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Abstract. The paper introduces one paradigm of neuro-fuzzy techniquesand an

approach to building on-line, adaptive intelligent systems. This approach is called

evolving conncctionist systems (ECOS). ECOS evolve through incremental, on-

line learning, both supervised and unsupervised. They can accommodate new

input data, including new features, new classes, etc. The ECOS framework is
presented and illustrated on a particular type of evolving neural networks ~

evolving fuzzy neural networks. ECOS are three to six orders of magnitude faster
than the multilayer perceptrons, or the fuzzy neural networks, trained with the

backpropagation algorithm, or with a genetic programming technique. ECOS

belong to the new generation of adaptive intelligent systems. This is illustrated on

several real world problems for adaptive, on-line classitication, prediction,
decision making and control: phoneme-based speech recognition; moving person
identification; wastewater  time-series prediction and control; intelligent
agents; financial time series prediction and control. ’I‘ he principles of recurrent
ECOS and reinforcement learning are outlined.

Key words: evolving neuro-fuzzy systems; fuzzy neural networks; on-line

adaptivecontrol; on-line decision making; intelligent agents

1. Introduction: Adaptive, on-line, incremental learning ~

problems with the conventional neuro=fuzzy techniques and
seven requirements to the next generation of intelligent systems

The complexity and the dynamics of many real-world problems, especially in

engineering and manufacturing, require using sophisticated methods and tools for

building on~line, adaptive decision making and control systems. Such systems
should be able to þÿ ��g�r�o�w �as they Work, to build-up their knowledgeand rctine the
model through interaction with the environment. Many developers and

practitioners in the area of neural networks (NN), fuzzy systems (FS) and hybrid
neuro-fuzzy techniques have enjoyed the power of these, now traditional
techniques,when solving AI problems. At the same time they have noticed several

I
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difficulties when these techniques are applied to real world problems, such as

speech and image recognition, adaptive prediction, adaptive on-line control,

intelligent agents. These tasks usually require flexible learning and dynamically
adaptive intelligent systems (IS) that have þÿ ��o�p�e�n �structures and are able to process

both data and knowledge.
Seven major requirements(that are addressed in the ECOS framework presented

later) are listed below:

(I) An IS should be able to learn quickly from large amount of data therefore

using fast training, e.g. þÿ ��o�n�e�-�p�a�s�s �training.
(2) An IS should be able to adapt in a real time and in an on-line mode where new

data is accommodated as it comes.

(3) An IS should have an þÿ ��o�p�e�n �structure where new features (relevant to the task)

can be introduced at a later stage of the þÿ�s�y�s�t�e�m ��soperation,e.g., the system creates

þÿ ��o�nthe þÿ�f�l�y �new inputs, new outputs, new connections and nodes.

(4) An IS should be able to accommodate in an incremental way everything that

is, and that will become, known about the problem, i.e. in a supervised or

unsupervised mode, using one modality or another, accommodating data, rules,

text, image, etc.

(5) An IS should be able to learn and improve through active interaction with

other ISS and with the environment in a multi-modular, hierarchical fashion.

(6) An IS should adequately represent space and time in their different scales;

should have parameters to represent short- and longterm memory, age, forgetting,
etc.

(7) An IS should be able to analyse itself in terms of behaviour, global error and

success; to explain what it has learned and what it þÿ�k�n�o�w�s �about the problem it is

trained to solve; to make decisions about its own improvement.
When designing IS that meet fully, or even partially, the above seven

requirements, one should take into account what is known about the nervous

system and the human brain, especially in ease the brain is the best þÿ�I�S �for the task

(e.g. image and speech recognition, object identification, language acquisition).
An IS should, if necessary, incorporate in its structure and behaviour principles
from the living organisms and the human brain.

It is unlikely that unless the above seven problems are addressed in the current

and the future theory of IS, there will be a significant progress achieved in areas

such as adaptive speech recognition and language acquisition, intelligent agent

SySlGlYtS,adaptive intelligent prediction and control systems, mobile robots, visual

monitoring systems, multi-modal information processing,and many more.

In respect to the above seven issues, the theory and the practice ol’ the IS

development have not gone much farther than other computationaland modelling

techniques, for example the þÿ ��g�o�o�d�,þÿ�o�l�d �statistical methods. However some of the

above seven issues have been acknowledged and addressed since the early phases
of the development of the NN, FS and IS. Several NN theories, models and

methods for adaptive learning and dynamical modification of the NN structures

have been introduced so far (some of them referenced below).
Even though a learning algorithm of a NN strongly relates to the NN structure,

the þÿ ��d�u�a�l�i�s�m �of the learning and the structure still exists and many conncctionist
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methods deal with the ’learning þÿ�o�n�l�y �issue, another - with the structure þÿ�o�n�l�y �
issue. Some of the references below are given in the respect.iveaspect, i.e.

learning, or structure.

Adaptive learning is aiming at solving the well~known stability/plasticity
dilemma [8]. Methods for adaptive learning fall into three categories, namely
incremental learning, lifelong learning, and on-line learning.

Incremental learning is the ability of a NN to learn new data without destroying
(or at least fully destroying) the learned patterns from old data and without a need
to be trained on both old and new data. Significant progress in incremental

learning has been achieved due to the Adaptive Resonance Theory (ART) [8,9,l0]
and its various models, that include unsupervised models (ART1, ART2,
FuzzyART) and supervisedversions (ARTMAP, Fuzzy ARTMAP- FAM).
Lyclong learning is concerned with the ability of a system to learn during its
entire existence in a changing environment. Growing as well as pruning are

involved in the learning process.
On~line learning is concerned with learning data as the system operates (usually

in a real time) and the data might exist only for a short time. Methods for on-line

learning in NN are studied in [l,17,2O,26,38,64].These methods unfortunately do

not deal with dynamically changing structures.

What concerns the issue of the NN structure, the birrsfvariance dilemma has
been acknowledged by several authors [8.29] The dilemma is concerned with the
fact that if the structure of a NN is too small, the NN is biased to certain patterns,
and if the NN structure is too large there are too many variances that result in

over-training, poor generalisation, etc. In order to avoid this problem, a NN (or an

iS) structure should changedynamically during the learning process thus better

representing the patterns in the data and the changes in the environment. In terms

þÿ�o�l �dynamically changing IS structures, there are three approaches taken so far,
constructivism, selectivism, and a hybrid approach [29].

Constructivism is about developingNN that have a simple initial structure and

grow during its operation through inserting new nodes. This theory is supported
by biological facts [61]. The insertion can be controlled by either a similarity
measure, or by the output error measure, or by both. A measure of difference
between an input pattern and already stored ones is used to insert new nodes in
ARTl and ART2 [8]. There are other methods that insert nodes based on the
evaluation ofthe local error: the Growing Cell Structure and Growing Neural Gas

[18], Dynamic Cell Structures. Other methods insert nodes based on a global error

evaluation of the performance of the whole NN. Such method is the Cascade-
Correlation [16]. Methods that use both similarity and output error for node
insertion are used in Fuzzy ARTMAP [10].

Selecrivism is concerned with pruning unnecessary connections in a NN that
starts its learning with many, in most eases redundant, connections [60,62}.
Pruning connections that do not contribute to the performance of the system can

be done by using several methods: Optimal-Brain Damage [53], Optimal Brain

Surgeon [25], Structural Learning with Forgetting [27,5(),5l,57], Training-and
Zeroing [39], regular pruning [11]. Both growing and pruning is used in [66].
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Genetic algorithms (GA) and evolutionary computations have been widely used

for optimising the structures of NNs and IS [l9,44,59]. GAs are heuristic search

techniques that find the optimal or near optimal solution from a solution space

[21,58,59]. They utilise ideas from Darwinism [l5]. Unfortunately. most ofthe

evolutionary computation methods developed so far assume that the solution space
is fixed, i.e. the evolution takes place within a pre-defined problem space and not

in a dynamically changing and open one, thus not allowing for real on-line

adaptation. The implementationsso far have been also very time-consuming that

also prevent them from being used in real-time applications.
Some of the above seven issues have already been addressed in the so called

knowledge~based neural networks (KBNN) [22,54,67,74]. Knowledge is the

essence of what an IS system has learned [58]. KBNN are neural networks pre-

structured in such a way that allows for data and knowledge manipulation, which

includes learning from data, rule insertion, rule extraction, adaptation and

reasoning. KBNN have been developed either as a combination of symbolic AI

systems and NN [22,70], or as a combination of fuzzy logic systems [80] and NN

[l(),24,28,37,40,54]. Rule insertion and rule extraction operations are examples of

how a KBNN can accommodate existing knowledge along with data, and how it

can þÿ�e�x�p�l�a�i�n �what it has learned. There are different methods for rule extraction

well experimentedand broadly applied so far [4,37,4O,49,54].
There has been a fast development of hardware systems that support the

implementation of adaptive intelligent systems. Such hardware systems are the

cellular automata systems, e.g. the evolutionary brain-building systems [l4}.
These systems grow through connecting new and new neighbouring cells in a

regular cellular structure. Simple rules, embodied in the cells, are used to achieve

the growing effect. Unfortunately the rules do not change during the evolution of

the hardware systems, thus making the adaptation of the growing structure limited.

