
 
 

 
 
 
 

 
University of Otago 
Te Whare Wananga o Otago 

Dunedin, New Zealand 
 

 
 

Applications of Fuzzy Logic to Software Metric 
Models for Development Effort Estimation 

 
 
 

Andrew R. Gray 
Stephen G. MacDonell 

 
 
 
 

The Information Science 
Discussion Paper Series 

 
Number 97/10 

July 1997 
ISSN 1177-455X 

 
 

 



 
 University of Otago 
 
 Department of Information Science 
 
The Department of Information Science is one of six departments that make up the Division of Commerce at 
the University of Otago. The department offers courses of study leading to a major in Information Science 
within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the department is also 
strongly involved in postgraduate research programmes leading to MCom, MA, MSc and PhD degrees. 
Research projects in software engineering and software development, information engineering and database, 
software metrics, knowledge-based systems, natural language processing, spatial information systems, and 
information systems security are particularly well supported. 
 
 
 Discussion Paper Series Editors 
 
Every paper appearing in this Series has undergone editorial review within the Department of Information 
Science. Current members of the Editorial Board are: 
 

Assoc. Professor George Benwell Assoc. Professor Nikola Kasabov 
Dr Geoffrey Kennedy Dr Stephen MacDonell 
Dr Martin Purvis Professor Philip Sallis 
Dr Henry Wolfe 

 
 
The views expressed in this paper are not necessarily the same as those held by members of the editorial 
board. The accuracy of the information presented in this paper is the sole responsibility of the authors. 
 
 
 Copyright 
 
Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on the 
condition that the authors and the Series are given due acknowledgment. Reproduction in any form for 
purposes other than research or teaching is forbidden unless prior written permission has been obtained from 
the authors. 
 
 
 Correspondence 
 
This paper represents work to date and may not necessarily form the basis for the authors’ final conclusions 
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in 
conference proceedings in the near future.  The authors would be pleased to receive correspondence in 
connection with any of the issues raised in this paper, or for subsequent publication details.  Please write 
directly to the authors at the address provided below.  (Details of final journal/conference publication venues 
for these papers are also provided on the Department’s publications web pages: 
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm).  Any other 
correspondence concerning the Series should be sent to the DPS Coordinator. 
 

Department of Information Science 
University of Otago 
P O Box 56 
Dunedin 
NEW ZEALAND 
Fax: +64 3 479 8311 
email: dps@infoscience.otago.ac.nz 
www: http://divcom.otago.ac.nz:800/com/infosci/ 

 



To appear in Proceedings of NAFIPS’97

Applications of Fuzzy Logic to Software Metric Models for
 Development Effort Estimation

Andrew Gray
Software Metrics Research Laboratory

Department of Information Science
University of Otago, PO Box 56, Dunedin,

New Zealand
Agray@commerce.otago.ac.nz

Stephen MacDonell
Software Metrics Research Laboratory

Department of Information Science
University of Otago, PO Box 56, Dunedin,

New Zealand
Stevemac@commerce.otago.ac.nz

Abstract

Software metrics are measurements of the software
development process and product that can be used as
variables (both dependent and independent) in models for
project management.  The most common types of these
models are those used for predicting the development
effort for a software system based on size, complexity,
developer characteristics, and other metrics.   Despite the
financial benefits from developing accurate and usable
models, there are a number of problems that have not
been overcome using the traditional techniques of formal
and linear regression models.  These include the non-
linearities and interactions inherent in complex real-
world development processes, the lack of stationarity in
such processes, over-commitment to precisely specified
values, the small quantities of data often available, and
the inability to use whatever knowledge is available
where exact numerical values are unknown.  The use of
alternative techniques, especially fuzzy logic, is
investigated and some usage recommendations are made.

1. Introduction

In order to effectively develop software in an
increasingly competitive and complex environment many
organizations are making more and more use of software
metrics as part of their project management process.
Software metrics are aspects of software development
(either the software product itself, or the development
process producing that product) that can be measured [1].
These measurements can then be used as variables (both
dependent and independent) in models for predicting or
estimating some aspect(s) of the development process or
product that are of interest.  Models may also be

developed in the same manner and used for classification
or control tasks.

