
University of Otago
Te Whare Wananga o Otago

Dunedin, New Zealand

Environments for Viewpoint Representations

Nigel Stanger
Richard T. Pascoe

The Information Science
Discussion Paper Series

Number 97/07
June 1997

ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Commerce at
the University of Otago. The department offers courses of study leading to a major in Information Science
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees.
Research projects in software engineering and software development, information engineering and database,
software metrics, knowledge-based systems, natural language processing, spatial information systems, and
information systems security are particularly well supported.

Discussion Paper Series Editors

Every paper appearing in this Series has undergone editorial review within the Department of Information
Science. Current members of the Editorial Board are:

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov
Dr Geoffrey Kennedy Dr Stephen MacDonell
Dr Martin Purvis Professor Philip Sallis
Dr Henry Wolfe

The views expressed in this paper are not necessarily the same as those held by members of the editorial
board. The accuracy of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for
purposes other than research or teaching is forbidden unless prior written permission has been obtained from
the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper, or for subsequent publication details. Please write
directly to the authors at the address provided below. (Details of final journal/conference publication venues
for these papers are also provided on the Department’s publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other
correspondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND
Fax: +64 3 479 8311
email: stevemac@commerce.otago.ac.nz
www: http://divcom.otago.ac.nz:800/com/infosci/

[To appear in Proceedings of the Fifth European Conference on
Information Systems (ECIS ’97), June 18–21 1997, Cork, Ireland]

Environments for viewpoint
representations

Nigel Stanger and Richard Pascoe
Department of Information Science, University of Otago

Dunedin, New Zealand
Email: nigel.stanger@stonebow.otago.ac.nz

1

Environments for viewpoint
representations
Abstract

Modelling the structure of data is an important part of any system analysis project.
One problem that can arise is that there may be many differing viewpoints among
the various groups that are involved in a project. Each of these viewpoints describes
a perspective on the phenomenon being modelled. In this paper, we focus on the
representation of developer viewpoints, and in particular on how multiple
viewpoint representations may be used for database design. We examine the issues
that arise when transforming between different viewpoint representations, and
describe an architecture for implementing a database design environment based on
these concepts.

1. Introduction

Modelling the structure of data is an important part of any system analysis project.
In this paper, the modelling of data is discussed using the concepts of perspectives,
viewpoints, representations, techniques and schemes, as shown in FigureÊ1, and
suggested by FinkelsteinÊ(1989), EasterbrookÊ(1991a) and Darke and ShanksÊ(1995).

Real-world phenomen a

Perspective

expressed as a

Viewpoint

using one or more

Technique
[E-R modelling]

Representation

Database design environment using multiple viewpoint representations

PerspectivePerspective

ViewpointViewpoint

Viewpoint integration

T1 T2

viewed from several

Scheme
[Martin ERD notation]

Representation

Technique
[Relational]

Scheme
[SQL]

Representation

Technique
[Functional dep.]

Scheme
[FD diagram]

FigureÊ1. Perspectives, viewpoints and representations.

2

A perspective is a description of some real-world phenomenon that has internal
consistency and a specified focus (Easterbrook 1991a). During the requirements
definition phase of systems analysis, developers often encounter many different
perspectives on the problem being modelled. Perspectives may overlap, or even
conflict with each other. Part of the process of database design is deciding how to
deal with these multiple perspectives. This is an active area of research and has been
discussed by several authors (Leite and Freeman 1991; Easterbrook, Finkelstein et al.
1994; Kotonya and Sommerville 1996).

A viewpoint is a formatted expression of a perspective (Finkelstein, Goedicke et al.
1989). Darke and ShanksÊ(1995) define two main types of viewpoint, user viewpoints
and developer viewpoints. These viewpoints may be described using various
representations, each of which comprises a technique expressed in some notation or
scheme. A technique may have one or more associated schemes, but each
combination of a technique and a scheme to describe a viewpoint forms a distinct
representation. For example, the relational model (RM) is a technique, with SQL and
QUEL being two possible schemes, but the combinations RMÊ+ÊSQL and
RMÊ+ÊQUEL form two distinct representations. FigureÊ1 does not show techniques
with multiple schemes for the sake of clarity.

