
University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Alternatives to Regression Models
for Estimating Software Projects

Stephen G. MacDonell
Andrew R. Gray

The Information Science
Discussion Paper Series

Number 96/17
September 1996
ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
ht t p: / / di vcom. ot ago. ac. nz: 800/ COM/ I NFOSCI / Publ ct ns/ home. ht m). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: ht t p: / / di vcom. ot ago. ac. nz: 800/ com/ i nfo sc i/

1

Alternatives to Regression Models for Estimating Software Projects

Stephen G. MacDonell and Andrew R. Gray
Computer and Information Science

University of Otago
Dunedin, New Zealand

Abstract

The use of ÔstandardÕ regression analysis to derive predictive equations for software development
has recently been complemented by increasing numbers of analyses using less common methods,
such as neural networks, fuzzy logic models, and regression trees. This paper considers the
implications of using these methods and provides some recommendations as to when they may be
appropriate. A comparison of techniques is also made in terms of their modelling capabilities
with specific reference to function point analysis.

1 Introduction

Effective means of project effort estimation have been sought since the advent of the area of
research and practice now commonly referred to as software metrics. Halstead, one of the
founders of software measurement, included in his inspired (but subsequently seen as somewhat
flawed) assertion of software science an equation to predict program development effort based on
fundamental algorithm size (Halstead 1977). As understanding of the software process has
increased, our awareness of the need to manage that process has become greater. Fortunately, this
progression has been mirrored by developments in process and product measurement, to the
point where a number of de facto standards for best practice exist. One such standard is that of
function point analysis (FPA) as the method of choice in system sizing and effort estimation
activities.

FPA provides a well-established method for the relatively early assessment of system scope,
based on various transaction-oriented system requirements characteristics. Given the managed
and consistent collection of project size, complexity and effort data, relationships can be
established that enable the a priori determination of size and effort for new projects in the very
early stages of development. Although not without its potential problems, particularly in the
areas of inter-rater subjectivity, it remains one of the most widely used methods for recording
data on system scope and complexity in organisations concerned with process management.

It is one thing to measure and record data of interest; it is another to analyse and interpret that
data in a valid and reliable manner. Software engineering data in general is notorious for its non-
ideal characteristics with respect to model building (detailed in the next section) - however, many
of the commonly used analysis techniques are not able to take account of these factors. It is in
this area of analysis that we consider FPA could be augmented, so that analysts can be confident
in the methods they employ and thus in the results they obtain and the conclusions they draw.

2

Traditionally models of software metrics have been derived using basic regression analysis. While
this approach can often provide simple models in an effective and efficient manner, it is proposed
here that some alternatives should also be considered. In a previous paper (Gray and MacDonell
1996) a number of alternatives to regression analysis for software metric modelling were
proposed and examined. Not all of these will be covered here. Instead the focus will be on simple
statistical methods, some more advanced statistical methods, fuzzy logic models, neural
networks, with some mention of other techniques such as regression trees. The interested reader
is referred to the previous paper for more details.

The remainder of the paper is as follows: the next section considers the generic requirements of
predictive modelling, irrespective of the technique chosen; section 3 considers the positive and
negative aspects of statistical methods as model-building frameworks; section 4 examines some of
the less ÔtraditionalÕ modelling approaches available for data analysis; section 5 includes an
empirical comparison of some of these methods using a set of FPA data; the paper is then
concluded with a summary and suggestions for further work.

2 Predictive Modelling Requirements

Any metric program that simply attempts to capture data and extract whatever value can be
found from it is unlikely to succeed. A higher-level view of the model development process is
regarded as necessary to ensure consistency and compatibility of the metrics program across the
metric life cycle process. This includes the early planning and specification of the goals of the
program, the questions to be answered that would assist in the achievement of these goals, and
the metrics that can be used to answer the questions. These three steps represent the well-known
Goal/Question/Metric (GQM) approach (Basili and Rombach 1987) widely used in software
metrics research and practice.