Field programmable gate arrays (FPGA) is another methodology and technology
for implementing growing, adaptive intelligent systems (see the two chapters at

the end of this volume). In order to utilise fully this technology, new methods for

building on-line, adaptive, incrementally growing and learning systems are

needed.

Despite of the successfully developed and used NN, FS, GA, hybrid systems
and other IS methods for adaptive training, radically new methods and systems are

required both in terms of learning algorithms and structure development in order

to address the seven major requirementsto the future IS. A model called ECOS

(Evolving COnnectionist Systems) that addresses all seven issues above is

introduced in the paper, along with a method of training called þÿ ��E�C�O �training. ’I‘he

major principles of ECOS are presentedin section 2 The principles of ECOS are

applied in section 4 to develop evolving fuzzy neural network model called

EFuNN. Several learning strategies of ECOS and EFuNNs are introduced in

section 5. In the following sections ECOS and EFUNNS are applied to several

bench mark problems as well as to real world tasks such as adaptive phoncme
recognition, on-line voice and person identification in a noisy environment,

adaptive learning of a stock index through intelligent EFuNN-based agents. Some
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biological motivations for the development of ECOS are given in section ll.
Section 12 gives briefly directions for further developmentof ECOS.

2. ECOS ~ Evolving Connectionist and Fuzzy -Conneetionist
Systems

ECOS are systems that evolve in time trough interaction with the environment, i.e.
an ECOS adjusts its structure with a reference to the environment (fig.l). A block
diagram ofthe ECOS framework is given in iig.2 [33].

Environment

-*EI-->
ECOS

+

lnputs  

Fig.1. ECOS evolve through interaction with the environment

ECOS are multi-level, multi-modular structures where many modules are

connected with inter-, and intra- connections. The evolving connectionist system
does not have a þÿ ��e�l�e�a�r �multi-layer structure. It has a modular þÿ ��o�p�e�n �structure. The
main parts of an ECOS are described below.
(I) Presentation part. It performs liltering of the input information, feature
extraction and forming the input vectors. The number of inputs (features) can vary
from example to example.
(2) Representation and memory part, where information (patterns) are stored. It is
a multi~modular, evolving stmcture of NN modules organised in spatially
distributed groups (NNG); for example one group can represent the phonemes in a

spoken language(one NN representingone class phonemc).
(3) Higher level decision part. It consists of several modules, each takin decision
on a particular problem (e.g., word recognition, face identification). The modules
receive a feedback from the environment and make decision about the functioning
and the adaptation ofthe whole ECOS.

(4) Action part. The action modules take the output from the decision modules and
pass information to the environment.

(5) Seqianalysis, and rule extraction modules. This part extracts compressed
abstract information from the representation modules and from the decision
modules in different forms of rules, abstract associations, etc.
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Initially an ECOS is a mesh of nodes (neurons) with very little connections

between them, pre-defined through prior knowledge or þÿ�g�e�n�e�t�i�c �information.

Initial set of rules can be inserted in this structure. Gradually, through self~

organisation, the system becomes more and more þÿ ��w�i�r�e�d�’�.The network stores

different patterns (exemplars) from the training examples. A node is created and

designated to represent an individual example if it is significantly different from

the previously used examples (with a level of differentiation set through

dynamically changing parameters).
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Fig.2. A block diagram of ECOS

The functioning of the ECOS from lig.2 is based on the following general

principles.
(1) Input patterns are presented one by one, in a pattern mode, having not

necessarily the same input feature sets. After each input example is presented,the

ECOS either associates this example with an already existing rule (case) node, or
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creates a new one. A NN module, or a neuron is created when needed at any time
of the functioning of the whole system.

(2) The representation module evolves in two phases.In phase one, input vector

X is passed through the representation module and the case (rule) nodes become
activated based on the similarity between the input vector and their input
connection weights. If there is no node activated above a certain sensitivity
threshold (Sthr) a new rule neuron (rn) is created and its input weights are set

equal to the values of the input vector x and the output weights are set to the

desired output vector. In phase two, activation from either the winning case

neuron ("one-out of-n" mode), or from all case neurons that have activation values

above an activation threshold (Athr) ("many-of-on" mode) is passed to the next

level of neurons.

Evolving can be achieved in both supervised and unsupervised modes. In a

supervised mode the final decision on which class (e.g., phoneme) the current

vector x belongs to, is made at the higher-level decision module that may activate
an adaptation process. Then the connections of the representation nodes to the

output nodes, and to the input nodes, are updated with the use of learning rate

þÿ�c�o�e�j�j ��i�c�i�e�n�t�slr/ and lr2, correspondingly. If the activated output neuron (e.g., a

class node) is not the desired one, then a new rule (case) node is created. The
feedback from the higher-level decision module goes also back to the feature
selection and iiltering part. If necessary, new features may be introduced in the

current adaptation and evolving phase.In an unsupervisedmode a new case node
is created if there is no existing case node, or existing output node, that are

activated above Sthr and an output threshold Othr respectively. The parameters
Sthr, iri, lr2, Errthr, Athr and Othr can changedynamically during learning.

(3) An ECOS has a pruning procedure defined. It allows for removing neurons

and their corresponding connections that are not actively involved in the

functioning of the ECOS (thus making space for new input patterns). Pruning is
based on local inlormation kept in the neurons. Each neuron in ECOS keeps a

þÿ�t�r�a�c�k �of its þÿ ��a�g�e�‘�.its average activation over the whole lite span, the global error it
contributes to, and the density of the surrounding area of neurons. Pruning can be

performed through applying the following fuzzy rule:
IF case node (j) is OLD, and the average activation of (j) is LOW and the

density ofthe neighbouring area of neurons is HIGH or MODERATE, and the

sum of the incoming or outgoing connection weights is LOW THEN the

probability if pruning node (j) is HIGH.

(4) The case neurons are spatially organised and each neuron has its relative

spatial dimensions in regards to the rest ofthe neurons based on their reaction to

the input patterns. If a new rule node is to be created when an input vector x is

presented, than this node will be allocated closest to the neuron that had the

highest activation to the input vector x, even though not sufficiently high to

accommodate this input vector.

(5) There are two global modes of learning in ECOS:

(a) Active learning mode - learning is performed when a stimulus (input pattern) is

presented and kept active.
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(b) þÿ ��E�C�O �training mode ~ learning is performed when there is no input pattern

presentedat the input of the ECOS. In this case the process of further elaboration

ofthe connections in ECOS is done in a passive learning phase, when existing
connections that store previous input patterns are used as eco~training examples.
The connection weights that represent stored input patterns are now used as

exemplar input patterns for training other modules in ECOS. This type of learning
with the use of þÿ ��e�c�h�o �data is called here ECO training. There are two types of

ECO training:
(i) cascade eco~training; in cascade eco training a new NN module is created in an

on~line mode when conceptually new data (e.g., a new class data) is presented.
The module is trained on the positive examples of this class, plus the negative
examples ofthe following different class data, and on the negativeexamples of

previously stored patterns in previously created modules taken from the

connection weights of these modules.

(ii) þÿ�s�l�e�e�p �eco-training; in sleep eco training mode, modules are created with part
of the data presented (e.g., positive class examples).Then the modules are trained

on the stored in the other modules patterns as negative examples (exemplars).
(6) ECOS provide explanation information extracted from the structure of the

NN modules. Each case (rule) node can be interpreted as an IF-THEN rule as it is

in the FuNN fuzzy neural network [37,40,41].
(7) ECOS are biologically inspired. Some biological motivations are given in

section ll.

(8) The ECOS framework can be applied to different types of NN (different
neurons, activation functions ete.), FS, IS, One realisation ofthe ECOS framework

is the evolving fuzzy neural network EFuNN and the EFUNN algorithm as given
in [33,34,35,36‘] and in section 4. Before the notion þÿ�o�l �EFuNNs is presented, the

notion of FuNNs is presented in the next section {37,41].