The most common application of software metrics is to
develop models that predict the effort (often measured in
person-hours or person-days) that will be required to
complete certain stages of a software system’s
development.  Generally speaking, such models are
developed once the users’ requirements have been
ascertained and the specifications outlining the system are
completed.  It is at this point that most traditional software
metrics can be derived from the available information.
Thus, the stages in the development life cycle that are
modeled are usually the physical design, programming
and testing phases.  There has also been some work
towards even earlier modeling of effort based on
requirements alone, such as [2].

Such models are of considerable importance to a
number of diverse stakeholders, for a wide range of
reasons. For the developer, manager, and user of any
software product the prediction of project effort
requirements is an extremely important activity [3,4].
The estimate arrived at frequently forms the basis for
contract negotiations, resource and personnel allocation
over the schedule, and charging for the project.  It enables
the project manager to plan, monitor and control the
subsequent development process.  It may have run-on
effects for the user, in that their operations may be
planned around the delivery of a particular supporting
software product.  Clearly then an accurate and robust
effort estimation model is desirable from all perspectives.

There are many other applications of software metric
models, such as assessing reusability, predicting
maintenance costs, and measuring system reliability.  The
remainder of this paper is concerned with predicting
development effort, but the results presented here apply in
general to other prediction tasks, and classification and
control models as well.
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2. Software metric models for effort
prediction

As an example of the use of software metrics in an
effort prediction system, the size of a computer system
could be measured in terms of the number of lines of
source code, or the number of screens and reports
contained in the specification.  Similarly, the complexity
may be measured in terms of the structure of the system,
such as call paths or, for object-oriented systems,
inheritance hierarchies.  Other metrics that may be of
interest include the quality of developers working on the
system, as may perhaps be assessed in terms of years of
experience, and the types of development and support
tools being used.  These descriptive measures of the
system and the development process are software metrics.
In the same way, the potential variables of interest here
such as the required developer effort for programming
and testing are also software metrics.  Such a model is
shown in Figure 1.

Software
Metric
Model

Effort
(Person
Hours)

System
Size

Developer
Characteristics

System
Complexity

Figure 1.  Software metric model for effort
estimation

A software metric model may now be developed using
data that contains some measures of system size and
complexity, and developer ability in order to predict the
effort required for various stages of the development life
cycle.  This is a fairly simple example of a model of what
is an immensely complex and dynamic system (the
process of developing software).  Many other variables
could be added, such as the reuse of previous systems, the
demands and requirements for the system (such as
maximum response time), the tools available, incentive
schemes, the size of the team, and even the leadership
style of the project manager.  It should be noted that effort
is the sum of developers’ time spent on the project, and is
distinct from the duration of the project.

Such predictive models are usually developed using
linear regression analysis on available historical data for
sufficiently similar projects, although there has been
increasing use of other techniques, most notably fuzzy
logic models [5], regression trees [6], neural networks [7],
and case-based reasoning [8].  A useful summary of these
techniques and their application to software metric
modeling can be found in [9].  Predictions can then be
made for new system development projects using the

resulting model as the independent variables are estimated
or become known for certain.

3. Difficulties with current models using
software metrics

A number of difficulties with the current use of formal
and linear regression models can be identified.  Some of
the major problems are discussed below.

3.1. Providing exact values for inputs

A major problem that exists with such models is the
difficulty project managers face in specifying the exact
values for the metrics used as inputs.  Often they must use
values that they anticipate will eventuate, since for many
metrics the actual value is never known with certainty
until the project is completed.  Accurate specification of
such independent variables is next to impossible for
lower-level metrics such as source code length.  Even
higher level metrics such as the number of screens and
reports can change greatly during development as the
users’ requirements are refined and better understood, or
for some reason simply change.  Using such models
therefore demands a level of accuracy in prediction from
project managers that is rarely possible early in the project
life cycle, the very time that planning is most crucial.

3.2. Over commitment

The outputs from such models are almost always crisp
values and this often leads to overconfidence in both the
accuracy and precision of the results.  When, for example,
the dependent variable is predicted as 7120 developer
hours (or even worse as 7121.6 developer hours), there is
a risk that this value becomes sacred.  This can lead to
development time being wasted in the event of an
overestimate, and requirements remaining unfulfilled or
the project going over schedule to an even greater extent
where the effort is underestimated.  While confidence
intervals can be developed, this is rarely undertaken, and
given the small data sets available, often with skewed
distributions, the intervals are often questionable in any
event.  The practice of rounding such values can be used,
but the more precise values are still generally available,
and even rounded values can be taken as accurate even
though precision is removed.