Three additional steps are suggested here as being useful to append after the determination of the
metrics. These are the specification of the data that should be collected and how it can be
collected, the analysis techniques that will be available for model building, and finally how the
outputs of the model will be used in the development process. It is only when the entire metric
development process is considered as a single entity that high levels of confidence can be placed
in the final resultant models.

A number of characteristics associated with each model-building technique need to be considered
when evaluating the suitability of any given technique for a specific problem. These issues
include data availability since some techniques have greater requirements. For example, Paola and
Schowengerdt (1995) found that a neural network consistently out-performed a maximum
likelihood approach for various training data set sizes.

Another related issue is that of being able to use all available sources of information in the model
development process. Statistical and traditional neural network techniques are primarily data
driven and expert knowledge is limited as to its usefulness outside of variable selection,
appropriate transformations, and some parameter boundaries. However, fuzzy logic lends itself

3

to full use of expert knowledge, and adaptive models are available to use data for fine tuning (or
even as the only information source). There has been much interest in neuro-fuzzy approaches
that simulate an adaptive fuzzy system within an adaptive neural network architecture (the
interested reader is referred to Kasabov et al. (1996) for further details as well as Gray and
Kasabov (1996) for information about its application to a model development methodology).

Other issues relevant to a model building techniqueÕs applicability include its accuracy and its
ability to generalise. With regard to this second point, it is easier to develop a model that
performs well on a given set of data through overfitting. However, a model developed in such a
manner will not generalise as well to new data, which is obviously more important for most
applications.

A further interesting and often neglected attribute of a modelling technique is the manner in which
users relate to models derived through their use. It could be argued, for instance, that neural
networks, with their (incorrectly attributed) biological metaphors would be considered to produce
more ÔintelligentÕ solutions than those developed using regression.

A final aspect considered here is the interpretability of a model in its final form. Statistical and
neural network models are not overly conducive to providing understanding of the solution or
enabling verification. This is one area where fuzzy systems are more appropriate since the rules
contained within them are intended to be semantically and linguistically comprehensible.

3 Statistical Approaches

The most commonly used methods for predictive model development are those derived from
inferential statistics. Among the advantages of using such approaches are their relative simplicity
in formulation (via most statistical analysis software) and their sound basis in probability theory.
The long history of such methods, compared to other techniques discussed here, ensures a wide
body of theory is available to both the practitioner and researcher.

3.1 Linear Least-Squares Regression

Straight-forward linear regression under the least-squares (LS) model attempts to find the line that
minimises the error in the relationship between predictive and dependent variables and
parameters. The structure of this line is normally expressed in the form of an equation. Simple
linear regression considers the relationship that exists between just one predictor variable and a
constant term if required, and the dependent variable of interest. Multiple linear regression, by
extension, is an analysis of the relationship between more than one independent (predictor)
variable and the variable to be estimated. Any form of linear regression is generally preceded by
the use of scatter plots and correlation analyses in order to first intuitively, as well as
quantitatively, determine the potential relationships that may exist in the data. It is important to
keep in mind that the linear nature of such regression only refers to the linear form of the
parameterÕs coefficients. Transformations can be used in advance on variables to permit non-

4

linear modelling, providing the appropriate transformation is known in advance. Similarly,
interaction effects can be simulated by the creation of a new variable appropriately defined.

Once the best-fit line has been determined, its consistency and accuracy can be assessed using a
validation data set, in which the values for the predictor variables are Ôplugged intoÕ the regression
equation and the difference between predicted and actual values is determined. The use of some
data set that has not exerted any influence whatsoever on the model selected is essential for an
unbiased estimate of the modelÕs generalisation capabilities. If one data set is used to estimate the
modelÕs parameters for several different models, and another set is used to pick the best model,
then it is imperative that another set exist to determine the modelÕs performance on new data.
This does of course assume stationary relationships, but in the absence of additional information
it is an unbiased estimator for the particular error measure used. This point applies to all
modelling techniques, not just regression, and should be kept in mind through the remainder of the
paper.