Darke and ShanksÊ(1995) grouped representations into three categories:

¥ informal representations, consisting of unstructured descriptions, often
expressed using a natural language;

¥ semi-formal representations, consisting of structured descriptions. Examples
include entity-relationship modelling and data flow diagrams; and

¥ formal representations, consisting of structured descriptions and a set of
operators for processing these descriptions. Examples include the relational
model (Codd 1970) and logic-based languages.

Unlike informal representations, which are often ill-defined, inconsistent and
incomplete, semi-formal and formal representations are well-defined, consistent and
unambiguous. A key feature of formal representations that is lacking in semi-formal
representations is the inclusion of operators which allow us to make assertions about
the viewpoints being described. User viewpoints are typically defined using
informal representations, whereas developer viewpoints are typically defined using
more formal representations.

In general, no single representation will be adequate to fully describe all types of
viewpoint, and indeed, the current plethora of modelling techniques suggests that a
single representation is inadequate to fully describe even a single viewpoint. The
approach suggested here is to use multiple representations to describe a particular
viewpoint. This is because the use of many representations, each with their slightly
different constructs, allows a more complete description of a viewpoint to be formed
than that formed using a single representation.

Thus, we can say that a viewpoint is specified by a set of descriptions, each using
some kind of representation to describe either the whole viewpoint, or some subset
of the viewpoint. These descriptions may be distinct from each other, or they may
overlap. For example, FigureÊ2 shows a developer viewpoint of a simplified used-car
dealership, specified by the union of four descriptions: D1, an entity-relationship
diagram (ERD); D2, a functional dependency diagram (FDD); D3, an SQL schema;
and D4, a data flow diagram (DFD). Some of these descriptions overlap considerably
(for example, D1 and D3), whereas others overlap to a lesser extent (for example, D1
and D4). Each description uses a different representation.

3

TRANS_ID

REGISTRATION
MAKE +

MODEL + É

FEATURE_CODE

DESCRIPTION

NAME + ADDRESS + PHONECUSTOMER_NO

SALESREP_ID

TRANS_DATE

TRANS_TYPE

COMMISSION_RATE

1

NAME + ADDRESS + É

EMPLOYEE_NO 1

1 Employee number

SALARY_STAFF_ID

SALARY

1WAGE_STAFF_ID

HOURLY_RATE +
HOURS_PER_WEEK

1

AMOUNT
VIN

 .
 .
 .
create table trans_head
(
 trans_id char(8),
 trans_date date,
 trans_type char,
 salesrep_id char(8)
 not null,
 -- no unique constraint
 customer_no char(8),
 ...
 primary key (trans_id),
 foreign key customer_no
 references customer (customer_no),
 ...
);

create table trans_line
(
 trans_id char(8),
 registration char(6),
 amount decimal(2),
 primary key (trans_id, registration),
 foreign key (trans_id)
 references trans_head (trans_id)
 ...
);

create table car
(
 registration char(6),
 VIN char(20)
 unique,
 ...
 primary key (registration)
);
 .
 .
 .

Staff

Wage_staff Salesrep Salary_staff

TransactionCustomer Car

Car_featureFeature

CustomerD1 D2 Car

P1 P2

Enter
customer

details

Enter
transaction

details

a

Customer

D3 Transaction

P4

Transfer
ownership

Ownership
papers

P3

Calculate
commission

b

Salesrep

D4 Salesrep

Commission
rate

A
m

ou
nt

C
om

m
is

si
on

 D1(V, ERM,ERDMartin) D2(V, FD,FDDSmith)

 D3 (V,RM,SQL)

 D4 (V,PM, DFDG&S)

FigureÊ2. Four descriptions of the same phenomenon.

We introduce the notation D(V, T, S) to mean a description D of viewpoint V
comprises constructs defined by technique T, and expressed using scheme S. For
example, in FigureÊ2, description D1, denoted by D1(V, ERM, ERDMartin), is
represented using entity-relationship modelling (ERM) and expressed as an ERD in
Martin notation (Evergreen Software Tools 1995); D2(V, FD, FDDSmith) is
represented using functional dependencies (FD) and expressed as an FDD using
SmithÕs notation (Smith 1985); D3(V, RM, SQL) is represented using the relational
model (RM) and expressed in SQL; and D4(V, PM, DFDG&S) is represented using
process modelling (PM) and expressed as a DFD in Gane & Sarson notation.