3.Fuzzy Neural Networks FuNNs

3.1. The F uNN architecture and its functionality

Fuzzy neural networks are neural networks that realise a set of fuzzy rules and a

fuzzy inference machine in a connectionist way l24,28,37,4l,54,79]. FuNN is a

fuzzy neural network introduced in [37,38,39,40} and developed as FuNN/2 in

l4l]. It is a connectionist feed-forward architecture with five layers of neurons and

four layers of connections. The first layer of neurons receives the input
information. The second layer calculates the fuzzy membership degrees to which

the input values belong to predefined fuzzy membership functions, e.g. small,

medium, large. The third layer of neurons represents associations between the

input and the output variables, fuzzy rules. The fourth layer calculates the degrees
to which output membership functions are matched by the input data, and the fifth

layer does defuzzification and calculates exact values for the output variables. A

FUNN has features of‘ both a neural network and a fuzzy inference machine. A

simple FuNN structure is shown in lig.3. The number of‘ neurons in each of the

layers can potentially change during operation through growing or shrinking. The
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number of connections is also modifiable through learning with forgetting,
zeroing, pruning and other operations [39,48,49].

The membership functions (MF) used in FUNN to represent fuzzy values, are oi

triangular type, the centres of the triangles being attached as weights to the

corresponding connections. The MF can be modilied through learning that

involves changing the centres and the widths of thc triangles.

rule(cas
.- ea) nnrlnc

0 .

inputs \ Q/  þÿ � Oll pllf

/Q \ K //

 f e  
 ..m_____.§§_1i:;)§Qff.___T_:@

Fig. 3. A FUNN structure of 2 inputs (input variables), 2 fuzzy linguistic terms for each

variable (2 membership tunctions). The number of the rule (case) nodes can vary. Two

output membership tiinctions are used for the output variable.

Several training algorithms have been developed for FUNN [4l,44,48]:

(a) A modified back-propagation (BP) algorithm that does not change the input
and the output connections representingmembershipfunctions (MF).
(b) A modified BP algorithm that utilises structural learning with forgetting, i.e. a

small forgetting ingredient, e.g. l0‘5, is used when the connection weights are

updated (see also [27,5()]).
(e) A modified BP algoritlnn that updatesbeth the inner connection layers and the

membership layers. This is possiblewhen the derivatives are calculated separately
for the two parts of the triangular MF. T hose are also the non-monotonic

activation functions of the neurons in the condition element layer.
(d) A genetic algorithm l‘or training
(e) A combination of any of the methods above used in a different order.

Several algorithms for rule extraction from FuNNs have been developed and

applied [37,4(),49]. One of them represents each rule node of a trained FuNN as an

IF-THEN fuzzy rule.

FuNNs have several advantages when compared with the traditional

connectionist systems, or with the fuzzy systems:

(a) They are both statistical and knowledge engineering tools.

(b) They are robust to catastrophic forgetting, i.e. when they are further trained on

new data, they keep a reasonable memory of the old data.

(c) They interpolate and extrapolate well in regions where data is sparse.

(d) They accept both real input data and fuzzy input data representedas singlctons
(centres of the input membershipfunctions))
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3.2. Applications of FUNNS as both statistical and knowledge engineering
tools

The above listed features of FuNNs make them universal statistical and

knowledge engineering tools. Many applications of FuNNs have been developed
and explored so far: pattern recognition and classification [42,43]; dynamical
systems identification and control [34,48]; modelling chaotic time series and

extracting the underlying chaos rules [32,48,49], prediction and decision making
[34,3l]. The functioning ot‘FuNNs is illustrated here on a case study problem of

modelling and predicting the NZ SE40 stock index. The NZSE40 index is an

aggregatedindex of the strongest NZ stock indexes. Its analysis shows that the

index can be in different states at different time intervals (e.g., random, bullish,
chaotic). A good prediction model should perform better than the random walk

method even if the index is slightly different from a random fluctuation. A FuNN

trained with the structural learning with forgetting algorithm is used for the

prediction of SE40 as published in [32]. Ten time»lags have been initially set in

the training data. After training with forgetting and a consecutive pruning, only
four rule nodes are left, which suggests that the rest of the nodes and connections

are not important for the prediction task. The results are better than the obtained

by using the random walk method.

Here an experiment is presentedwith the use of a selected data set from the

SE40 data (see http://c@np§tagQ4ae.nz18QQcom/infgsci/I§EL&9me.htm) - fig.4.
Three input variables are used to describe the SE40 time series: (1) the change in

the current day value, dS(t)= S(t) - S(t~l), (2) the change in the l0 days moving
average, dMAl0(t)= MAlO(t) - MAl0(t-1); (3) the change in the 60 days moving
average, þÿ�d�l ��v�i�A�6�0�(�t�)�=MA60(t) - lviA60(t-l). The output variable is the change
dS(t+l) of the NZSE40 on the next day. Five MFS for each of the variables are

used. The trained FUNN has the following architecture: 3~15~l0~5~l; training
examples l500; test examples 49 (taken from the last two months); epochs 1000,
lr=0.l, mom=0.8. The obtained root mean square test error RMSE is 0.3, which is

tower than the error of 4.32 when the random walk method is applied. After

predicting the SE40 daily change, the absolute value of the SE40 can be

calculated. Both the desired and the predicted values are shown in l‘ig.4.

2000

|500 -iitwi
0 200 400 D00 H00 1000 |200

Y

1403 |800

Fig.4. Using FuNN to predict the NZ SE4() index - the desired and the predicted by the

P-‘uNN values.
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Nine rules are extracted from the trained FUNN using the aggregated rule
extraction method. The rules are shown below where A,B,C,D and E are the labels
used to denote the five MF (very small, small, medium, large, very large)
respectively, for both the input and the output variables. The fuzzy propositions
have degreesof importanceattached:

Rl) if isB2.8>isB3.5>isCl.1>thenisis B 2.8>isB3.5>isCl.1>thenisis B 3.5> isCl.1>thenisis C l.1> then is is
A l.6>; R2) if isE4.5>isA4.6>isE2.5>thenisA5.3>andisB2.5>;R3)ifisA2.4>isA3.4>orisB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E 4.5> isA4.6>isE2.5>thenisA5.3>andisB2.5>;R3)ifisA2.4>isA3.4>orisB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A 4.6>isE2.5>thenis E 2.5> then

isA5.3>andisB2.5>;R3)ifisA2.4>isA3.4>orisB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A 5.3> and isB2.5>;R3)ifisA2.4>isA3.4>orisB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B 2.5>; R3) if isA2.4>isA3.4>orisB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A 2.4> isA is A
3.4> or isB4.9>isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B 4.9> isA3.8>thenisB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A 3.8>then isB5.9>andisC9.6>;R4)ifisB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B 5.9> and
is C 9.6>; R4) if isB3.6>orisC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B 3.6> or isC2.6>isBl.6>orisC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is C 2.6> isBl.6>oris B l.6> or

isC3.5>thenisD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is C 3.5> then isD6.9>;R5)ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is D 6.9>; R5 )ii‘isB3.4>orisD3.3>isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B 3.4> or is is
D 3.3> isE6.5>isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E 6.5> isEl.3>thenisD2.6>;R6)ifisBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E l.3> then isD2.6>;R6)ifis D 2.6>; R6) if

isBl.7>orisD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is B l.7> or isD8.l>isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is D 8.l> isE4.l>isDl.5>thenisE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E 4.l> isDl.5>thenis D l.5> then

isE4.l>;R7)ifisEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E 4.l>; R7) if isEl.5>andisA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E l.5> and isA3.9>andisB1.1>thenisC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A 3.9> and
is B 1.1> then isC4.4>;R8)ifisE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is C 4.4>; R8) if isE2.4>andisC4.4>and(isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E 2.4> and isC is C
4.4> and (isAl.1>orisEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is A l.1> or isEl.3>)thenisD2,6>;R9)ifisC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is E l.3>) then isD2,6>;R9)is D 2,6>; R9)
if isC9.l>andisD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is C 9.l> and isD5.5orE2.2>andisC4.2orE3.2>thenisD4.2>andisE2.7>.is D 5.5 or E 2.2> and isC4.2orEis C 4.2 or E
3.2> then isD4.2>andisE2.7>.is D 4.2> and isE2.7>. is E 2.7>.