Many different methods for estimating a modelÕs error are available. These include the many
forms of correlation. A pair of indicators is commonly used in metrics analysis to indicate the
adequacy of a predictive model - the mean magnitude of relative error (MMRE) and the
threshold-oriented pred measure.

The magnitude of relative error (MRE) is a normalised measure of the discrepancy between actual
values (VA) and fitted values (VF):

MRE
V V

V
A F

A

=
−

The mean MRE is therefore the mean value for this indicator over all observations in the
validation sample. A lower value for MMRE generally indicates a more accurate model.

The pred measure provides an indication of overall fit for a set of data points, based on the MRE
value attained for each data point:

pred l
i

n
() =

where l is the selected threshold value for MRE, i is the number of data
points with MRE less than or equal to l, and n is the total number of data
points.

As an illustration, if pred(0.25) = 0.4, then we can say that 40% of the fitted values fall within
25% of their corresponding actual values. In terms of assessing the performance of a given model,
contemporary expectation of a ÔgoodÕ model using these indicators is the achievement of MMRE
≤ 0.25 and pred(0.25) ≥ 0.75 (Conte et al. 1986) or, more realistically, pred(0.30) ≥ 0.70 (Tate
and Verner 1990).

5

3.2 Linear Least-Median-Squares Regression

The ÔlimitationsÕ of the least-squares linear regression method when used for metric data analysis
are due in part to the fact that the technique assumes a reasonably normal underlying data
distribution. However, much software engineering data does not conform to this requirement -
data is often skewed to the right and may contain a number of outlier values relative to the
number of observations (Kitchenham and Pickard 1987). A common example exhibiting this
characteristic is module error frequency data, which can never take a value less than zero and yet
are concentrated near the zero data point with a few particularly highly error-prone modules. In
such cases, where the distribution is somewhat departed from the normal model, the LS regression
model loses much of its efficiency (Hampel et al. 1986; Myrvold 1990). (It is not so much a
limitation of the technique that causes a problem; rather it is the fact that the technique is applied
to data that it was not intended to address.) Figure 1 illustrates the extent of influence that an
outlier value may have on a least-squares derived regression model. Prediction of a new data
point such as that shown using the LS approach would clearly be ineffective in this case.

Data Point

New Data Point
Least Mean
Squares Line

Least Median
Squares Line

Figure 1: Outlier influence on regression lines

This problem of analysis can be at least partially overcome within statistical bounds through the
application of the less common least-median-squares (LMS) regression technique. This approach
determines outlier values prior to final regression, and enables the analyst to discard or weight
appropriately the outlier observations. Thus the main body of observations remains integral to
the development of the relationship whilst outlier observations, which may be questionable in
terms of reliability or accuracy, can be treated more appropriately. The result is generally a more
robust predictive model, particularly in the case where the data set concerned is small (MacDonell
1993; Miyazaki et al. 1994).

6

4 Artificial Intelligence Approaches

Since the software development process is complex, it seems somewhat na�ve to expect a simple
or even multiple linear model to always adequately match the real world. A number of
approaches for modelling have emerged from the field of artificial intelligence including neural
networks, fuzzy logic, genetic algorithms, regression trees, and case-based reasoning. Here the
first two of these methods will be examined in detail with regard to their general modelling
capability and their appropriateness for software metric modelling. The other techniques will
then be briefly mentioned. Again, the interested reader is referred to Gray and MacDonell (1996)
as a starting point for more information.

4.1 Fuzzy Logic Models

One general disadvantage of statistical models is the manner in which their comprehensibility
diminishes as variables, interactions, and transformations are added. This problem can be at least
partially overcome with the use of fuzzy logic, which was developed out of a dissatisfaction with
classical, all-or-nothing, logic. The central assertion underlying this approach is that entities in
the real world simply do not fit into neat categories. For example, a project is not either small,
medium, or large. It could in fact be something in between, perhaps mostly a large project but
also something like a medium project. This can be represented as a degree of belonging to a
particular linguistic category. As shown below a system with 162 entities belongs to the class of
medium projects to a degree of 0.4 and to the class of large projects to a degree of 0.61.