Representations may differ in both the technique and scheme used, or they may
differ only in the scheme. D1, D2, D3 and D4 all differ in both the technique and the
scheme used. If we were to add D5(V, RM, QUEL) to the viewpoint in FigureÊ2, we
would have two descriptions that use the same technique (D4 and D5), but different
schemes (QUEL instead of SQL).

4

Much of the work into viewpoints has been from a software engineering
perspective. Our focus, however, is on database design. In this paper, we examine
how to facilitate the database design process when using multiple representations
within a particular viewpoint, which is an area that has only just begun to receive
attention (Darke and Shanks 1995). In other words, given descriptions Di(V, Ti, Si),
V remains constant for all values of i, otherwise we will enter the area of viewpoint
integration.

If we consider a database design environment that allows the use of multiple
viewpoint representations (indicated in FigureÊ1 by the dark grey box), then a useful
feature for such an environment would be to allow designers to shift from one
representation to another at will, so that they may more fully describe the problem at
hand. Ideally, the environment should handle as much of this shifting process as
possible, leaving the designer to Òfill in the gapsÓ. What we therefore need is some
means of transforming viewpoint descriptions from one representation to another. In
considering this problem, we restrict ourselves to developer viewpoints using formal
and semi-formal representations. At present, informal representations are not
considered because they generally lack the structure required to enable effective
transformations between representations to be carried out (see further research later
in this paper).

In the next section we examine the issues that arise when performing such
transformations, and give examples of the problems that can arise. In the third
section, we discuss an architecture for the implementation of a database design
environment which facilitates the use multiple viewpoint representations. This
architecture is derived from work done in the area of automatic data translation. The
fourth section discusses implementation issues and directions for future research.

2. Issues

When transforming viewpoint descriptions between different representations there
are three main issues to consider:

¥ how the actual transformation process is carried out;

¥ the overall integrity of the design that is produced; and

¥ the quality of the transformations.

The examples given in this section are based on the used-car dealership model
shown in FigureÊ2. The examples focus on those elements which relate directly to a
transaction (either a sale or a purchase), such as salesreps, customers and cars, and
have been chosen to illustrate many of the ÒinterestingÓ elements of the
transformation in question.

2.1. The transformation process

In the introduction, we described the rationale for transforming viewpoint
descriptions from one representation to another. We shall denote the transformation
operator using the symbol � and describe the transforming of a description D1 in
one representation to a description D2 in another representation as D1(V, Ti, Sj) �
D2(V, Tk, Sl). For example, transforming a viewpoint description expressed using
SQL into one using QUEL is denoted by D1(V, RM, SQL) � D2(V, RM, QUEL) and
transforming a Chen-style ERD into a relational schema is denoted by D1(V, ERM,
ERDChen) � D2(V, RM, SQL).

5

As noted earlier, a transformation may involve changing both the technique and
the scheme, or just the scheme. We shall call these two types of transformation
technique transformations and scheme transformations respectively. At first glance, it
may appear that scheme transformations are trivial and do not need to be
considered. It is important to note, however, that some schemes do not fully adhere
to the technique that they express. For example, SQL does not fully adhere to the
definition of the relational model (Date and Darwen 1993). In addition, some
schemes may be able to express more information than others, for example, some
ERD notations can express AND/OR relationships, whereas others cannot.
Although we cannot disregard scheme transformations, we shall only examine two
simple examples of technique transformations: one from an entity-relationship
ÒmodelÓ to the relational model, and one from the relational model to functional
dependencies.

2.1.1. Entity-relationship ���� relational
In this example, we are transforming from an entity-relationship ÒmodelÓ expressed
in Martin ERD notation, to the relational model expressed in ANSI SQL/92, that is
D1(V, ERM, ERDMartin) � D2(V, RM, SQL/92). This transformation is illustrated by
the arrow labelled T1 in FigureÊ1. The ER representation is a semi-formal
representation, while the relational representation is a formal one.