The average training time for FuNN per example is 107operations. FuNN is an

excellent technique when used on static data, but the modified BP algorithm could
be unacceptably slow when FuNNs have to be trained on very large data sets or

have to be regularly re~lrained to accommodate new data. This is especially true

when learning with forgetting is applied. In section 10 an EFUNN-based intelligent
agent is used to predict in an omline training (evolving) mode the same time series
data. The prediction is much faster without compromising with the accuracy.

4. Evolving Fuzzy Neural Networks EFuNNs

4.1. A general description

EFuNNs are FUNN structures that evolve according to the ECOS principles.
EfuNNs adopt some known techniquesfrom ll0,46,47,54] and from other known
NN techniques, but here all nodes in an EFUNN are created during (possibly one-

pass) learning. The nodes representingMF (fuzzy label neurons) can be modified

during learning.As in FUNN, each input variable is representedhere by a group of

spatially arranged neurons to represent a fuzzy quantisation of this variable. For

example, three neurons can be used to represent "small", "medium" and "large"
Fuzzyvalues of the variable. Different membershipfunctions (MF) can be attached
to these neurons (triangular, Gaussian, etc.). New neurons can evolve in this layer
if, for a given input vector, the corresponding variable value does not belong to

any of the existing MF to a degree greater than a membership threshold. A new

fuzzy input neuron, or an input neuron, can be created during the adaptation phase
of an EFUNN.

The EFLINN algorithm, for evolving El‘uNNs, has been first presented in [36]. A
new rule node rn is created and its input and output connection weights are set as
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follows: Wl(rn)=EX; W2(rn ) = TE, where TE is the fuzzy output vector for the

current fuzzy input vector EX. In case of "one-of~n" EFUNNS, the maximum

activation of a rule node is propagatedto the next level. Saturated linear functions

are used as activation functions of the fuzzy output neurons. In case of "many-»of~
n" mode, all the activation values of rule (case) nodes, that are above an

activation threshold of Ahtr, are propagatedfurther in the eonneetionist structure.

4.2. The EFuNN learning algorithm

Here, the EFuNN evolving algorithm is given as a procedureof consecutive steps:

’Llnitialise an EFUNN structure with a maximum number of neurons and no (or

zero-value) connections. Initial connections may be set through inserting fuzzy
rules in a FUNN structure. FuNNs allow for insertion of fuzzy rules as an

initialisation procedure thus allowing for prior information to be used prior to the

evolving process (the rule insertion procedurefor FuNNs can be applied [37,4l]).
If initially there are no rule (case) nodes connected to the fuzzy input and fuzzy

output neurons, then create the first node rn=l to represent the first example

EX=xi and set its input Wl(rn) and output W2 (rn) connection weights as follows:

anewrulenoderntorepresentanexampleEX>:Wl(rn)=EX;W2(rn)a new rule node rn to represent an exampleEX >: Wl(rn)=EX; W2(rn )
= TE, where TE is the fuzzy output vector for the (fuzzy) example EX.

2. WHILE areexamples>DOare examples> DO

Enter the current, example xi, EX being the fuzzy input vector (the vector ofthe

degrees to which the input values belong to the input membership functions). If

there are new variables that appear in this example and have not been used in

previousexamples,create  input and/cr output nodes with their corresponding
membership functions.

3. Find the normalised fuzzy similarity between the new example EX (fuzzy

input vector) and the already stored patterns in the case nodes j=l ,2,. _ .,rn:

Dj: sum (abs (EX - Wl(i) )/ 2) / sum (Wl(j))
4. Find the activation of the rule (ease) nodes j, j:l:rn. Here radial basis

activation function, or a saturated linear one, can be used on the Dj input values

i.e. Al (i) =1’adbas (Dj), or Al(j) = satlin (1 -- Dj).
5. Update the local parameters defined for the rule nodes, e.g. age, average

activation as pre-defined.
6. Find all case nodes j with an activation value Al(j) above a sensitivity

threshold Sthr.

7. If there is no such ease node, then anewrulertoa’e>usingthea new rule rtoa’e> using the

procedurefrom step l.

ELSE

8. Find the rule node indal that has the maximum activation value (maxal).
9. (a) in case of "one-of-n" EFuNNs, propagate the activation maxal of the rule

node indal to the fuzzy output neurons. Saturated linear functions are used as

activation functions of the fuzzy output neurons:

A2 = satlin (Al(indal) * W2)
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(b) in case of "many-oiln" mode, only the activation values of case nodes

that are above an activation threshold ofAthr are propagate to the next neuronal

layer.
10. Find the winning fuzzy output neuron inda2 and its activation maxa2.

1 1. Find the desired winning fuzzy output neuron indt2 and its value maxt2.

12. Calculate the fuzzy output error vector: Err==A2 ~~ TE.

13. IF (inda2 is different from indt2) or (abs(Err (inda2)) > Errthr ) a a

new rule node>

ELSE

14. Update: (a) the input, and (b) the output connections of rule node

lasfollows: as follows:

(a) Dist=EX-Wl(k); W1(k)=Wl(k) -t- lrl. Dist, where lrl is the learning
rate for the first layer;
(b) W2(k) = W2 (k) + lr2. Err. maxal, where lr2 is the learning rate for

the second layer.
15. Prune rule nodesj and their connections that satisfy the following fuzzy

pruning rule to a pre-definedlevel representing the current need of pruning:
IF (node (j) is OLD) and (average activation A1av(j) is LOW) and (the density of
the neighbouring area of neurons is HIGH or MODEIMTE) and (Ilze sum of the

incoming or outgoing connection weights is LOW) and (the neuron is NOT

associated with the corresponding "yes" class output nodes (for ciassyication
tasks only)) THEN the probability of pruning node (j) is HIGH

The above pruning rule is fuzzy and it requires that the fuzzy concepts as OLD,
HIGH, etc. are defined in advance. As a partial ease, a fixed value can be used,

e.g. a node is old if it has existed during the evolving of a FUNN from more than

6() examples.
16. END of the while loop and the algorithm
17. Repeat steps 2--16 for a second presentation of the same input data or for

ECO training if needed.

5. Learning strategies for ECOS. The ECO-learning paradigm

ECOS, and EFuNN in particular, allow for different learning strategies to be

experimented with, depending on the type of data available and on the

requirementsto the learning system. Several of them þÿ�z�u ��eintroduced and illustrated

in this section. The EFuNN realisation of ECOS has been used in the experiments
below on the benchmark Iris data set (150 instances; 3 classes - setosa, versicolour

and virginica; four attributes ~ sepal length, sepal width, petal length, petal width).
Three EFuNNs are evolved, one for each class, in each of the experiments that

illustrate different learning strategies.

5.1. Incremental, one-pass learning
A FUNN is evolved with the use of both positive and negative class data. Data is

propagated only once through the EuNN. The following are the characteristics of

the experimentally evolved EFuNN system: "one»of-n" mode; no pruning; radial

basis activation function for the rule neurons; sensitivity threshold Sthr==0.75;
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error threshold Errthr= 0.1; learning rate for both the first and the second layer
lr=0; number of rule nodes evolved in each of the three modules: rn(setosa):22;
rn(versicolor)= 27; rn(virginica)=25. Overall correct classification rate: Setosa -

50 instances (l00%); Versicolor - 47(88%); Virginiea ~ 43 (86%)

S. 2. Incremental, multiple-pass learning.
A second pass on the evolved, in the experiment from 5.1 EfuNNs, is performed
with the following characteristics: SThr=f0.8; Errthr==0.()5; rn(setosa) = 22;
rn(versicolor) =37; rn(virginica)=37. Overall correct classification: Setosa ~

50(l()()%); Versieolor - 50 (l00%); Virginica - 50 (lO0%).
This experiment illustrates the ability of ECOS and El-‘*uNNs to improve if more

learning epochs are applied, but the number ofepochs needed to achieve a certain

accuracy would be orders of magnitude less than the number of epoehs needed in

traditional learning techniques such as the BP.

5.3. Using positive examples only.

_ln many practical applications only positive examples are available for a certain

class and no negative examples; or the negative examples may be too many that

creates problems of statistical incorrectncss of the training procedure. Should

10,000 class objects (each of them representedby, say 1,000 examples) he used as

negativeexamples to train a module to recognisejust one of these objects? What if

we have already trained a NN module on both positive and negative examples, but

currentiy data has become available about a new class object and the examples
about the other class objects (negativeexample) are lost.