Small Medium Large

Membership
Degree

Number of Entities162

0.6

0.4

Figure 2: Fuzzy set membership

If some quantitative measure, such as code length in terms of functions or number of entities, is
used for early prediction of the software development process then the problem of acquiring
these Òmagic numbersÓ becomes apparent. If it is desired to predict the length of a system

1 Note that these numbers do not have to add up to 1. In many systems they are defined such that the sum will be
unity, but this is usually done for convenience.

7

development project then the number of files, and entities, and several other variables must be
estimated. If estimates must be made, then problems can emerge with a reluctance to commit to
such precise measures. Even worse, once the project manager has been forced into providing
these numbers, the risk of them becoming frozen is apparent.

Fuzzy logic provides a less harsh form of commitment. A project manager may say that a project
will have a large number of entities, a small number of files, and similarly the other variables.
These can be represented as fuzzy sets as shown below. A series of rules, also shown in Figure
3, can then be used to derive some prediction for the output, in this case the project effort. This
effort measure could be ÒdefuzzifiedÓ into a number, or left as a slightly vague label to encourage
the idea that this is only an estimate.

Input Variables Output VariablesFuzzy Rule Base

Data Model Size

Number of Screens

Process Model Size

Development Time

30

26

74

254

If data model small
then development time short

If data model medium
and number of screens small
then development time medium

.......

small largemedium

mediumsmall large

small largemedium
short medium long

0.5

0.8

05

Figure 3: The fuzzy system classification model

4.2 Neural Network Models

The term neural network applies to a large family of modelling techniques. The most commonly
used of these are feed-forward networks trained using the back-propagation algorithm. Often
when literature refers to neural networks it is implicitly assumed that they are of this type. This
convention will be followed here for simplicity, although the reader should be aware that many
other algorithms and structures are available and often produce superior results.

8

The process of training a network adjusts the weights (which function similarly to parameters in a
statistical model, albeit in a much more hierarchical and non-linear fashion). These adjustments
are mathematically calculated to reduce the target error which is in this case the root mean square
error (RMSE) defined as:

RMSE
V V

N O

A F
a

on

=
−

×

∑∑ ()2

1

where VA is the actual value predicted for that value, VF is that fitted. N and O are the number of
observations and outputs respectively.

As the network trains and reduces this error its performance on new data (the training set)
improves up to a certain point. Beyond this point further training leads to overfitting where the
network begins to memorise the training data at the expense of its performance on new data. The
training procedure is therefore stopped when the test error, not the training error, is minimised.

Neural networks have been applied to software metric modelling in a number of studies including
Hakkarainen et al. (1993), Karunanithi et al. (1992), Khoshgoftaar and Lanning (1995), Kumar et
al. (1994), Sheppard and Simpson (1990), Srinivasan and Fisher (1995), and Wittig and Finnie
(1994). The results have, in general, been favourable to this particular technique. However a
caution on the use of neural networks is made here since their use requires a background in the
subject just as much as regression requires some knowledge about statistics. One of the
shortcomings of some of these and other attempts has been the attitude that neural networks are
automatically successful Òuniversal approximatorsÓ that can take any data and produce
meaningful output. As always, garbage going into a process will always return the same.

A fairly obvious disadvantage of using neural networks is their Òblack boxÓ nature, where the
inputs and outputs are visible, but the process of moving from one to the other is hidden. An
interesting way to avoid this problem is through the use of hybrid fuzzy neural networks as
mentioned earlier in the paper. These provide the advantages to neural networks of model-free
estimation, non-linear mappings, and good generalisation capability. They also provide the
semantic meaningfulness of fuzzy logic. Fuzzy-style rules can be inserted into such a structure,
and after training on data, the adapted rules can be extracted.