This transformation should be familiar to most readers, as SQL schema
generation from an ERD is probably one of the most common operations performed
by CASE tools. FigureÊ3 shows an example of such a transformation. In this case, we
are transforming the entities for Salesrep and Transaction into equivalent SQL
structures.

create table salesrep
(
 salesrep_id char(8),
 commission_rate smallint,
 primary key (employee_id)
);

create table transaction
(
 transaction_id char(6),
 transaction_date date,
 transaction_type char(1),
 customer_no char(6),
 salesrep_id char(8)
 not null,
 -- no unique constraint
 primary key (transaction_id),
 foreign key (salesrep_id)
 references salesrep (salesrep_id)
 foreign key (customer_no)
 references customer (customer_no)
);

Transaction

Salesrep

location

existence

?

FigureÊ3. Transformation from an ERD to SQL.

The arrows in FigureÊ3 indicate the transformation of a particular ER construct
into a corresponding SQL construct. For example, the relationship between the two
entities indicates that there is a primary/foreign key relationship between them, and
the location of the foreign key is determined by the cardinality of the relationship. In
this case, the Transaction entity is on the ÒmanyÓ side of the relationship, so the
foreign key is placed in the Transaction table definition.

6

There are three main points that arise from the analysis of this transformation.
First, the optionality of the referenced entity (Salesrep in FigureÊ3) is expressed in
SQL by the existence (or not) of a NOT NULL constraint on the foreign key attribute
of the referencing entity (Transaction). This is an important aspect of referential
integrity that is often overlooked and it is interesting to note that many CASE tools
do not appear to implement this rule.

Second, a similar situation also arises with the cardinality of the referencing
entity (Transaction). This is expressed in SQL by the existence (or not) of a UNIQUE
constraint on the foreign key attribute of the referencing entity. Again, many CASE
tools do not appear to implement this.

Third, the optionality of the referencing entity (Transaction) cannot be expressed
in SQL, as there is no equivalent SQL construct. This is a limitation of SQL, however,
rather than of the relational model itself Ñ it should be possible to represent such a
constraint using relational calculus or some similar scheme. In other words, this is a
limitation of the particular representation that we have chosen.

The inverse transformation D2(V, RM, SQL/92) � D1(V, ERM, ERDMartin) is
similar, in that the optionality of the referencing entity cannot be determined from
the SQL code, whereas the first two items can be determined, if the SQL code has
been correctly defined.

2.1.2. Relational ���� functional dependencies
In this example we are transforming from the relational model expressed in SQL, to
functional dependencies expressed as an FDD using SmithÕs notation. That is D1(V,
RM, SQL/92) � D2(V, FD, FDDSmith). This is illustrated by the arrow labelled T2 in
FigureÊ1. Both representations are formal ones. FigureÊ4 shows an example of such a
transformation.

TRANS_ID

REGISTRATION

TRANS_DATE

TRANS_TYPE

create table trans_head
(
 trans_id char(8),
 trans_date date,
 trans_type char,
 salesrep_id char(8)
 not null,
 -- no unique constraint
 customer_no char(8),
 ...
 primary key (trans_id),
 foreign key customer_no
 references customer (customer_no),
 ...
);

create table trans_line
(
 trans_id char(8),
 registration char(6),
 amount decimal(2),
 primary key (trans_id, registration),
 foreign key (trans_id)
 references trans_head (trans_id)
 ...
);

create table car
(
 registration char(6),
 VIN char(20)
 unique,
 ...
 primary key (registration)
);

CUSTOMER_NO

SALESREP_ID

AMOUNT

?

MAKE +
MODEL + É

VIN

FigureÊ4. Transformation from SQL to an FDD.

7

The points to note here are:

¥ Functional dependencies are concerned only with the relationships between
attributes, so relation names are lost in the transformation.

¥ ÒOptionalityÓ information is lost completely, although as previously noted,
SQL can only partially represent optionality.

¥ The ÒcardinalityÓ of the referencing relation in a primary/foreign key
relationship is lost.

The inverse transformation D2(V, FD, FDDSmith) � D1(V, RM, SQL/92) is again
similar: we cannot derive table names from the FDD, and there is no optionality or
cardinality information to be transformed. This information must be derived from
elsewhere; we shall return to this issue shortly.

2.1.3. Analysis
Our analysis has shown that there is considerable overlap between entity-rela-
tionship modelling and the relational model. If we were to use a representation that
fully adhered to the relational model, then the overlap may be total. If we use SQL,
however, we cannot transform the optionality of a referencing entity.