Here, three EFuNNs are evolved on the Iris data by using positive examples
only. The following are their characteristics: SThr=0.85; Errthr=0.05; rn(setosa) =

6; rn(versicolor) ==l6; rn(virginica)=20. Overall correct classification rate: Setosa -

50(100%); Versicolor - 48 (96%); Virginica - 46 (92%)
In this case only rule nodes that support the "yes" fuzzy output node have been

created. That results in less number of rule nodes created (evolved), but also in a

higher false positive activation of the EFuNNs when similar data, but from

different classes, are presented. As a general rule, the true positive activation is

higher than the false positive one. By taking the maximum activated module as the

winning class, when an input vector is presented, even better classification than

the one achieved in 5.1, where both positive and negativeexamples were used, can

be achieved.

5.4. Cascade eco-learning.

This strategy was explained in section 2. Here we assume that data, once used, is

lost forever. When a new class data arrives, a new class EFuNN module is created.

lt starts to evolve on the positive data þÿ�o�l �this class, as well as on following
negative data about other classes, and on the negative exemplars stored in the WI

connections of the already evolved EFuNNs (before this module was created).
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The following are the parameters of the three evolved EFuNNs from the Iris

data: SThr=0.8, E.rrthr=0.t; rn(setosa) = 19 (4 positive); rn(versicolor) =33 (9

posit.ive) ; rn(virginica)=28 (14 positive). Overall classification: Setosa ~~

5O(l0O%); Versicolor - 48 (96); Virginica ~ 46 (92%),

5. S. Sleep eco~training.
This strategy was explained in section 2. The main idea is that different modules

evolve quickly to capture the most important information concerning their

specialisedfunction (e.g., class). The modules store exemplars of relevant for their

functioning examples during the active training mode - when the examples are

presented at the þÿ�E�C�O�S �inputs. After that, the modules begin to exchange
exemplars that are stored in their Wl connections  negativeexamples for other

modules to improve their performance (e.g., recognition rate). During the sleep-
eco training new rule nodes are created and the same evolving algorithm is used

on examples (exemplars) that are not presentedbut rather stored in the already
evolved modules. During the sleep-eco training the ECOS parameters can have

different values from the values used in the active training phase, e.g., different

sensitivity threshold and different learning rates.

The following are the parameters of the evolved through sleep eco-training
EFuNNs for the three Iris classes: SThr=().9; Errthr=0.05; rn (setosa) = 6; rn

(versicolor) ==l6; rn (virginica)=2O. Overall classification: Setosa - 50(10()%);
Versicolor - 5() (l00%); Virginica - 46 (92%) The results of the sleep eco-

training are better than the results after training with positive data only (see 5.3),
but the significant difference is that here the false positive activation is strongly
.I,_......_......J .‘_.,| Z.. ~».~‘,‘ lT?12..?\¥T\T.\ 14- In ,us-.-\--1,-.o»\l\. ,\l§.~\l.»\nh\f|
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5.6. Unsupervised and reinforcement learning
Unsupervised learning in ECOS systems is based on the same principles as the

supervisedlearning, but there is no desired output and no calculated output error.

There are two cases in the evolving procedure:
(a) Thcrc is an output node activated (by the current input vector X) above a pre-
set threshold Outhr. In this case the example x is accommodated in the connection

weights ofthe most highly activated case neuron according to the learning rules þÿ�o�i �

ECOS (e.g. as it is in the EPUNN algorithm).
(h) Otherwise, there will be a new rule node created and new output neuron (or
new module) created to accommodate this example. The new rule node is then

connected to the fuzzy input nodes and to a new output node as it is the case in the

supervisedevolving (e,g., as it is in the EFuNN algorithm).
Reinforcement learning uses similar procedures as case (a) and case (h) above.

Case (a) is applied only when the output from the evolving system is confirmed

(approved) by the ’critique’ and case (b) is applied otherwise.

5.7. Evolving fuzzy systenm. Rule insertions and rule extractions. On-line,

adaptive learning of fuzzy rules and membership functions in EFUNNS

A fuzzy system consists of fuzzy rules (where fuzzy variables, fuzzy predicates
and fuzzy sets are used) and fuzzy inference method defined. Evolving fuzzy
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systems are fuzzy systems in which the fuzzy rules evolve and change as the fuzzy
system operates, thus adding new rules, modifying existing rules and deleting
rules from the rule set according to changes in the environment (e.g., new data

arrive regularly). Evolving fuzzy systems have also their fuzzy variables, fuzzy
membership functions and predicatesvarying as the system operates.

A FUNN and an EFLINN in particular can be representedby a set of fuzzy rules

through rule extraction techniques [37,4l]. The fuzzy inference is embodied in the

connectionist structure. In this respect an EFuNN can be considered as an

evolving fuzzy system. The rules that represent the rule nodes need to be

aggregatedin clusters of rules. The degree of aggregationcan vary dependingon

the level of granularity needed. Sometimes, for explanationpurposes, the number

of rules needed, could be as many as the number ofthe fuzzy output values (e.g., a

rule for "No" class and a rule for "Yes" class for a classification task that uses _just
two output fuzzy values denoting "yes" and "no").

At any time (phase) ofthe evolving (learning) process fuzzy or exact rules can

be inserted and extracted. Insertion of fuzzy rules is achieved through setting a

new rule node for each new rule, such as the connection weights Wl and W2 of

the rule node represent the fuzzy or the exact rule.

Examplel: The fuzzy rule IF xl is Small and x2 is Small THEN y is Small, can

be inserted into an EFUNN structure by setting the connection weights ol’ a new

rule node to the fuzzy condition nodes xl- Small and x2- Small to 0.5 each, and

the connection weights to the output fuzzy node y-Small to a value of 1.

Example 2: The exact rule lF xl is 3.4 and x2 is 6.7 THEN y is 9.5 can be

inserted in the same way as in example l, but here the membership degrees to

which the input values xl=3.4 and x2=6.7 belong to the corresponding fuzzy
values are calculated and attached to the connection weights instead of values of

0.5. The same procedure is applied for the fuzzy output connection weight.
Changing MF during operation may be needed for a refined performance after

certain time of the system operation, for example instead of three MF the system
has to change to five MF. In traditional fuzzy neural networks this change is not

possible, but in EFuNNs it is possible, because an EFUNN stores in its Wl and

W2 connections fuzzy exemplars. These exemplars, if necessary, can be

defuzzifyied at any time of the operation ofthe whole system, and than used to

evolve a new EFuNN structure that has, for example, five MF rather than three

MF for the input variables, and three rather than two, MF for the output variable.

The idea is illustrated on fig. 5.

Fig.5. Changing the number of MF in EFuNN from 3 MF to 5 MF is achieved through
defuzzifying the membership degrees stored as connection weights in the first EFuNN
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structure, and finding the membership degreesof the obtained real values to 5 MF for the

new EFuNN structure, before this structure is evolved.

6. ECOS and EFuNNs for adaptive, on~line, phoneme-based
spoken language recognition

Here the EFuNN algorithm is applied to the problem of phoneine recognition and

phonemeadaptation.

6.1. The problem of adaptive speech recognition
Adaptive speech recognition is concerned with the development ol‘ speech
recognition systems that can adapt to new speakers (of the same, or a new accent);
that can enlarge their vocabulary of words in an on~line mode; that can acquire
new languages [2,l2,30]. There are several methods that have been experimented
for adaptive phoneme recognition. One of them {42] uses phoneme FUNN

modules for each class phoneme. The adaptation to a new speaker is achieved

through additional training of a phoneme FuNN on new þÿ�s�p�e�a�k�e�r ��sdata for a few

cpochs. This approach to adaptive speechrecognition assumes that at the higher,
word recognition level, a decision is made about which phoneme module should

be adapted in order to accommodate the new speakers data and to achieve a

correct word recognition. The BP algorithm was used. This method assumes a

fixed number of rule nodes in the FuNNs. ’There are some difficulties when

applying this method for on-line adaptationon continuous speech: (1) even few

epochsof additional training with the use of the BP algorithm may not be fast

enough for real time application; (2) in spite of the robustness of the FUNN

architecture to catastrophic forgetting, a trained FuNN tends to forget old speech
data if the new data differs significantly from the old one; (3) limited potential for

accommodating new speechdata because of the fixed size of the FUNN networks.

