we can say that the model including just the NONMENU 
term is as effective in terms of consistency as the model 
containing both NONMENU and ATTRIB.  Moreover, 
adopting this single-predictor model may help to overcome 
some of the problems referred to above in relation to 
including related predictive terms in a regression model.  In 
addition, the single attribute model would seem to be more 
plausible due to the smaller negative intercept.  Ideally one 
would expect a zero or small positive cost associated with 
the implementation of a null system. 
 
Sufficient model consistency as illustrated by the R2  

statistic is an important and desirable aspect of a regression 
model, but it is by no means the only sought-after 
characteristic.  In fact, a model may very well be consistent 
but it may still be excessively inaccurate, in terms of the 
correspondence of individual value pairs.  Indicators 
commonly used in software metrics data analysis to  
evaluate the accuracy of regression models are the mean  
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magnitude of relative error (MMRE) and the threshold-
oriented pred measure. 
 
The magnitude of relative error (MRE) is a normalised 
measure of the discrepancy between actual values (VA) and 
fitted values (VF): 
 

MRE = Abs((VA - VF)/VA) 
 
The mean MRE is therefore the mean value for this 
indicator over all observations in the sample.  A lower  
value for MMRE generally indicates a more accurate  
model. 
 
The pred measure provides an indication of overall fit for a 
set of data points, based on the MRE values for each data 
pair: 
 

pred(l) = i/n 
 

where l is the selected threshold value for MRE, i 
is the number of data pairs with MRE less than or 
equal to l, and n is the total number of data pairs. 

 
As an illustration, if pred(0.30) = 0.6, then we can say that 
60% of the fitted values fall within 30% of their 
corresponding actual values. 
 
For this part of the study, the two regression models were 
applied to the validation set of twenty observations that was 
randomly extracted prior to model development.  The 
relevant predictive accuracy values are presented for the 
models in Table 4.  These results again suggest that the 
single variable model may be preferred in terms of obtaining 
a simple and effective predictive equation for 
implementation size. 
 
Residual Analysis 
Residual analysis, in which predictive errors are considered 
in relation to both the estimated and actual values,  
indicated a slight tendency to overestimate for smaller 
systems.  However, residual plot examination did not show 
any significantly problematic trends in the error 
distributions, except to suggest that the models were not 
fully accounting for the variation in size (a fact already 
evident in the other statistical indicators of model 
adequacy). 
 

DISCUSSION 
This work shows that it is possible to predict system size at 
a fairly early stage in a project using simple counts derived 
from a functional specification and data model.  In 
particular, we found that the numbers of non-menu screens 
and attributes were the primary inputs for prediction 
systems derived from regression analysis of our data set.  
Such relationships are both simple and intuitive. 
 
Outliers 
A number of outlying data points were encountered in the 
dataset.  As a result, these points were examined in greater 
depth, to determine whether the observations were valid 
within the context of the sample.  In particular, one 
observation stood out as a significant implementation size 
outlier with an associated MRE of 1.71 under the two-
variable model, a value twice the MRE of the next most 
significant outlier point.  This project was found to be the 
smallest of the entire sample at just 309 lines of source 
code.  On further investigation, it was found that the system 
had been developed using the maximum of default settings 
and generated code, with very little programmer adaptation 
to customise the functionality and user interface employed.  
Although admittedly unusual, this did not make the project 
invalid in terms of the study - thus the observation was left 
in.  Project managers should be aware, however, that 
minimalist development of this nature may lead to similar 
outliers in their own data sets and that predictive equations 
may not be as effective for such systems. 
 
Relationship to Other Work 
The first point to note is that our results are in line with, 
although somewhat better (MMRE=21% compared with 
36% and 53%) than, the study by Bourque and Côté [3].  
This replication of results is suggestive of the general 
possibility of building prediction systems for 4GL software 
for characteristics such as size.  It must, however, be 
stressed that we are not advocating a “single model fits all” 
type solution.  Models must be calibrated to suit different 
measurement environments. 
 
The next point is why not use function points?  There are a 
number of reasons why we avoided a function point 
solution.  First, they are more complex to collect and it is 
not a measure that lends itself to automation since one is 
trying to extract meaning from informal specification 
documents.  Second, there have been questions raised 
concerning the objectivity of the process [8, 11, 12].  In 
particular, Low and Jeffery report inter-rater  discrepancies  
 

 
 MMRE pred(30) pred(20) pred(10) pred(5) 
NONMENU & ATTRIB .21 .80 .65 .25 .10 
NONMENU only .21 .75 .65 .30 .25 

 
Table 4:  Indicators of model accuracy 
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well in excess of 30%.  Third, there is a problem of high 
correlation between the individual components of the 
function point count.  Kitchenham and Kansala [9]  
describe a procedure for disaggregating function point 
counts and re-estimating weights by use of stepwise 
regression.  By contrast, we believe our approach of using 
counts that could be automatically extracted from ER 
models and functional specifications to be simpler and  
more effective. 
 