Similarly, we find that there is a lesser overlap between the relational model and
functional dependencies, perhaps on the order of 60%. Because of the considerable
overlap between entity-relationship modelling and the relational model, it seems
reasonable to state that there is probably also about a 50Ð60% overlap between
entity-relationship modelling and functional dependencies.

We acknowledge that these observations are rather ad hoc, however, and that
some form of quantitative or qualitative measure is needed to determine the degree
of overlap between different representations. If we can determine this overlap, we
can use this as a basis for developing a database design environment that supports
multiple representations.

2.2. Integrity of the design

Suppose a developer uses a single representation to describe a viewpoint (remember
that we are assuming only a single viewpoint). How can they verify the integrity of
this description? In the past, a design would often be developed and implemented,
and only then discovered to be inadequate (Brooks 1975). One approach to solving
this problem is to adopt a prototyping methodology (Sallis, Tate et al. 1995), which,
although potentially time-consuming, can lessen the discontinuity between the
original requirements and the final solution.

If the same developer used multiple representations instead, they could use these
different descriptions to aid in testing the integrity of the overall design. For
example, as shown in FigureÊ5(a), if we were to independently create an ERD (D1)
and an FDD (D3) to describe the viewpoint, the integrity of the combination could be
verified by transforming both D1 and D3 into relational form (D2 and D4) and
determining whether D2 and D4 were equivalent. That is, given D1(V, ERM, ERD)
� D2(V, RM, SQL) and D3(V, FD, FDD) � D4(V, RM, SQL),we need to determine
whether D2 ® D4.

Alternatively, as shown in FigureÊ5(b), we could transform D1 into a second FDD
(D5) and compare this with D3 to determine whether D1 and D3 were equivalent.
That is, given D1(V, ERM, ERD) � D5(V, FD, FDD) and D3(V, FD, FDD) we need
to determine whether D3 ® D5.

8

(FDD) D3(ERD) D1

(a) (b)

equivalent?

transform

transform

transform

equivalent?

(ERD) D1

(SQL) D2

(FDD) D3

(SQL) D4 (FDD) D5

FigureÊ5. Integrity checking strategies using different representations.

If the required equivalence does not hold in either of the examples above, this can
be caused by one of two things:

(1) D1 and D3Õs representations are irreconcilable, that is, D1Õs representation
expresses some information that D3Õs cannot, or vice versa; or

(2) there is a viewpoint inconsistency between the two descriptions, that is,
either D1 or D3 is inconsistent with the definition of viewpoint V.

The first case is to be expected, as different representations generally express
different information. For example, functional dependencies cannot express entity
names. The second case, however, may reveal an inconsistency in the design that
must be addressed by correcting either D1 or D3. Alternatively, D2, D4 or D5 may
describe a new viewpoint V2, for example D3(V, FD, FDD) � D4(V2, RM, SQL).
Such a situation is beyond the scope of this paper.

Thus, the use of multiple representations for a single viewpoint improves design
integrity in two ways. First, different representations may be able to describe aspects
of the viewpoint that other representations cannot, allowing us to more fully
describe the viewpoint and produce a better database design. Second,
inconsistencies in the original viewpoint may be exposed when described using a
different representation.

2.3. Quality of transformations

As stated previously, different representations will most likely overlap in what they
can represent, although the degree of this overlap may vary considerably. An
important issue that arises when performing a transformation at either the technique
or the scheme level is the loss and/or gain of information that occurs. For example,
entity names are an important element of the ER approach, but they cannot be
represented by functional dependencies, so this information is apparently ÒlostÓ in
the transformation. The information is not truly lost, however, as it is still contained
within the original ERD. Gain of information, on the other hand, is a problem that
must be dealt with. For example, if we start with a set of functional dependencies
and transform this into an ERD, we must generate the entity names in some way.

This is a particular problem with technique transformations, as the information
represented can vary quite considerably from technique to technique, as discussed
earlier. The same problem can also occur in scheme transformations, but to a much
lesser extent, as the differences between schemes are generally not as radical as those
between techniques.

An important task, therefore, is to determine what the overlap is between
different representations, so that we can determine the information that needs to be

9

ÒgainedÓ (where applicable) when transforming between representations. This
knowledge will ultimately determine the efficacy of any database design
environment that may be developed.

3. Environments for viewpoint representations

Our aim is to develop a database design environment which facilitates the use of
multiple representations. In this section we briefly discuss possible architectures for
building such an environment.