Here, the EFUNN algorithm is used for the purpose of phoneme adaptation of

already trained EFuNNs on new accent data. In the experiments below, four

EFuNNs are evolved to learn existing data on four NZ English phoncmes.
Recognition results are compared with the results when ordinary FuNNs or

GFuNNs (FuNNs optimised by a genetic algorithm [74]) are used. After the four

phoneme EFuNNs are evolved, one of them - the phoneme ll/ module, is further

evolved (adapted) to accommodate new data of the phoneme /I/ taken from a

speakerof a different accent.

6.2. EFUNNS for phoneme recognition

The following phoneme data on four phonemesof New Zealand English spoken
by two male and two female speakersare used in the experiment: /I/ (taken from

the pronounced word "sit" (see [69] and also the WWW page: http://): 100 mel

scale vectors, each of them consisting of 26 mel coefficients); /e/ (taken from

"get", 170 mel scale vectors); /ae/ (taken from "cat", 170 vectors), and /i/ (taken
from "see", 270 vectors). Three membership functions are used to represent
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"small", "medium" and "high" values for each meI~coefficient. The number ol’

examples selected for each phonemecorresponds to the relative frequency of the

appearance of these phonemcs in spoken NZ English. Phonemes /e/ and /i/ have

similar average mel values which makes their differentiation more difficult.

Experiment I. EFuNNs trained on both positive and negative data. Four

EFuNNs are evolved from the 710 input vectors. The EFuNNs have the following
characteristics: linear activation function for the case (rule) nodes; saturated linear

functions for the fuzzy outputs and a linear function for the class output neurons;

Sthr=0.9; Errth1:0.2; no pruning; lm0; rn(phoneme /I/) == 361 (90 for the class

phoneme - positive); rn(phoneme/e/) = 395 (90 positive); rn(phoneme /ae/) = 362

(110 positive); rn(phoneme /i/) = 393 (101 positive). The following mean sum~

square error is evaluated for the four phoneme modules correspondingly: 00085;

0.055; 0025; 0.l45. The overall correct classification rate is: /I/ - 94 examples
(94%); /el - 131 examples (77%); /ael ~~ 152 examples (90%); and /i/ ~

l67examp1es(62%). The examples that have not been classified correctly have not

been miss-classified either. They did not activate any of the four EFuNNs (for
them all EFuNNs had zero output values). This is a better result than in case of

having misclassilication (false positive activation). Here the negative examples
(that do not belong to a phoneme module) are rejected with 100% accuracy in all

EFUNN modules.

Experiment 2. Using positive phoneme data only. The same experimental
setting is used as in experiment 1, but four phoneme EFUNNS are evolved with

positive data only. The EFuNNs have the following characteristics: rn(phoneme
/I0 = 89; rn(phoneme /c/) = 89; rn(phoneme /ae/) = 108; rn(phoneme /i/) = 101.

The overall classification rate is: !I./ - 94 (94%); le/ - E49 (87.6%); faef - l54

(90.6%); /i/ - 190 (7().3%). In contrast with experiment 1, some examples that

have not been classified correctly have been miss-classified, i.e. the correct

classification of negative examples by the phoneme modules is different from

l00%, opposite to the case in experiment1.

Experiment 3. Sleep eco training. The trained in experiment 2 EFuNNs on

positive data, are further trained on negative data as stored in the other EFUNN

modules (sleep eco training). The same accuracy is achieved as in EFuNNp on

positive data, but here 100% accuracy is achieved on the negative data.

6.3. Comparative analysis of FuNNs, GFuNNs and EFUNNS on the phoneme
recognition task

Tables 1 and 2 show the results from the above experiments and also the results

when: (I) four FuNNs are þÿ ��m�a�n�u�a�l�l�y �designed and trained with a BP algorithm;
(2) four FuNNs are optimised with a GA algorithm and trained again with the BP

as published in [74].
For the FuNN experiment, four FuNNs were þÿ ��m�a�n�u�a�l�l�y �created each having the

following architecture: 78 inputs (3 time lags of 26 element mel vectors each), 234

condition nodes (three fuzzy membership functions per input), 10 rule nodes, two

action nodes, and one output. This architecture is identical to that used for the

speech recognition system described in [42]. Nine networks were created and
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trained for l000 epochs for each phoneme, the final result being the average

classification result of them. A bootstrap method is used for selecting statistically
appropriate data sets at every I0 epochs ol‘ training. Each trained FUNN was

recalled over the same data set, and the recall accuracy calculated. For these

calculations an output activation of 0.8, or greater, is taken to be a positive result,
while an activation of less than 0.8 is considered as negative classification result.

The mean classification accuracy of the manually designed FuNNs is presented in

Table l. The manually designed networks have great difficulty in correctly
identifying the target phonemes, tending instead to classify all of the phoncrnes
presented,as negativeexamples (for the chosen classification threshold of 0.8).

For the GFuNN experiment a population size of fifty FuNNs was used, with

tournament selection, one point crossover, and a mutation rate of one in one

thousand. Each FuNN was trained with the BP algorithm for five epochs on the

training data set with the learning rate and momentum set to 0.5 each. The GA

was run for fifty generations, at the end of which the fittest individual was

extracted and decoded. The resulting FUNN was then trained on the entire data set

using the bootstrapped BP training algorithm. Each resultant network was trained

for one thousand epochs, with the learning rate and momentum again set to 0.5

each, and the training data set being rebuilt every ten epochs. The GA was run

nine times over each of the phonemes.The mean classification accuracy of the GA

designed FuNNs is displayed in Table l.

Overall, the best results have been obtained with the use of EFUNNS. The large
number of rule nodes in the EFuNNs shows the variation between the different

pronunciations of the same words by the four reference speakers.EFuNNs require
5 to 20 times more rule nodes, but at the same time they require four to  order

of magnitude less time for training per example (Table 2).

Tahle.1. Truclpositiveandtrue ne ative (in brackets) classincation accuracy

 _l§p_NN
GfuNN EFuNN, to g EFnNNp

/l/ 32%(9g8_)_ (97) _

94% (100) 94% (98)

 780%(94) 81% (95) 77% (100) 87% (
5

ae þÿ�5�; ��2�%�(�9�6�)72% (96) 90% (l0()) 90% (

þÿ�i ��/�i�/5% (99)  62% (100) 70% (

Table.2 The size and the time complexity of the FuNNs, GFuNNs and EFuNNs in number

of connections and in approximate time for training per example (in relative units,
re resenting the numbcranclthe egn lexiry ofthe operations)

I FUNN
7

I 2596/l8.l0

c 2596/18.107-

GfuNN EFuN§__ _ EFuNNps V E.fuNNsl/eco
616/l0.l0’° 28900/60;T057200/l4.l0?’i4000/30.103
1045/l4.l0m 3_l680/Q2.§5_7200/1440- 14000/30.103
847/ll.l0f° 29040/61.103 8720/15.l05_ 17000/35.103ae 2596/18.016

1 2596/18.10

6.4. On-line adaptation of phoneme EFUNNS on new accent (speaker) data

Adaptation of a phoneme module to a new speakers data takes place when this

module is identified for on-line adaptation by the higher-level decision module

946/12.\of°ii 31520/62.1F;i78160/l5.103jil60-0w34.l0li
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according to the ECOS framework and the framework presented in [30].
Adaptation in EFuNNs is not different from its usual training (evolving)
procedure. This is illustrated in the following experiment.

Example.Adaptation ofthe /1/ phonemeEFuNN. The II/ phoneme EFUNN that

evolved in experiment i, was tested on a new speakers phoneme fl/ data taken

lrom the pronouncedby the new speakerword þÿ�"�s�i�t ��.The new pronunciation of /I/

was significantly different from the pronunciation of the reference data used to

evolve the phoneme /I/ EFuNN. Fig.6a shows the average values of each of the 26

mel scale coefficients of the reference data and the new speaker data. The /l/

EFuNN did not recogniseany of the l0 new input vectors. The /Il EFUNN was

further evolved for just one pass with the use of the 10 new positive input vectors

of the phoneme /I/. After that, the EFuNN increased its rule nodes from 361 to 369

and recognised 9 out of I0 new input vectors (lig.6b).

1

/-->"\,..~. þÿ�"�"�"�‘�~�-�-�-�~ �
.

.,, \__/

þÿ�Z�1 ��\/\j 
_.._........_.._..*...
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Fig.6a. The average normalised values of each of the 26 mel scale coefficients of the

reference data and the new speakerdata on the phoneme /I/_
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Fig. 6b. Adaptation of an already evolved EFuNN from NZEnglish phoneme /Il data to a

new accent data on the same phoneme. After a single pass of and additional evolving
(adaptation) of the /Il EFuNN on the new accent data, 9 out of 10 frames from the new

accent data were correctly recognised (none of the i0 speech frames from the new accent

were recognised before the adaptation took place). The y~axis shows the output activation

value of the adapted/l/ phonemeEFUNN to the new accent data (I0 vectors).