CONCLUSIONS AND FURTHER WORK 
To recap, we have conducted an empirical investigation 
based upon data collection from 70 4GL systems.  This 
study showed that it is possible to predict the size of  a  
4GL implementation from metrics derived from the 
functional specification and ER model.  Moreover, an 
MMRE of 21% was obtained which compares favourably 
with much other work.  It is noteworthy that this level of 
accuracy was obtained without recourse to function point 
analysis and its attendant problems.  We believe that these 
results will generalise to other 4GL systems, in the sense 
that it should be possible to develop prediction systems 
based upon simple measures such as number of attributes 
and non-menu screens.  The reason for such confidence is 
that our study is based upon a large number of different 
systems and is indeed in some senses a replication of the 
earlier work by Bourque and Côté [3].  Clearly, other  
factors including the heterogeneity of the data set and 
quality of data collection will bring to bear upon the 
accuracy of the predictions. 
 
Predicting implementation size at such an early stage in a 
software project is useful for the practitioner since it gives 
important insights into the effort required to develop the 
project (given that size is the major input to almost all effort 
estimation models).  Unfortunately, we were not able to 
obtain reliable effort data for the projects we studied 
although this would be an interesting avenue of enquiry, to 
see whether project effort could be predicted using similar 
metrics.    
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APPENDIX 
 
The raw data is presented below in the following order: 
Project, ENT, RSHIP, ATTRIB, MENU, EDIT, REPORT, 
NONMENU, FDCSIZE, SIZE 
 
 
91A 10 6 92 4 11 8 19 23 898 
91B 15 10 57 4 11 5 16 20 498 
91C 7 5 33 4 7 3 10 14 510 
91D 19 16 76 5 14 2 16 21 898 
91E 8 6 34 4 9 9 18 22 597 
91F 6 4 25 5 13 3 16 21 535 
91G 14 12 83 7 20 7 27 34 2237 
91H 13 11 49 4 13 12 25 29 1853 
91I 10 8 34 4 8 5 13 17 555 
91J 8 6 41 6 7 3 10 16 438 
91K 19 18 59 11 10 3 13 24 1444 
91M 15 16 48 5 13 6 19 24 649 
91N 5 3 97 4 9 7 16 20 1062 
92A 26 25 141 6 27 12 39 45 2324 
92B 8 7 49 14 9 9 18 32 1119 
92C 10 9 63 5 10 9 19 24 1302 
92D 18 20 105 14 14 17 31 45 2096 
92F 9 8 42 6 10 8 18 24 512 
92G 16 16 72 5 12 6 18 23 1178 
92H 17 16 80 7 17 5 22 29 1340 
92I 13 10 96 9 17 13 30 39 1508 
92J 17 16 80 9 21 8 29 38 1324 
92K 6 4 51 5 11 5 16 21 1336 
93A 7 5 51 4 6 4 10 14 1573 
93B 17 16 97 5 25 13 38 43 2605 
93C 13 11 64 6 9 6 15 21 679 
93D 12 9 67 5 13 7 20 25 1831 
93E 8 7 88 6 15 1 16 22 993 
93F 14 12 73 5 12 7 19 24 1150 
 

 
93G 8 6 71 8 8 11 19 27 1143 
93H 20 16 115 6 26 8 34 40 2205 
93I 11 9 53 5 12 9 21 26 916 
93J 14 11 91 6 15 8 23 29 1192 
93K 10 6 60 6 17 5 22 28 1112 
93L 15 10 69 7 17 7 24 31 1431 
93M 17 16 92 10 15 14 29 39 1367 
93N 14 12 80 5 23 10 33 38 2177 
93O 7 6 43 6 9 3 12 18 824 
93P 13 13 65 7 16 4 20 27 719 
94A 13 15 67 4 13 9 22 26 1646 
94C 7 5 35 4 7 4 11 15 883 
94D 24 25 114 8 18 14 32 40 2577 
94E 11 12 73 6 16 10 26 32 1501 
94G 10 7 48 4 9 5 14 18 649 
94H 9 7 42 4 9 2 11 15 994 
94I 11 8 58 6 10 10 20 26 1224 
94J 12 10 57 4 11 7 18 22 1246 
94K 6 4 34 4 5 5 10 14 426 
94L 10 8 40 7 14 9 23 30 1263 
94M 4 3 73 4 15 13 28 32 1481 
94N 5 3 48 4 8 10 18 22 852 
94O 8 7 32 4 8 5 13 17 443 
95A 10 10 46 4 9 8 17 21 641 
95B 15 17 83 4 13 4 17 21 1184 
95C 11 10 46 4 12 2 14 18 591 
95D 16 17 101 4 12 3 15 19 1210 
95E 8 6 53 4 7 7 14 18 621 
95F 7 7 30 6 7 3 10 16 632 
95G 18 22 107 4 12 5 17 21 975 
95H 14 13 74 4 10 3 13 17 585 
95I 9 7 46 4 10 6 16 20 985 
95J 8 8 57 4 7 7 14 18 731 
95K 12 12 86 7 11 5 16 23 931 
95L 6 4 50 4 8 4 12 16 614 
95M 10 9 50 6 10 5 15 21 309 
95N 9 7 54 4 8 5 13 17 928 
95O 13 9 55 4 8 5 13 17 722 
95P 11 11 60 4 10 3 13 17 1041 
95Q 6 4 46 4 4 6 10 14 549 
95R 12 11 62 8 10 8 18 26 856 
 