Let us return for a moment to the notion of viewpoints. One problem that arises
from the use of multiple viewpoints is that they may conflict. Traditionally, the
solution to this has been to define a single ÒcorrectÓ viewpoint that may or may not
integrate elements from the other viewpoints (Finkelstein and Sommerville 1996).
This approach follows the objectivist paradigm (Klein and Hirschheim 1987), which
effectively states that there is always some kind of underlying ÒtruthÓ to be found
when modelling reality. In other words, we can always find one ÒcorrectÓ solution.

In reality, however, this is just not the case. Experience has shown that there are
usually several different, but equally ÒcorrectÓ, solutions to any but the most trivial
of data modelling problems. The process of generating a single ÒcorrectÓ viewpoint
may result in much useful information being discarded, especially when different
viewpoints conflict, as there is usually some reason for such conflicts. Easterbrook
(1991) refers to this problem as the Òsingle viewpoint biasÓ and notes that it has been
criticised by several authors (Cunningham, Finkelstein et al. 1985; Shaw and Gaines
1989). Recent work in this area has focused on negotiated resolution of conflicts
between viewpoints (Easterbrook 1991b; Easterbrook and Nuseibeh 1995;
Easterbrook and Nuseibeh 1996). This approach follows the subjectivist paradigm,
which states that there is no underlying ÒtruthÓ, only interpretations of reality.

Viewpoints are a relatively high-level concept, as indicated in FigureÊ1. We are
dealing with a lower level, that of how viewpoints are represented, and it is
interesting to note that the use of multiple representations to describe a viewpoint
mirrors the use of multiple viewpoints to describe a phenomenon. This is an
important point to bear in mind when considering the type of architecture to use for
implementing an environment which can deal with multiple viewpoint
representations.

3.1. Architectures

One possible approach is to attempt to define some kind of uniform representation
(similar to an interchange format). All information is described using this
representation, and it is transformed to other representations as required. The main
disadvantage is that the uniform representation may become a Òmoving targetÓ Ñ as
new representations are added, the uniform representation must be updated to
handle them (Pascoe and Penny 1990). This can lead to a proliferation of
incompatible versions that cannot communicate.

Another argument against this strategy is that it represents a kind of
Òrepresentation integrationÓ step, which is analogous to the objectivist approach of
unifying all viewpoints into a single ÒcorrectÓ viewpoint. In other words, we are
conceptually moving away from the viewpoint-based approach.

Also consider that the end result of the database design process is usually the
generation of a database schema. If we are going to take our multiple representations
and transform them into a single representation anyway, it seems somewhat
unnecessary to introduce yet another representation into the mix, especially if the

10

ÒtargetÓ representation is one of the original set of representations (for example,
SQL).

A better approach for database design seems to be to perform transformations
between representations as needed. The total number of transformation ÒenginesÓ
required increases, but adding a new representation does not result in a new,
incompatible version. Also, as stated above, this approach is analogous to the way in
which viewpoints are handled. It may also provide other advantages to the schema
generation process which will be discussed in the next section.

FigureÊ6 illustrates an architecture which follows this strategy. The
transformations between representations are represented by the grey arrows; T1 and
T2 correspond to the two examples discussed earlier. Each representation is placed
into its own module, which handles all the needs of that representation. This
modular approach makes the environment much easier to extend.

Each module has a technique component, which deals with storage issues, and a
scheme component, which deals with the user interface. Technique components can be
shared across representations, as shown by the relational technique in FigureÊ6,
which is shared across two relational representation modules, one that uses SQL and
another that uses QUEL.

If such an architecture is used, we need to consider the issue of information
gain/loss when transforming from one model to another. Since different
representations may store different information, it would seem sensible to store
representation-specific information with that representation. When additional
information is required to complete a transformation, the environment must query
the developer in some way to obtain that information, if it is not possible to generate
it automatically.

Martin ERD

ERM Relational

FDD

FD

SQL

Schema
generation

Representation modules

Database

technique

scheme

T1

T2
QUEL

FigureÊ6. An architecture for a multiple representation
database design environment.

4. Implementation and further research

Implementation of an environment, as described in the previous section, has not yet
begun. It is planned that a preliminary implementation and results will be
completed by the time of publication. In the remainder of this section, we briefly

11

discuss some issues that were not covered in this paper and will be the focus of
further research.

