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Abstract

A novel connectionist architecture based on an optical thin-film multilayer model (OTFM) is described. The

architecture is explored as an alternative to the widely used neuron-inspired models, with the thin-film
thicknesses serving as adjustable ’weights’for the computation. The use of genetic algorithms for training the

thinjilm model, along with experimental results on the parity problem and the iris data classmcation are

presented.

1 Introduction

The geneticalgorithmswere first developedby Holland in 1970 to mimic the processes of natural evolution and

have been shown since to be useful in a varietyof search problems[l]. In this paper we explore the use of genetic
algorithmsas the keyoptimizationprocedurein the designof an altemative connectionist leaming model inspired
by the technology of optical thin-film multilayers and first reported in [2,3]. The proposedthin-film model has

shown the capabilityof carrying out computational tasks that are often handled by conventional neural network

models. We initially describe the architecture of the model and how the genetic algorithm is applied to it, then

we provide two examples to illustrate its ability to perform certain computational tasks.

2 The Optical Thin-Film Model

When a light beam is incident on a single thin-film, it undergoesmultiple reflections and refractions, the various

component beams of which interfere with each other to producean overall reflectance and transmittance governed
by the refractive index and thickness of the film and the wavelengthof the incident light. When several thin-films

of differing materials are depositedon top of each other to form a thin-film multilayer (Figure 1), there are

multiple reflections and transmissions at each boundary, and it is possible to derive a recursive algebraic
expressionfor the overall reflection coefficient of the resulting multiple beam interference, which we show below.

Supposean additional thin-film layer with complex
refractive index fiN= nN + ilg, and thickness Q is    
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shown [4] that the combined complex reflection
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coefficient, rN, of the resulting N layer system

comprising the Structure and the added layer is Figure 1. N - l thin-films depositedon a substrate.
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The optical reflectance, which is what is typically measured, is obtained by taking the square of the absolute

magnitudeof the reflection coefficient in (1). Almost any desired spectralcharacteristic of the reflection can be

obtained by choosing a sufficient number of layers with appropriatevalues of n and d for each thin-film layer.

For our computationalpurposes we view the reflection coefficient as the output. Input is encoded into the thin-

film system by addingsmall, scaled offsets to the refractive indices of given layers. Typically, the i-th input value

is scaled and added as an offset to the base index nm of the i-th thin-film layer of a multilayer structure so that

ni = nm + ng. Training involves adjusting the individual layer thicknesses and then calculating the multilayer
reflection coefficient r (or, altematively, the reflectance R) for each optical wavelength for which output is

specified. The resulting spectraloutput r(l) (or R().)) is comparedto a target output rT()t)(or RT()t))for each

wavelength,and a merit function M is used to detennine the error for the given configuration:

M = EMA) - r,Ut)l2 , or M = E|R(2t) - R,(2) (2)
A A

where R = Irlz. Training is continued until a configuration of layer thicknesses is found that produces a

satisfactory value of the merit function.

3 GA for Learning
Calculation of the reflection coefficients (as simulated on a computer) is computationally expensive for thin-film

structures with many-layers.Instead of exhaustive search through the thin-film thicknesses space, using genetic
algorithms may provide a more efficient way of training. Generally two components in genetic algorithms are

problemdependent:the problemencodingand the evaluation function. Consider the thin-film model where a set

of optimal thicknesses needs to be found to minimize the merit function Eq.(2). These thicknesses are

representedby a binary string and the resultingreflection coefficient at each wavelength is evaluated by the merit

functions Eq.(2).

The GA search for an optimal set of layer thicknesses can be defined by the following procedure:

Start: generate initial populationof binary bits which represent sets of thickness values. For each

set of thicknesses, the system evaluates its merit.

Loop through following steps:
l) Select parents whose genetic make-up contributes to fitter offspring.
2) Produce offspring, using suitable geneticoperators (reproduction, crossover and mutation).

3) Evaluate the performance of these offspring.
4) Replace certain parents with new offspring.

The process is repeateduntil the population has convergedor a number of iterations has been reached.

4 Experimental Results

Experimentswere conducted usingcode based on the SGA presentedby Goldberg[ l ,5]. Two examples, I6 four-

bit parity and iris data classification, which have been used to demonstrate the propertiesof conventional feed-

forward neural network models, are used for the thin-film model training employing GA search.