6.5. ECOS for evolving language systems

The areas ofthe human brain that are responsible for the speechand the language
abilities of humans evolve through the whole development of an individual

[2,52,56]. Computer modelling of this process, before its biological, physiological
and psychological aspects are made completely known, is an extremely difficult
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task. It requires flexible techniques tor adaptive learning trough an active

interaction with a teachingenvironment.

lt can be assumed that in a modular spoken language evolving system, the

language (languages) modules evolve through using both domain text data and

spoken information data fed from the speech recognition part. The language
module produces final results as well as a feedback for the adaptation in the

previous modules. This idea is currently being elaborated with the use of ECOS.

7. ECOS and EFuNNs for on-line, adaptive, muIti~modal

(speech, image, text) information processing

Several methods for multi-modal information processingthat involve images (e.g.,
lip movement) to enhance speech recognition have been developed l23,55,73].
Other methods use speech to enhance image recognition. But when the

multimodal -based recognition (or identification) process has to be performed in a

real time, on~line, adaptive mode, most of the above methods would fail to achieve

satisfactory results. That is because of the speed of the processing needed and a

method of adaptation needed that can deal with fast adaptation to new data, some

ol‘ them presented only for a very short period of time, in a noisy environment.

Here, a brief reference to a framework AVIS for integrated auditory and visual

information processingpublished in [43], is made. In sub-section two the use of

ECOS and EFuNNs for the implementation of AVIS is discussed and directions

for further implementations are given.

7.1. The AVIS framework for integrated auditory and visual information

processing (Kasabov, Postma and Hcrik)

A block diagram of the AVIS framework is shown in lig.7. It consists of three

main parts: auditory subsystem that processes auditory information; visual

subsystem that processes visual information; and higher level decision subsystem
that combines the outputs from the two subsystems. Each of the auditory and the

visual sub-systems consists of live modules as described in [43]. The auditory
subsystem and the visual subsystemcan each operate as separate subsystemsand

have their results combined at a higher»level. Single-modality input streams, or

multimodal input streams, can be used by each of the subsystems. Audio and

visual inputs can be used by either of the subsystems, by the two subsystems
simultaneously, and by the higher-level conceptual subsystem. There are several

different modes of operation allowing for a comparative study of how to use

visual and/or audio information in a different combination [43].

7.2. Using ECOS and EFuNNs for the implementation of AVIS

In an on»line, adaptive mode of operationeach of the sub~systemsand the modules

of them would develop as the system operates. ECOS and EFUNNS are suitable

techniques to be used for such implementation. Here a preliminary EFuNN
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implementation of some of the modules from the auditory sub»system are

presentedand discussed.

The task of person identification from short movie tiles is implemented in [43] as

a system called PIAVI that uses the AVIS framework and FuNNs for the

implementation of the modules in the AVIS framework. Here the auditory data

from [43] is used and four EFuNNs are evolved for the identification of four

persons. 2.5 msec voice data is used as reference data for each of four speakers
(news presenters of the CNN). Voce data taken from sections of 1.5 msec are used

for testing. The voice data is transformed every 11.8 msec (with 50% overlap
between two consecutive windows) into 26-element mel scale (MS) vectors. The

26-element MS vectors are averaged over a time frame of 125 msec thus

producing 20 examples for training and 10 examples for testing for each person.
The evolved EFuNNs require four to six order of magnitude less time for training
per input vector than the reported in [43] experiments.
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Fig. 7. A block diagram of the AVIS framework tor integrated Auditory -Wsual

Information processingSystems (adaptedfrom [43])

Experiment I _ Incremental on-line learning. Four EFuNNs are evolved with

both positive and negative data with the following parameter values: Stl1r=0.9;
þÿ�E�n ��t�h�1�=�0�.�2�;Person l EFuNN: rn=3l (8 positive); Person 2 EFUNN: rn: 35 (16
positive); Person 3 Efu NN: rn=35 (14 positive); Person 4 EFuNN: rn=29 (15
positive). Overall recognition rate: on training data ~ ll,16,l7 and 20 examplesof

the corresponding person’s data (80% recognition rate); on test data: 2,2,6 and 7

(43%)
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Experiment2. Changing the number of the input variables. Two time lags of

26-element MS vectors are added to the inputs, and the EFuNNs from experiment
l are further trained with the new 78 element input vectors. Person 1 EFUNN:

rn=56; Person 2 EFUNN: rn: 60; Person 3 EPUNN: rn=Person4EFUNN:Person 4 EFUNN:

rn=59; Overall recognition: on training data  17, 20,20 and 20 (96.25%
recognition rate); on test data: 7,2,2 and 8 (48%).

Experiment 3.Sleep eco training. First, four EFuNNs are evolved with positive
data only. Sthr=0.9; Errthr=0.2; Person l EFuNN: rn=l5; Person 2 EFuNN: rn:

20; Person 3 EFuNN: rn==l5; Person 4 EFUNN: rn=l0. Overall recognition: on

training data - l7,20,l8,l6 (89%); on test data: 7,2,2 and 6 (43%) After this initial

training, the eco training is applied. The recognition rate has improved to 96% on

the training data and 53% on the lest data.

Further experiments on using EFuNNs for the implementation of the visual

subsystem and the higher-level decision system from AVIS, are to be performed
and the feasibility of using ECOS for the total AVIS implementation is to be

discussed on different case studies.

8. ECOS and EFuNNs for adaptive, on-line time-series

prediction, decision making and control

I-Iere application of ECOS for on~line, adaptive time series prediction, decision

making and control is discussed.

Q 1 A qnnnr-:I cnlmnrno nf uueiinn |?f"f\Q and ¥?’|§‘|\l\ll\l‘c fav nn=|§na nrlqnfixrfi
u|;» rx b\.|u.;u| .n.|u..|n\. un u.-uns uuvu uuu L4|_uiu.1.: nun un nnp, uuuyuvn,

prediction, decision making and control

A general block diagram of an adaptive, on-line decision making system is given
in fig. 8 [31]. It consists ofthe following blocks:

0 Pre-processing (filtering) block (e.g., checking for consistency; feature

extraction, calculating moving averages, selecting time~lags for a time-series).
Q ECOS block; it consists of modules that are continuously trained with data (both

old, historical data, and new incoming data).
» A rule-based block for linal decision - this block takes the produced by the

ECOS outputs and applies expert rules. The rules may take some other input
variables.

I Adaptation block ~ this block compares the output oi’ the system with the

desired-, or the real data, obtained over certain period of time. The error is

used to adjust/adapt the evolving modules in a continuous mode.
~ Rule extraction, explanation block ~ this block uses both extracted from the

evolved modules rules, and rules from the iinal decision making (DM) block

to explain: (l) what the system currently þÿ ��k�n�o�w�s �about the problem it is

solving; (2) why a particular decision for a concrete input vector has been

made.
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8.2. Applying ECOS for adaptive, on-line time series prediction
A case study problem is taken here to illustrate the potential of the ECOS and the

EFUNNS for on-line adaptive prediction and control. The problem is to predict a

waste water flow coming from three pumps into a sewage plant (see [37] for a

description of the problem and the WWW:

http://divcom.otago.ae.nz:800/com/infosci/KEL/home.htmfor the data set). The

tlow is measured every hour. It is important to be able to predict the volume ofthe

flow as the collecting tank has a limited capacity (in this case it is 650 cubic

meters) and a sudden overflow will cause bacteria, that clean the water. to be

thrown away. As there is very little data available before the control system is

installed and put in operation, the control system has to be adaptive and learn the

dynamics of the flow as it operates.
Here one EFUNN, that has 4 inputs, namely F(t), F(t-l), MAl2h(t) and

MA24h(t), and one output, l*‘(t+l), is evolved from the time series data that

consists þÿ�o�l �500 tiata points. The evolved EFUNN has 397 rule nodes (Sthr==0.9;
Errthr==0.05; lr=0; no pruning applied). T he MSSE over a test set of the last 100

data points is 0.0068 (normalised data is used) - see fig.9. The longer the EFUNN

evolves over time (more time series data points are used) the better the predicted value for

next hour water flow is.
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Fig.8. A block diagram of an intelligent, adaptive, on-line system for prediction, decision

making and control

lt is seen from iig.9 that in the beginning the EFuNN could not generalist:well on

the next hour flow, but after learning (accommodating) about 400 data points, it

produces a generalisation that is much better than the generalisation on the same

test data when a MLP is used that had 5 inputs, two hidden layers with 6 nodes in

each of them, and one output, trained with the BP algorithm lor 20,000 epoehs
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(MSSE=:0.044, see [37]). The EFUNN required 4 orders of magnitude less time for

training per example at average, than the MLP.
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Fig.9. An EFUNN is evolved from the flow F(t), the previous hour flow F(t-l), the moving
average 12 hours MA12h(t) and the moving average 24 hours MA24h(t) data. llere the real
values F(t+l) and the predicted by the evolving EFUNN for one day ahead are plotted as

the EFuNN evolves step by step through the time-series data.

