
University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Planning and Matchmaking in a Multi-Agent System
for Software Integration

Aurora Diaz
Stephen J.S. Cranefield

Martin K. Purvis

The Information Science
Discussion Paper Series

Number 97/06
June 1997

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
ht t p: / / di vcom. ot ago. ac. nz: 800/ COM/ I NFOSCI / Publ ct ns/ home. ht m). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: ht t p: / / di vcom. ot ago. ac. nz: 800/ com/ i nfo sc i/

PLANNING AND MATCHMAKING IN A MULTI-AGENT SYSTEM FOR
SOFTWARE INTEGRATION

Aurora C. Díaz*, Stephen J. Cranefield** , and Martin K. Purvis **

*Institute for Information Technology, National Research Council Canada,
M50 Montreal Road, Ottawa, Ontario, Canada K1A 0R6

Phone: (1-613) 993-8560 Fax: (1-613) 952-7151
E-mail: Aurora.Diaz@nrc.ca

** Department of Information Science, University of Otago,
PO Box 56, Dunedin, New Zealand

Phone: (64-3) 479-8142 Fax: (64-3) 479-8311
E-mail: {scranefield, mpurvis}@commerce.otago.ac.nz

ABSTRACT

Computer users employ a collection of software tools to support their day-to-day work. Often the
software environment is dynamic with new tools being added as they become available and removed as
they become obsolete or outdated. In today’s systems, the burden of coordinating the use of these
disparate tools, remembering the correct sequence of commands, and incorporating new and modified
programs into the daily work pattern lies with the user. This paper describes a multi-agent system,
DALEKS, that assists users in utilizing diverse software tools for their everyday work. It manages work
and information flow by providing a coordination layer that selects the appropriate tool(s) to use for
each of the user’s tasks and automates the flow of information between them. This enables the user to
be concerned more with what has to be done, rather than with the specifics of how to access tools and
information. Here we describe the system architecture of DALEKS and illustrate it with an example in
university course administration.

KEYWORDS

Agent architecture, software interoperability

INTRODUCTION

The day-to-day work of many people involves the use of a continually changing set of software tools.
These may include general-purpose utilities designed to support work in many domains, such as word
processors and spreadsheets, as well as special-purpose tools designed for the user’s problem domain.
Currently the onus is on the user to manage workflow and determine how the different software tools
work together to achieve an objective. We are developing a multi-agent system, DALEKS
(“Distributed Agents Linking Existing Knowledge Sources”), that assists users by facilitating the
interoperation of diverse and distributed software tools used by a person in his or her daily work.

A software tool produces and/or consumes information, therefore, making two tools interoperate
involves matching the information produced by one to the information consumed by the other. This
matching process should work in an open environment where the set of tools available for use is
constantly changing. A key issue to address is how to abstract away from the formats of information
sources and the protocols used to access them (e.g., reading a file or getting information from a
database) so that the system works in an environment where tools may be dynamically added or
removed, and where these may produce information in differing formats. Our approach separates task
selection (planning) from tool selection (matchmaking). Planning determines the tasks to be done to
achieve the user’s objective and manages workflow, whereas matchmaking selects the tool to use to
perform a task in the plan and manages information flow between the tasks.

Facilitator

This paper describes the DALEKS system architecture focussing on how planning, matchmaking, and
execution are interleaved to help automate the user’s tasks.

SYSTEM ARCHITECTURE

DALEKS uses an extended version of the federation architecture used in previous research on Agent-
Based Software Interoperability [Genesereth et al., 1995]. In the federation architecture, software tools
and information servers are encapsulated as agents that receive and reply to requests for services and
information. These agents use a declarative knowledge representation language, KIF (Knowledge
Interchange Format), an inter-agent communication language, KQML (Knowledge Query and
Manipulation Language), and a library of formal ontologies defining the vocabulary of various
domains. A federated system of agents includes facilitators that receive messages and forward them to
the most appropriate agent depending on the content of the message. A new tool is added to the system
by providing it with a wrapper or a transducer and then registering it with the facilitator. A wrapper
adds code to the tool itself to allow it to communicate with other agents using some agent
communication language. A transducer is a separate piece of code that acts as an interface to the tool
and translates messages in an agent communication language to the tool’s own communications
protocol.