4.3 Other Techniques

Several other techniques are available to model builders, including case-based reasoning and
regression trees. These two techniques have already been applied successfully to software metric
modelling, with case-based reasoning used by Mukhopadhyay et al. (1992) and regression tress
by Selby and Porter (1988).

In general terms, case-based reasoning operates along the lines of storing a database of previous
projects. When a new project is to be estimated, the closest matches based on pre-specified
characteristics are retrieved from this database and combined in such a way as to represent their

9

respective similarities to the project at hand. This process is similar to expert reasoning by
analogy.

Regression trees are also based on using previous projects to find a good match. They use a tree
structure to classify project types into regression equations, with the most influential variables
used first. They can also be used as classification trees as in Porter and Selby (1990) where the
final nodes are not regression equations but single descriptors.

5 Empirical Comparison

The comparison that follows is based on the analysis of a set of more than eighty project
observations collected over a period of four years (Desharnais 1989). The data set included
measures of project effort, project duration, levels of experience with equipment and in project
management, numbers of basic transactions and data entities, and the raw and adjusted function
point counts. Although the data is quite real, it is used here mainly to illustrate the capabilities
and drawbacks associated with the various analysis methods available. The first analysis scenario
is based on the use of an historically derived function point productivity value; this is followed
by linear regression analysis under the LS and LMS approaches; finally analysis based on a neural
network model is presented.

Each scenario has used the same randomly selected set of fifty-four observations for model
construction, leaving a validation set of twenty-seven observations. As mentioned earlier, it is
only through such a hold-out data set that a realistic calculation of a modelÕs likely performance
on new real-world data can be made.

5.1 Scenario 1 - FPA Productivity Rate

The model-building set enabled the determination of an average productivity rate of 0.074
function points per person-hour of effort. When used with the validation set, a mean magnitude
relative error of 0.70 was obtained, along with pred values of pred(0.10) = 0.04 and pred(0.25) =
0.22 respectively. Given that this may be considered as the ÔtraditionalÕ approach to function
point data analysis, this is perhaps as much as many analysts would achieve. When considered in
the light of the expected performance values described earlier, this would seem to be quite
unsatisfactory.

An immediate and substantial improvement can be obtained (at least in terms of estimation
accuracy) if the median productivity rate, rather than the average rate, is used. To reiterate, the
median value is a more robust indicator of central tendency, so whilst it may perform less
effectively on some data points it is generally more useful for the main body of observations.
The median rate of productivity for the fifty-four observations was found to be 0.056 function
points per person-hour of effort. The associated performance on the validation set was as
follows: MMRE = 0.89, pred(0.10) = 0.19, pred(0.25) = 0.41.

10

5.2 Scenario 2 - LS Regression Analysis

Stepwise linear regression analysis of the model-building set produced the following predictive
equation based on the number of adjusted function points (AFP):

effort = -461.7 + 19.82*AFP

When used with the validation observations, the model adequacy indicators took the following
values: MMRE = 0.86, pred(0.10) = 0.15, pred(0.25) = 0.41.

5.3 Scenario 3 - LS Regression Analysis with Outlier Removal

Given the availability of a relatively large data set, outlier determination using boxplot depictions
of the relevant variables was undertaken. Five outlier observations were identified in the model-
building set using this process. In general, outlier observations should be examined to determine
whether they occurred as a result of inaccurate measurement, measurement equipment failure or
other similar reasons. In this case, however, we were more concerned with developing an
optimally generalisable model for future prediction. As the five projects were clearly much larger
than the other forty-nine (three were extreme outliers), the five observations were removed from
the model-building set. The equation produced from the remaining forty-nine observations was:

effort = 625.9 + 14.48*AFP

When applied to the full validation set, model adequacy indicators generally improved, to:
MMRE = 0.88, pred(0.10) = 0.30, pred(0.25) = 0.56.

5.4 Scenario 4 - LMS Regression Analysis

With the removal of the ÔgrossÕ outliers before further analysis, the LMS analysis approach when
used on the sample data set considered here performed less effectively than the LS method -
MMRE = 0.85, pred(0.10) = 0.07, pred(0.25) = 0.41. If, however, overly influential
observations remained in the data (and particularly if the data set had been smaller) the LMS
analysis could have been expected to produce a more robust estimation.