3.3. The size of data sets

The next problem to be discussed here is that of the
small data set size that is generally available for
developing such models.  While a larger organization may
develop hundreds of systems in a year, they will often be
so heterogeneous that relatively few can be used for
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predicting for certain types of systems.  In addition, the
non-stationarity of the contemporary software
development process ensures that new programming
languages, development environments, hardware
platforms, and methodologies will emerge on a constant
basis, making the available data less relevant.  When high
quality data is available in sufficient quantities, its
proprietary nature generally leads to organizations being
reluctant to allow its dissemination.

Many of the data sets used for software metrics are
collections of projects from different organizations,
thereby introducing additional sources of variation.  Even
where a large number of data sets may have been
collected on sufficiently similar systems to permit a
proper model development process, the data is often
contaminated by outliers (either through measurement
error or unusual system or project characteristics) and
inaccuracies.

Thus the developer of a software metric model is faced
with the need to develop, calibrate, and validate a model
of an exceptionally complex process without the benefit
of large quantities of accurate or representative data.

3.4. Interpretability of models

The final problem discussed here is that of specifying
models in such a way that they retain some intuitiveness
while including a sufficient subset of influential
independent variables, and their interactions, to provide
the required level of accuracy.  The intuitiveness of a
software metric model is often vital for it to gain
acceptance by project managers.  In order to provide the
necessary level of comprehensibility models in the past
have often been linear equations with a small number of
independent variables.  These models usually ignore the
potential non-linearity of the relationships, the
interactions between the independent variables, and the
less important, but nonetheless influential, variables that
cumulatively may be capable of explaining considerable
variation in the dependent variable.

4. A fuzzy-logic approach to software metrics
and models

The solution that is suggested here to, at least partially,
overcome the previously mentioned problems is to use
fuzzy logic variables for the metrics and models.  In
general it is considered that project managers can fairly
readily specify independent variables in software metrics
models using linguistic labels, such as a large number of
screens and a low level of system complexity, in the early
stages of estimation.  It is also considered that such
models provide considerable benefits in terms of reducing
commitment, making full use of knowledge, and
improving interpretability.  In [5] the bold statement is

made, that not only is fuzzy logic useful for effort
prediction, but that it is essential in order to improve the
quality of current estimating models.

4.1. Fuzzy labels as independent variables

Since many of the independent variables in software
metric models are either difficult to quantify (for example
complexity), or are only known to a rough degree (such as
system size), the use of fuzzy variables seems intuitively
appealing.  It is our conjecture here that project managers
are in fact able to classify systems using fuzzy variables
with reasonable levels of both accuracy and consistency.

While complexity can be defined in an algebraic sense,
and in fact it has been defined in a large number of ways
in the past, such formal definitions are always to some
extent arbitrary.  The software metrics literature is filled
with debates as to the relative merits, and demerits, of
various definitions.  It is instead suggested here that
complexity is a multifaceted concept, but that experienced
project managers would be able to make fairly consistent
classifications of projects in terms of one or a small
number of types of complexity.  This has the added
advantage of reducing the number of variables used as
inputs into the model.  This point is discussed further later
in the paper in terms of work in progress.

4.2. Reducing commitment through fuzzy outputs

Particularly at the very early stages of a software
development project, estimating to within one person-
hour or person-day is simply not realistic.  Instead, a
fuzzy system may be used to transform linguistic labels,
or numerical values, indicating system size and
complexity, personnel experience, and other factors of
influence into an equally imprecise (but adequate for its
purpose) label indicating predicted effort, for example
very high.  While this approach may well be imprecise,
this is justified and should ensure that personnel
associated with the project do not attach unwarranted
accuracy to the figures produced.  As the project
progresses and a greater degree of certainty is established
in relation to the scope of the project (and also as data
starts to become available), then more precise indicators
of effort may be formulated, either through more and
smaller membership functions or allowing for numerical
defuzzification. There is an inherent trade-off in the
development of effort estimation models; is it better to be
approximately correct most of the time or precisely
inaccurate all of the time?