Previous work [Cranefield and Purvis, 1995; 1997] has proposed extending the federation architecture
to provide basic work and information flow by adding a specialized planning agent to automate the
coordination of tools on behalf of the user and a user agent that acts as the interface between a user and
the system. The DALEKS system builds on this work and investigates in more depth the mechanisms
of planning and matchmaking required to support automated interoperation of tools in an open and
extensible software environment.

To demonstrate DALEKS a prototype for university course administration is being developed. In this
domain, information processing and management tasks include the addition or deletion of students
from the class roll, marking student assignments, changing marks when necessary, producing statistical
summaries, etc. Information may be created, deleted, or modified at each stage of the process. At the
University of Otago, these tasks are performed using a toolkit approach, whereby the course
administrator uses a number of different tools to perform the tasks, some being general-purpose tools
and others being specially written for work in this problem domain. Figure 1 shows the system
architecture of the current prototype, where some agents run under Windows NT and others under
Solaris. The system consists of custom-built facilitator and user agents and agent-encapsulated tools
including a planner, utilities for manipulating text files, a DBMS, and a marking tool that enables a
tutor to systematically find, run, and record marks for electronically submitted programming
assignments. The figure also shows data, such as methods, plans, Uniform Resource Characteristics
(URCs), and operator specifications, that are stored in the user and facilitator agents. Inter-agent
communication is via KQML.

Figure 1. Prototype system architecture

UserAgent

Solaris Windows NT

KQML message

Agent wrapper/
transducer

GUI interaction

Marking
Tool

Planner
PlansMethods

Text file
utilities

Operator
specs.

DBMS

Ontologies

URCs

TASK SELECTION: PLANNING

DALEKS assists a user who is attempting to solve problems in a particular domain. In this system, the
planning agent [Cranefield et al., 1997] manages workflow and selects the tasks that have to be done to
accomplish a goal that solves a problem. Before planning can be done, the user must provide the
system with ontologies, operator specifications, and method definitions. This input, together with other
information produced by DALEKS, is stored in different agents, as shown in Figure 1.

Before using the DALEKS system, the user must create an ontology defining the vocabulary specific to
the user’s domain. We believe that for many domains, simple representations such as relational data
models will suffice [Cranefield and Purvis, 1995]. This domain ontology, together with other more
generic ontologies, such as those describing common data formats, is stored in the facilitator.

As part of the task of domain definition, the user must also define the generic actions that can be
performed in the domain. An example for the university course administration domain is the mark
action that generates marks for a given assignment for a set of students. These generic actions are
specified by planning-style operator specifications [Cranefield et al., 1997] containing the name of the
action, its pre- and post-conditions, and information about its information requirements and products
expressed in terms of the domain ontology.

In addition to these domain-specific actions, some operators corresponding to domain-independent
actions are predefined in the DALEKS system. These include the retrieval and update of relations
(specified by relational algebra expressions) stored in an information source.

Tools to be used in a DALEKS system must also have one or more operators defined. Each operator
describes a particular task that can be performed by the tool. An operator may specify how the tool can
be used to achieve one of the generic tasks in the user’s domain, in which case its definition should be
a specialization of the corresponding generic operator with additional information describing the
formats and access protocols of its information requirements and products. In addition, tool operators
may describe how the tool can be used for actions that are not domain-specific, such as text file
transformation operations. In this case the operator specification is given in terms of some general-
purpose ontology such as one describing text file formats. When a tool agent is added to the system, it
advertises its capabilities to the facilitator by sending it messages that contain these operator
specifications. The facilitator stores all the operator specifications of the currently available tool agents
and these are used in the tool selection process. A graphical user interface will be developed to support
non-expert users in these activities.

By providing a task to plan for, the user triggers the planning process. The planning agent in DALEKS
is based on hierarchical task network (HTN) planning [Erol et al., 1994], where a task hierarchy is
developed using user-defined methods that describe possible ways of decomposing a task. In addition
to methods, operator specifications must also be provided for primitive actions or tasks. Using this
information, the planner determines the tasks and its ordering(s) that, when executed, accomplish the
goal. We chose HTN planning because the intended users of DALEKS already have strategies for
coordinating their tools, which are used to define the methods that expand the task hierarchy.