4.1 16 four-bit Parity
In this parity problem, the target output is reflectance value of 0.0 if the parity of the four bits of binary
numbers(0 or 1) is even, and the target output is 1.0 if the parity is odd. The model was specified to have 25

layerswith values of the base refractive index nm for each layer altemating between l.2 forthe odd-number layers



and 1.6 for the even~number layers. Each

input is a 4-bit binary number and encoded as

small values to be added to nB,_ nal nal and

nm respectively.

With population size of 300, a chromosome

length of 160 as the binary string which is

interpreted as 25 thickness values, crossover

probability 0.6 and mutation probability 0.04,
we obtained a training result after I6

generations,as shown in Table 1. With an

acceptance threshold set to 0.5, the resulting
reflectance matches the targets.

4.2 Iris data classification

The iris data set [6 ] has been frequently used

as an examplefor discriminant analysis of real

data. The data set was collected for three

speciesof iris (setosa, versicolor and viginica)
and comprised four measurements (petal
length, petal width, sepal length, and sepal

Table 1. Training result for solving 4-bit parity problem.

Inputs Target Output
Reflectance Reflectance

0 0 0
l

0 0.0
1

0.037

0 0 0 1 1.0 0.750

0 0 1 0 1_0 0.723

0 0 1 1 0.0 0.005

0 1 0 l 0 1.0 0.677

0 1 0 1 0.0 0.l8l

0 1 1 0 0.0 0.322

0 1 1 1 1.0 0.693

1 0 0 0 1.0 0.586

1 0 0 1 0.0 0.091

1 0 1 0 0.0 1 0.082

1 0 1 1 1,0 1 0.629

1 1 0 0 0.0 l 0.026

1 1 0 1
l

1.0 0.689

1 1 1 0 1.0 0.648

1 1 1 1 1 0_0 0.049

width) for 50 samplesof each species. One of the speciesis thought to have arisen as a hybrid speciesand

displays a mixture of features of the other two, making discrimination among the speciesby means of the

measured propertiessomewhat difficult [7]. One class setosa is linearly separablefrom the other two, while the

For each iris data example used, e.g. {5. l, 3.5,
1.4, 0.2), it is necessary to scale the values

appropriately for encoding into the thin-film

System. A thin~film stack of only four layers
was selected with values of the base refractive

index for each nm altemating between 1.2 and

2.5. The training was carried out for the optical
wavelengthvalues: 5.0, 5.3, and 5.6 um, and

the target reflectance coefficient values used are

shown in Table 2.

versicolor and viginica are not linearly separable from each other.

The thin-film stack was then trained, using 120

examples (40 randomly chosen from each of the

three classes). Chromosome length 60 was

chosen since only 4 layer thicknessses are needed

to map into a binary string. After 6 generations,
with initial population size 300, crossover

probability 0.6 and mutation probability0.033, the

training had the effect of moving the response
reflection coefficient points as close as possible
to the 3 target points for each optical wavelength
value in an effort to separate the collection of

output reflection coefficient values as much as

possible; Although data from setosa were

Table 2. Target reflection coefficients
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Figure 2. Test results on 30 iris data samples, A = 5.0um.



completelyseparatedfrom the other two classes, there were a coupleof points from versicolor and viginica that

always overlapped into each þÿ�o�t�h�e�r ��sregions.
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Figure 3. Test results on 30 iris samples, A = 5.3pm.
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Figure 4. Test results on 30 iris data samples,A = 5.6pm.

After training, a þÿ ��w�i�n�n�e�r�-�t�a�k�e�-�a�l�l�"approach [8] was used to set points in the output range to be used for

discrimination of samples(duringtest runs) into the three species.This was accomplishedby finding the average
values of all the output points at each optical wavelength and for each training class. Thus each of the three

specieswill have a set of characteristic values for output reflection coefficients,

When the test exampleis entered into the system, it is a matter of calculating the output reflection coefficient for

the test example(at each wavelength)and then using the merit function evaluation of Eq.(2) to determine to which

speciesclass the exampleoutput is closest. Output for thirty novel examples is shown in Figures 2, 3, and 4. Of

the thirty examples only 3 were misclassified by the thin~fi1m system. When the system was given all 150

samples,8 were classified incorrectly.

5 Conclusions

Usinggeneticalgorithmshas been demonstrated as an efficient training method for the proposedoptical thin-film

model (OTFM), which has shown the learning capability that are typical of conventional neural network

architectures. Results of other experimentsusingdifferent search algorithms can be referred to articles [2,3], and

a more comprehensivedescriptionof the model will be published in the near future.
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