4.3. Better use of knowledge and data

Since a fuzzy logic model can be initialized with
expert rules, and given that the movement of membership
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functions and rules can be limited, it is possible that such
a model will perform significantly better than alternatives
such as regression and neural network models given small
quantities of data.

4.4. Model interpretability

One final point that deserves mention is that the
application of fuzzy logic to the estimation problem
allows for model transparency.  A fuzzy system provides
the potential for those involved to view, evaluate,
criticize, and even adapt the models.  This is not always
possible in statistical or other machine learning modeling
approaches.

5. Empirical case study

The case study below is based on actual project data
from [10].  The data set includes measures of:

� project effort
� project duration
� levels of experience with equipment
� levels of experience in project management
� numbers of basic transactions
� numbers of data entities
� raw and adjusted function point counts, which are

a standard method for counting the functional size
of a system, with adjustments for complexity also
possible.

Although the data is quite real, it is used here mainly to
illustrate the capabilities and drawbacks associated with
the various analysis methods available.  Four approaches
are compared: Function Point Analysis (which is a formal
model), regression techniques, feedforward neural
networks, and finally fuzzy logic.  The results for the
Function Point Analysis, regression models, and neural
network models have been previously reported in more
detail in [11].

The issue of making the fullest use of information
available, which is one area where fuzzy logic excels, is
difficult to illustrate in a post-hoc case study.  Since fuzzy
variables are not available for earlier in the projects’ life
cycles, the accuracy of such models can not be shown
here.  It is regarded that such models would have
performed comparatively well, since the other techniques
depend more on the availability of data from later in the
development life cycle.

Many different methods for estimating a model’s
goodness for prediction are available.  These include the
many forms of correlation (R2, adjusted R2, R2 adequate),
Akaike Information Criterion, Bayesian Information
Criterion, and mean square error.  A set of indicators is
commonly used in metrics analysis to indicate the
adequacy of a predictive model; namely the mean
magnitude of relative error and the threshold-oriented

pred measure.  Both of these are used in this case study on
a validation data set (27 of the total 81 observations) for
each technique.

The magnitude of relative error (MRE) is a measure of
the difference between the actual values of the dependent
variable (VA) and the predictions of the model (VF):

MRE
V V

V
A F

A

=
−

The mean MRE (MMRE) is therefore the mean value
for this indicator over all observations in the sample.  For
software development project management relative errors
are often a better judge of the model’s accuracy.

The pred measure provides an indication of overall fit
for a set of data points, based on the MRE values for each
data point:

pred l
i

n
( ) =

where l is the selected threshold value for MRE, i is the
number of data point with MRE less than or equal to l,
and n is the total number of data points.  As an
illustration, if pred (0.25) = 30%, then we can say that
30% of the fitted values fall within 25% of their
corresponding actual values.

The various techniques for modeling are now
discussed in some detail with explanations provided as to
how the final models were selected.

5.1. Function points

Function points are currently the most commonly used
formal software metric modeling technique.  Function
Point Analysis (FPA) [12,13,14] provides a well-
established method for the relatively early (post
specification) assessment of system scope.  Several
versions of FPA have emerged, with specialized versions
also created for particular types of systems.  These are all
based on various transaction-oriented system
requirements characteristics.

In many respects FPA already contains some degree of
fuzziness, with levels of complexity recognized for
functions.  Although FPA is not without its potential
problems, especially inter-rater subjectivity which tends
to be very high, it remains one of the most widely used
methods for modeling software development.

Two versions of FPA are shown here.  The standard
use of FPA for effort prediction is to use the historical
mean effort per function point.  This is complemented
here by the use of the median effort per function point,
which is a more robust estimator.
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5.2. Linear regression

Two forms of linear regression are illustrated here.
Firstly, standard least squares (LS) is used as a
demonstration of the most commonly used technique for
developing software metric models.  Secondly, least
median squares (LMS, a robust regression technique that
uses weighted regression to remove outliers) is illustrated.
The two cases differ only in terms of the goal function
that they attempt to minimize, namely the mean square
error and median square error respectively.

In both cases stepwise procedures were used to select
linearly influential variables, with no interaction terms
entered.  Both models resulted in a simple linear equation
involving a constant term and the unadjusted function
points.