Plans developed by the planner identify the tasks that have to be performed to achieve a goal. They do
not include detailed information, such as which agent is to execute a primitive task, how it is to be
executed, and what information flows between tasks in a plan. The resolution of these details is left as
late as possible, when the task is about to be performed. This way, the current environment is taken into
account when deciding how to execute a task.

TOOL SELECTION: MATCHMAKING

We use the matchmaking approach [Kuokka and Harada, 1995] to determine how the tasks in the plan
are to be executed and to find potential information sharing paths between information providers and
consumers. In matchmaking both consumers and providers play active roles; providers advertise their
capabilities to the matchmaker and consumers send requests to the same matchmaker. The matchmaker
matches advertisements to requests.

Kuokka and Harada [1995] identify several modes of matchmaking that differ in the route information
sharing takes. There is the recommend mode where the consumer asks the matchmaker to recommend a
provider for a particular request, with the consumer directly communicating its request to the provider.
In the recruit mode, the consumer asks the matchmaker to forward its request to the appropriate
provider, with all replies going straight back to the consumer. In the broker mode, the matchmaker acts
as an intermediary between the consumer and the provider, with the request and replies passing through
the matchmaker. DALEKS mostly uses the recruit mode.

In DALEKS the facilitator takes on the role of matchmaker. Agents that can perform tasks serve as
providers and agents that request tasks to be done for them act as consumers. When an agent is added
to the system, it must tell the facilitator what it can do and what services it can provide. A consumer’s
request for service, sent to the facilitator, gives the name of the task to be done, and, optionally, a list of
preferences, which are used by the facilitator to choose among providers with capabilities to perform
the request. There are mechanisms in DALEKS to handle simple preferences, such as naming a
preferred provider, preferring one that is most recent (i.e., the newest provider in the system as
determined by the time and date of its advertisement), or choosing the provider that can understand a
specific language or ontology. The consumer may also prioritize its preferences, which the facilitator
uses when selecting a tool. Upon receiving a request, the facilitator locates and selects a provider using
the providers’ advertisements and consumer’s preferences. It then forwards the request to the selected
provider for execution. Results of the request are sent directly back to the consumer.

Plan execution that leads to achieving a goal is triggered in DALEKS by a user agent (UA) upon the
user’s request. For each task to be performed, UA sends a KQML message to the facilitator to recruit a
tool agent that can do the requested task. The facilitator, using the advertisements it has received from
the different agents and (optionally) the preferences sent by UA, selects an appropriate one for the
current task. After tool selection, it checks if the selected tool agent requires any input, which it knows
from the tool agent’s advertisement. If no input is required, the facilitator forwards the request
(contained in the content of the recruit KQML message) to the selected tool agent. After performing
the task, the tool agent replies back to UA with the outcome and a description of the information or
data it has produced. This description comes as URCs (Uniform Resource Characteristics) [LAN-ACL,
1995] that provide meta-data about the information source, including the URL (Uniform Resource
Locator) that specifies where the resource may be found and a description of its contents and physical
form properties, such as its data format and access protocol. The actual resource (e.g., files and
databases) is kept with the tool agent that produced it. When UA receives the reply, it goes on to the
next task in the plan.

Figure 2 illustrates part of the information-sharing path in the university course administration
prototype, which follows the recruit mode of matchmaking. In this figure, KQML messages sent
between agents only show the KQML performative, e.g., ask, reply, achieve, and the content, enclosed
in parentheses and specified using informal notation.

If the facilitator finds that a selected tool agent requires input, it sends a KQML message to UA to ask
if any of the previous plan steps executed has resulted in the creation of information that matches the
input requirement. UA searches the URCs describing the information produced so far for a match. If
found, UA passes the URC of the resource containing the information back to the facilitator. The
facilitator, when forwarding the request to the tool agent, specifies where the tool agent may find its
input requirements. The tool agent takes care of locating this and accessing the information it requires.

If an information source with the input requirement does not exist (for example, none of the
information currently produced matches the intellectual content or format of the input required), the
facilitator invokes the planner to derive a plan that will create or modify existing information sources to
match the requirement. UA still serves as the consumer of this planning task so the planner will reply to
UA with the plan, which then executes it. This is one situation where planning is interleaved with plan
execution. Another is when the plan being executed is not fully reduced, i.e., it contains non-primitive
tasks that can be further decomposed by some method. Planning is initiated during execution to further
elaborate the plan.