5.5 Scenario 5 - Neural Network Analysis

For this analysis method the data was broken into three (rather than two) separate sets. The
validation set was the same twenty-seven observations used for validating the statistical models.
The remaining fifty-four data points were randomly separated into a training set of thirty-five,
and a testing set of nineteen. These two sets were used to ensure that the network was trained in
a nearly-optimal manner.

The actual behaviour of the final network is shown in Figure 4. It can be seen that the networkÕs
testing set error increased after 100 epochs had been reached. Since this pattern continued for

11

three consecutive sets of 20 epochs, it is reasonable to expect that it represented the minimal error
under these circumstances.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200

Epochs

R
M
S
E

Training Data

Test Error

Figure 4: Final network behaviour

Since neural networks operate well with difficult to find non-linear relationships many of the
variables available were used. These were the number of entities, number of transactions, raw
FPs, FP adjustment factor, adjusted FPs, project management experience in years, tool experience
in years, and three dummy variables to represent the development environment.

Several different architectures were tried with the best performance on the training data selected.
This network was then used to predict values for the validation data set. The performance of this
network for all data sets is shown in Table 1.

Training Data Testing Data Validation Data

Pearson Correlation 0.8896 0.7745 0.7379
MMRE 0.2968 0.4586 0.43508
pred(0.10) 6/35 1/19 7/27
pred(0.25) 18/35 7/19 17/27
pred(0.50) 31/35 15/19 20/27

Table 1: Network performance using error indicators

12

5.6 Comparison of Analysis Methods

The performance of each analysis approach using the previously defined adequacy indicators is
summarised in Table 2.

Method MMRE pred(0.10) pred(0.25)

FP estimation (average) 0.70 0.04 0.22
FP estimation (median) 0.89 0.19 0.41
LS regression 0.86 0.15 0.41
LS regression (no outliers) 0.88 0.30 0.56
LMS regression 0.85 0.07 0.41
Neural network 0.44 0.26 0.63

Table 2: Comparative analysis method performance

Of the statistical approaches employed, the best performed is the LS regression after outlier
removal, predicting 30% of the validation set observations within 10% of their actual values -
significantly better than the other statistical methods tested. Overall, however, the best model
seems to be that expressed by the neural network, with nearly half the MMRE of the other
techniques and equivalent or superior pred performance.

It is important to note here that these error measures represent the modelÕs performance on new,
never before seen, data. The errors for the training data, and for the neural network testing data,
would be much lower. The errors shown here provide realistic estimates of how the models
would perform if used in real-world project management, rather than as an academic after-the-fact
analysis.

The performance indicators are not in themselves overly encouraging - one would hope for much
more accurate predictions in order to effectively manage the development process. The objective
of this study, however, was to compare a selection of analysis methods using the same data set,
so as to emphasise the potential of the various analysis options and their capacity to provide
effective general models for estimation.

6 Summary and Further Work

This paper has illustrated the advantages that may be gained when a variety of data analysis
methods are considered and the most appropriate method chosen for the development of
predictive models. Traditional approaches to FPA estimation may be augmented by such
methods so that the most use can be made of the collected data. When combined with site-based
model calibration, there is significant potential for more effective estimation.

In terms of further investigation, our work is continuing in the use of fuzzy logic models, neuro-
fuzzy hybrids, case-based reasoning and regression trees as other data analysis approaches.
Preliminary results suggest that in particular the neuro-fuzzy hybrids and regression trees may be

13

used to real effect to produce robust, generalisable and intuitively appealing estimation models.
Within the statistical realm, the consideration of residual analysis as a further test of model
adequacy is also being investigated.