5.3. Feed-forward neural network

Neural networks have been applied to software metric
modeling in a large number of papers and the results have,
in general, been favorable to this particular technique
where sufficiently large data sets have been available.

The Multi-Layer Perceptron (MLP) networks were
trained using two-thirds of the 54 model-development
observations for training, and one-third for a testing set.
Training was stopped when the testing error was
minimized, and the lowest testing error was also used to
select the particular network architecture.

5.4. Fuzzy logic

A significant motivation for using fuzzy logic is not
under the circumstances of the following post-hoc
analysis, but rather in the ability to estimate required
effort much earlier in the development process.

For this analysis, the two most influential variables
were selected as the raw function points count and the
associated complexity adjustment factor.  These were
divided into three equi-spaced triangular membership
functions for small, medium, and large size or complexity.
The same procedure was then carried out for the effort
data.  An experienced software developer was then asked
to provide the initial set of nine rules, which were then
hand-adjusted in consultation with the expert to achieve a
better fit to the training data set.

5.5. Comparison of techniques

Each technique’s best model was then used to predict
for the remaining 27 observations in the validation set.
As can be seen in the results in Table 1 and Figure 2, the
most accurate model in terms of MMRE is the neural
network, followed by the fuzzy logic model.  This is to a
large extent due to the non-linearities and interactions

present in the data set, which is barely large enough for
such features to be taken into account with regression
analysis.  However, in terms of classification accuracy,
the neural network model is fairly comparable to the least
squares regression model after outlier removal from the
training and testing data based on residual analysis.

Table 1.  Comparison of results

Method MMRE pred(10) pred(25)
FPA estimation
(mean-based)

0.70 4% 22%

FPA estimation
(median-based)

0.89 19% 41%

LS regression 0.86 15% 41%
LS regression
(no outliers)

0.88 30% 56%

LMS regression 0.85 7% 41%
Neural network 0.44 26% 63%
Fuzzy logic 0.54 7% 30%
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Figure 2.  Comparison of results

Clearly these performance indicators are not in
themselves very encouraging and one would hope for
much more accurate predictions in order to effectively
manage the development process.  The objective of this
case study, however, was to compare a selection of
analysis methods using the same data set, so as to
emphasize the potential of the various analysis options
and their capacity to provide effective general models for
estimation.

Again it is stressed that the numerical accuracy of such
models is not the only selection criteria that should be
used.  The ability of fuzzy logic to avoid over-
commitment to particular predictions and its
interpretability needs to be kept in mind, as does the
simplicity of the regression models.
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6. Other aspects of using fuzzy variables for
software metric models under investigation

The current study represents only the initial stage in a
longer-term project to assess the suitability of, and
develop models using, fuzzy logic in software metric
modeling.  A range of data sets has been collected and is
currently being analyzed using a variety of modeling
techniques including fuzzy logic.

An important requirement for using models with
linguistic inputs is that project managers are indeed able
to specify such inputs in a reliable and consistent manner.
In order to assess the truth of this assumption a number of
experienced developers are being asked to describe
aspects of systems based on specification documentation.
The only known study of the consistency of such rankings
is [15] where on a very small data set they found some
consistency in metrics for source code analysis.

Work is also currently underway to ascertain how best
to gather this information from software development and
project management experts.  Three main areas arise in
this problem: the selection of appropriate experts, the
techniques used to gather information from such experts,
and the approach to performing the knowledge acquisition
task [16].  The technique currently favored is providing
the experts with some understanding of fuzzy logic, and
then walking them through the creation of membership
functions and matrices of rules.

Finally, work on automatically extracting the fuzzy
rules from the available data and on fine-tuning expert-
provided rules using such data is being investigated.

7. Conclusions

The idea of using fuzzy logic for defining software
metrics as linguistic variables and for the modeling
process has been outlined in this paper.  The motivation
for this has been the difficulties faced by software
metricians in terms of avoiding premature and costly
commitment, using all available knowledge, having only
small data sets to work with, and also the need for
transparent models.

Compared to other techniques the fuzzy logic model
developed for the case study shows good performance,
being out-performed in terms of accuracy only by the
neural network model with considerably more input
variables.  Given the other advantages of a fuzzy logic
model this suggests that there is a place in the field of
software metrics for such models.
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