DISCUSSION

In DALEKS, an agent does not have information about other agents. For example, it does not know
about the intentions, goals, or plans of other agents; it only knows its own plans that it uses when
performing tasks asked of it. Only the facilitator keeps a model of the other agents in terms of their
capabilities and defined as operator specifications. We do not touch on predetermined and pre-
negotiated commitments except in assuming that if an agent says it has a capability then it can perform
the tasks corresponding to the capability and will do so when asked. The facilitator will select only

Figure 2. Information routing during plan execution in DALEKS

User Agent Facilitator
Tool Agents

DBMS Agent Marking Agent

Execute plan:
(ask(student relation),
 achieve(mark),...)

Select tool:DBMS Agent
Input required? None

retrieves student relation

Select tool: Marking Agent
Input required? student relation

recruit(ask(student relation))

ask(student relation)

reply(Here’s URC1 describing a resource containing the student relation.)

recruit(achieve(mark))

ask(Do you know of a resource with the student relation?)

reply(Yes, resource described in URC1.)

achieve(mark using resource described in URC1.)

starts marking tool
using resource
described in URC1.
<user marks assgs.
 using the tool’s
 interface then
exits tool>

reply(Finished marking. Here’s URC2 describing a resource containing the marks.)

from the tools currently available in the system; therefore, agent-encapsulated tools may be added and
removed without having to change the other agents in the system.

Although nothing in our architecture precludes having multiple facilitator and planning agents, our
prototype has only one facilitator and one planner. We realize that these may become bottlenecks in a
system with a large number of software tools, information servers, and users. Future work involves
investigating scale-up issues including devising ways of organizing multiple facilitators and planners.

Not all tools will operate using the same ontology. Different agents, particularly the tool agents, may
use domain-specific ontologies or other more generic ones not only to describe their capabilities but
also to work in. Facilitating the interoperation of tools that use different ontologies is another issue for
future work.

This paper presents our approach to providing a tool for integrating the use of various software tools.
We envision this to be a component of the middleware layer in open systems that allows the user to
access applications or software tools, just as the object component provides services for accessing
different objects.

REFERENCES

[Cranefield and Purvis, 1995] S. J. S. Cranefield and M. K. Purvis. Agent-based integration of
general-purpose tools. In Proceedings of the Workshop on Intelligent Information Agents, Fourth
International Conference on Information and Knowledge Management, 1995. Also in
http://www.cs.umbc.edu/~cikm/iia/proc.html.

[Cranefield and Purvis, 1997] S. J. S. Cranefield and M. K. Purvis. An agent-based architecture for
software tool coordination. In L. Cavedon, A.S. Rao, and W. Wobcke, editors, Intelligent Agent
Systems: Theoretical and Practical Issues, Lecture Notes in Artificial Intelligence, number 1209,
pages 44-58. Springer, 1997.

[Cranefield et al., 1997] S. J. Cranefield, A. C. Diaz and M. K. Purvis. Planning and matchmaking for
the interoperation of information processing agents. Discussion Paper 97/1, Department of
Information Science, University of Otago, 1997. Submitted to the European Conference on Planning
1997.

[Erol et al., 1994] K. Erol, J.Hendler, and D.S. Nau. UMCP: A sound and complete procedure for
hierarchical task-network planning. In K. Hammond, editor, Proceedings of the 2nd International
Conference on AI Planning Systems, pages 249-254, 1994.

[Genesereth et al., 1995] M.R. Genesereth, N.P. Singh, and M.A.Syed. A distributed and anonymous
knowledge sharing approach to software interoperation. Int. Journal of Cooperative Information
Systems,4(4):339-367, 1995.

[Kuokka and Harada, 1995] D. Kuokka and L. Harada. Matchmaking for information agents. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 1, pages
672-678, 1995.

[LAN-ACL, 1995] Uniform Resource Characteristics Web page, Advanced Computing Laboratory,
Los Alamos National Laboratory. http://www.acl.lanl.gov/URC/, November 1995.