4.1. Transformation issues

The initial version of the proposed database design environment discussed in this
paper will implement only a small number of transformations, in order to explore
the following issues before moving to a more thorough implementation:

¥ Information ÒgainÓ during a transformation must be dealt with in some way.
Some of this information may be able to be generated automatically; that
which cannot will require interaction with the user.

¥ Technique transformations are likely to be more difficult to deal with than
scheme transformations, because of the greater likelihood of differences in the
information that can be represented.

¥ If some schemes do not fully adhere to the technique they express, this raises
the question of how useful the transformations to, from and between these
schemes are.

¥ When a representation is modified, are the changes automatically propagated
to other representations, or should the user be required to do this manually?
Another related issue is revision management.

4.2. Formal analysis of transformation quality

Analysis of transformation quality has to this point been relatively informal and ad
hoc. This will be remedied in the near future by performing a more formal analysis
using the information capacity (Miller, Ioannidis et al. 1993) of various representations
as a qualitative measure of representation equivalence. Schema intension graphs
(Miller, Ioannidis et al. 1994) will be used to model schema instances from each
representation, and from this determine the equivalence (or lack thereof) of the
representations. The results of this analysis should be available by the time of
publication.

4.3. Additional representations

This paper has only discussed three main representations: the entity-relationship
approach, the relational model and functional dependencies. There are many other
formal and semi-formal representations that could be included in such an
environment, such as process modelling, object modelling, formal specifications and
so on. Inclusion of informal representations is another line of research, although this
could be difficult because of the unstructured nature of many such representations.

4.4. Schema generation

The issue of schema generation from multiple representations was introduced in
FigureÊ6 but not explored further. If we discard the notion of a uniform repre-
sentation, generating a schema becomes a multi-step process, in which we must
decide how to use the different representations. One approach is to refine the
generated schema in a stepwise fashion (FigureÊ7) using the information contained

12

within each representation description. We will denote the refinement operator by
the symbol ��.

ERM

Database

initial SQL

refined SQL

refined SQL

refined SQL

final SQL

Schema generation

transform

m
er

ge

FD

ERM

Process

ERD

FDD

ERD

DFD

1

2

1

2

3

4

5

 D2

 D3 D4

 D1

FigureÊ7. Schema generation from multiple representations.

The box labelled Òschema generationÓ in FigureÊ7 corresponds to the Òblack boxÓ
of FigureÊ6. The boxes labelled D1 through D4 in FigureÊ7 correspond to the
descriptions used in the first step of the refinement process. In this example, the
ÒsourceÓ representations consist of two ER representations, a functional dependency
representation and a process model representation expressed using a data flow
diagram. The ÒtargetÓ representation for schema generation is SQL. The first step is
to generate an initial SQL schema from the first ER representation (D1). The next step
is to normalise this description using the information contained within the FD
representation (D3). We denote these transformations as:

D1(V, ERM, ERD1)�D2(V,RM,SQL1)
D3(V, FD, FDD)

�D4(V,RM,SQL2)

This refinement process continues for each representation used to describe the
viewpoint, as shown in FigureÊ7. Because of the extra information that multiple
representations provide, this could result in a ÒbetterÓ schema than if we had
generated it from just a single representation, although it must be remembered that
not all of this extra information may be able to be represented in the target schema.

There is no particular significance to the order of refinements used in the
example above; indeed, a different order might prove more appropriate or efficient.
In addition, there is no need for all the steps to output the target representation.
Automatic optimisation of this process could be a particularly interesting area of
research. It is also possible that changing the refinement order may result in a
different final schema. Again, this may indicate a problem with the integrity of the
design.

13

5. Summary

In this paper, we discussed the concept of describing a developer viewpoint using
multiple representations. The advantage of such an approach is that the viewpoint
may be described more fully by using multiple representations than by using a
single representation. Such an approach could be implemented in a database design
environment by enabling the environment to support the transformation of
viewpoint descriptions from one representation to another. We discussed the issues
raised by such transformations, such as the integrity of the design produced and the
quality of the transformations in terms of information gained and/or lost, and
introduced a notation for describing operations on viewpoint descriptions. A
possible architecture for a database design environment that uses multiple
viewpoint representations was proposed and possible directions for future research
were discussed.