References

Basili, V.R. and Rombach, H.D. Tailoring the software process to project goals and environments.
In Proceedings, 9th International Conference on Software Engineering, Monterey CA, USA.
(1987) 345-357

Conte, S.D., Dunsmore, H.E. and Shen, V.Y. Software engineering metrics and models. Menlo
Park CA, USA, Benjamin/Cummings Publishing (1986)

Deharnais, J-M. Analyse statistique de la productivitie des projects de development en
informatique apartir de la technique des points des fontion. MasterÕs Thesis, Universite du
Montreal, 1989

Gray, A.R. and MacDonell, S.G. A comparison of model building techniques to develop
predictive equations for software metrics. To appear in Information and Software Technology
(1997)

Gray, A.R. and Kasabov, N.K. Round-trip system engineering in neuro-fuzzy hybrid systems.
To appear in Journal of Intelligent and Fuzzy Systems (1996)

Hakkarainen, J., Laamanen, P. and Rask, R. Neural networks in specification level software size
estimation. Proc. 26th Hawaii Int. Conf. System Sciences, 626-634 (1993)

Halstead, M.H. Elements of software science. Elsevier North-Holland, New York NY, USA,
(1977)

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. Robust statistics. New York
NY, USA, John Wiley & Sons (1986)

Karunanithi, N., Whitley, D. and Malaiya, Y.K. Prediction of software reliability using
connectionist models. IEEE Transactions on Software Engineering 18:563-574 (1992)

Kasabov, N.K., Kim, J.S., Gray, A.R. and Watts, M.J. FuNN - a fuzzy neural network
architecture for adaptive learning and knowledge acquisition. To appear in Information Sciences:
Applications (1996)

Khoshgoftaar, T.M. and Lanning, D.L. A neural network approach for early detection of
program modules having high risk in the maintenance phase. Journal of Systems and Software
29:85-91 (1995)

14

Kitchenham, B. and Pickard, L. Towards a constructive quality model. Part II: statistical
techniques for modelling software quality in the esprit request project. Software Engineering
Journal 2(4): 114-126 (1987)

Kumar, S., Krishna, B.A. and Satsangi, P.S. Fuzzy systems and neural networks in software
engineering project management. Journal of Applied Intelligence 4:31-52 (1994)

MacDonell, S.G. Quantitative functional complexity analysis of commercial software systems.
Unpublished PhD Thesis, University of Cambridge, Cambridge, United Kingdom, 1993

Miyazaki, Y., Terakado, M. and Ozaki, K., Robust regression for developing software estimation
models. Journal of Systems Software 27:3-16 (1994)

Mukhopadhyay, T., Vicinanza, S.S. and Prietula, M.J. Examining the feasibility of a case-based
reasoning model for software effort estimation. MIS Quarterly 16: 155-171 (1992)

Myrvold, A. Data analysis for software metrics. Journal of Systems and Software 12: 271-275
(1990)

Paola, J.D. and Schowengerdt, R.A. A detailed comparison of backpropagation neural network
and maximum-likelihood classifiers for urban use classification. IEEE Transactions on Geoscience
and Remote Sensing 33(4): 981-996 (1995)

Porter, A.A. and Selby, R.W. Evaluating techniques for generating metric-based classification
trees. Journal of Systems and Software 12: 209-218 (1990)

Selby, R.W. and Porter, A.A. Learning from examples: generation and evaluation of decision trees
for software resource analysis. IEEE Transactions on Software Engineering 14: 1743-1757
(1988)

Sheppard, J.W. and Simpson, W.R. Using a competitive learning neural network to evaluate
software complexity. Proc. 1990 ACM SIGSMALL/PC Symp. Small Systems, 262-267 (1990)

Srinivasan, K. and Fisher, D. Machine learning approaches to estimating software development
effort. IEEE Transactions on Software Engineering 21:126-137 (1995)

Tate, G. and Verner, J. Software costing in practice. In Veryard, R. Information and software
economics. Butterworth Scientific, UK (1990)

Wittig, G.E. and Finnie, G.R. Using artificial neural networks and function points to estimate
4GL software development effort. Australian Journal of Information Systems 1(2):87-94 (1994)