6. References

Brooks, F. P. (1975). The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, Reading, Massachusetts.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6).

Cunningham, R. J., A. C. W. Finkelstein, S. Goldsack, T. S. E. Maibaum and C. Potts
(1985). Formal requirements specification Ñ The FOREST project. In Proceedings of
the Third IEEE International Workshop on Software Specification and Design, London.

Darke, P. and G. Shanks (1995). Viewpoint development for requirements definition:
Towards a conceptual framework. In Proceedings of the 6th Australasian Conference on
Information Systems (ACIS Õ95), Perth, Australia, pages 277-288.

Date, C. J. and H. Darwen (1993). A Guide to the SQL Standard. Addison-Wesley,
Reading, Massachusetts, third edition.

Easterbrook, S. M. (1991a). Elicitation of requirements from multiple perspectives. PhD
thesis, Imperial College of Science Technology and Medicine, University of London,
London.
[http://research.ivv.nasa.gov/~steve/papers/thesis/thesis.ps]

Easterbrook, S. M. (1991b). Handling conflict between domain descriptions with
computer supported negotiation. Knowledge Acquisition: An International Journal, 3(4):
255-289.

Easterbrook, S. M., A. C. W. Finkelstein, J. Kramer and B. A. Nuseibeh (1994). Co-
ordinating distributed ViewPoints: the anatomy of a consistency check. Journal of
Concurrent Engineering: Research and Applications, 2(3).

Easterbrook, S. M. and B. A. Nuseibeh (1995). Managing inconsistencies in an
evolving specification. In Proceedings of the Second IEEE International Symposium on
Requirements Engineering (REÕ95), York, UK, pages 48-55.

14

Easterbrook, S. M. and B. A. Nuseibeh (1996). Using ViewPoints for inconsistency
management. Software Engineering Journal, 11(1): 31-43.

Evergreen Software Tools (1995). EasyCASE¨ Methodology Guide, Evergreen Software
Tools, Inc., Redmond, Washington, version 4.2.

Finkelstein, A. and I. Sommerville (1996). The viewpoints FAQ. Software Engineering
Journal, 11(1): 2-4.

Finkelstein, A. C. W., M. Goedicke, J. Kramer and C. Niskier (1989). ViewPoint
oriented software development: Methods and viewpoints in requirements
engineering. In Proceedings of the Second Meteor Workshop on Methods for Formal
Specification, Springer-Verlag.

Klein, H. K. and R. A. Hirschheim (1987). A comparative framework of data
modelling paradigms and approaches. The Computer Journal, 30(1): 8-15.

Kotonya, G. and I. Sommerville (1996). Requirements engineering with viewpoints.
Software Engineering Journal, 11(1): 5-18.

Leite, J. C. S. P. and P. A. Freeman (1991). Requirements validation through
viewpoint resolution. IEEE Transactions on Software Engineering, 17(12): 1253-1269.

Miller, R. J., Y. E. Ioannidis and R. Ramakrishnan (1993). The use of information
capacity in schema integration and translation. In Proceedings of the Nineteenth
International Conference on Very Large Data Bases (VLDB), Dublin, Ireland, pages 120-
133.

Miller, R. J., Y. E. Ioannidis and R. Ramakrishnan (1994). Schema intension graphs: A
formal model for the study of schema equivalence. Technical report CS-TR-94-1185,
Department of Computer Sciences, University of Wisconsin.
[http://www.cs.wisc.edu:80/Dienst/Repository/2.0/Body/ncstrl.uwmadison%2fC
S-TR-94-1185/postscript]

Pascoe, R. T. and J. T. Penny (1990). Construction of interfaces for the exchange of
geographic data. International Journal of Geographical Information Systems, 4(2): 147-
156.

Sallis, P., G. Tate and S. MacDonell (1995). Software Engineering: Practice Management,
Improvement. Addison-Wesley, Reading, Massachusetts.

Shaw, M. L. G. and B. R. Gaines (1989). Knowledge acquisition: Some foundation,
manual methods and future trends. In Proceedings of the Third European Workshop on
Knowledge Acquisition for Knowledge-Based Systems (EKAW-89), Paris.

Smith, H. C. (1985). Database design: composing fully normalized tables from a
rigorous dependency diagram. Communications of the ACM, 28(8): 826-838.