9. ECOS and EF uNNs for evolving intelligent agents

9.1. The evolving, intelligent agents paradigm

Agent-based techniquesallow for implementing tnodnlar systems that consist of

independent software modules that can communicate with each other and with the

user using a standard protocol, can þÿ ��n�a�v�i�g�a�t�e �in a new software environment

searching for relevant data, processing the data and passing results [77]. Intelligent
agents can perform intelligent information processing, such as reasoning with
uncertainties and generalisation. Intelligent agents should be able to adapt to a

possibly changing environment as they work. Such adaptation is crucial for a

mobile robot navigation, or for an adequatedecision making on operations with a

dynamically changing stock index [6,7,l3,31]. Here the latter example is used to

illustrate the potential for using ECOS and EFuNNs for building intelligent
agents.

9.2. EFuNN~based intelligent agents for adaptive, on-line prediction of the NZ
SE40 stock index

Here an intelligent agent that learns and predicts in an on-line, adaptive mode the

SE40 data is realised as an EFuNN {3l]. The same input and output variables are

used as in the experiment with the NZSE4() data in section 3. The following
evolving parameter values are used: sensitivity threshold Sthr=0.92, error

threshold Errthr=0.05, number of rule nodes rn=9 IU; after pruning this number is

730; learning rate lr=0. The SE40 daily change is predicted on-line based on the

evolving of the EFuNN on the previous data. The root mean square error is
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RMSE: 0.22 (on the last 49 test data points) while the random walk gives
RMSE=4.32.
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Fig.10. An EFuNN evolved as an intelligent agent and tested incrementally on the NZ

SE40 difference data

Fore more EFuNNs were evolved to predict two, three, ibur and five days ahead,

The test error RMSE for them is correspondingly 0.25, 0.28, 0.45, 1.26, 2.78. It

can be seen that even 5 days prediction will give a better result than the random

walk one-day prediction. That justifies the use of EFuNNs for this particular task.

As EFUNNS have principally the same structure as FUNNS, fuzzy rules can be

extracted as explained in section 3. Fig.11 shows the total activation of the rule

(case) nodes of the evolved EfuNN before pruning.

rco ~

an

son

wo

:us

Fig.1I. The total activation ofthe rule nodes ofthe EFUNN evolved  an intelligent agent
from the NZ SE4() data

10. Recurrent EFUNNS

A recurrent EFuNN (REFuNN) structure has feedback connections from its

outputs back to its inputs. In the EFuNN-based ECOS, adaptation take place when

a signal from the higher level decision making is passed to the lower level

modules (e.g., EFuNNs), A block diagram of a REFuNN structure is shown in fig.
l2. It consists of the same input-, fuzzy condition element-, and rt1le(case) layers
 thc feed~forward EFuNN, but it has also a state layer and an action layer. There

are feedback connections from the state layer to the rule layer, so which rule node
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will be the highest activated for a certain input, depends not only on the input
vector but on the state the REI-TuNN is in. The connection weights from the state to

the action (output) nodes can be learned through reinforcement learning where the

awards are attached as positive connection weights and the punishments - as

negative connection weights.
REFuNNs can be used in mobile robots that learn and evolve as they operate.

They are suitable techniques for the realisation of intelligent agents when

supervised,unsupervised,or reinforcement learning is applied at different stages
of the þÿ�s�y�s�t�e�1�n ��soperation.
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Fig. 12. Recurrent EFuNN

11. Biological motivations for the ECOS development: evolving
brains

It is known that thc human brain develops even before the child is born. During
learning the brain allocates neurons to respond to certain stimuli and develops
their connections [5,45,6l,68]. The process of evolving is based on several

principles, some of them listed here: (a) evolving is achieved through both

genetically defined information and learning; (b) the evolved neurons have a

spatial-temporal representationwhere similar stimuli activate close neurons; (e)
redundancy, i.e. there are many redundant neurons allocated to a single stimulus

or a task; e. g., when a word is heard, there are hundreds ol’ thousands þÿ�o�l �neurons

that get immediately activated; (d) memory-based learning, i.e. the brain Stores

exemplars of facts that can be recalled at a later stage; (e) evolving through
interaction with the environment and with other brains; (t) inner processes take

place; (g) the evolving process is continuous, lifelong; (h) through evolving brain

structures (neurons, connections), higher-level concepts emerge that are embodied

in the structure, but can also be represented as a level of abstraction (e.g.,
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acquisition and the development of speech and language, especially in

multilingual subjects).
The learning and the structural evolution coexist in ECOS. That is plausible

with the co-evolution of structure and learning in the brain. The neuronal

structures eventually implement a long- term memory. Biological facts about

growing neural network structures through learning and adaptation are presented
in {3,5,29,45,6l,68, 7l,75,78}.

The observation that humans (and animals) learn through memorising sensory
information and then remembering it when interpreting it in a context-driven way

belongs to Helmholtz (1866) [72]. This is demonstrated in the consolidation

principle that is widely accepted in physiology. It states that what has happened in

the first 5 or so hours after presenting input stimulus the brain is learning to

’cement’ what has been learned. This has been used to explain retrograde amnesia

(a trauma of the brain that results in loss of memory about events that occurred

several hours before the event of the trauma).
The above biological principles are presented in ECOS in the form of þÿ ��e�c�o ��-

training mode. During the ECOS learning process, one exemplar (or pattern) is

stored in a long-term memory (a pathway from the presentationpart to the higher~
level decision part). Using stored patterns in the þÿ�e�c�o ��-�t�r�a�i�n�i�n�gmode is similar to

the Task Rehearsal Mechanism (TRM). The TRM assumes that there tue long
term and short term centers for iearning [56]. "The TRM relies on long-term
memory for the production of virtual examples of previously learned task

knowledge (background knowledge). A functional transfer method is then used to

selectively bias the learning of a new task that is developed in short-term memory.

The representationof this short-term memory is then transferred to long-term
memory where it can be used for learning yet another new task in the future.

Notice, that explicit examples of a new task need not be stored in long-term
memory, only the representationof the task which can be later used to generate
virtual examples. ’These virtual examples can be used to rehearse previously
learned tasks in a concert with a new þÿ ��r�e�l�a�t�e�d ��t�a�s�k�"�.But if a system is working in a

reai-time mode, it may not be able to adapt to new data if its speedof processing is

too, when compared to the speedof the continuously incoming information. This

phenomenon is known in psychology as "loss of skills". The brain has a limited

amount of working or short term memory. And when encountering important new

information, the brain stores it simply by erasing some old information from the

working memory. The prior information gets erased from the working memory
before the brain has time to transfer it to a more permanent or semi-permanent
location for actual learning. These issues are also discussed in [63,76].

12. Problems with ECOS and EFuNNs and directions for

further research

In spite of the advantages of ECOS and EFuNNs when applied for on-line,

adaptive learning, there are some difficulties that should be addressed in the

future. These include finding the optimal values for the evolving parameters, such
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as the sensitivity threshold Sthr, the error threshold Ethr, learning rate lrl and lr2,

lorgetting rate. Also, pruning of fuzzy rule needs to be made speciiic for every

application, thus depending on the definition of age and the other fuzzy variables

in the pruning rule. One way to overcome the above problemsis to regularly apply
genetic algorithms and evolutionary computing as optimisation procedures to the

ECOS and EFUNN structures. Introducing DNA computing as part ofthe evolving
process may also be beneficial [65].

Evolving connectionist systems could be considered as a new A1 paradigm.
They incorporate the following AI features: learning; reasoning; knowledge
manipulation; knowledge acquisition; adaptation. This sets new tasks for the

ECOS future development that are relevant to the current AI methods and

systems, such as implementing in ECOS non-monotonic and temporal reasoning,
optimal dimensionality spatial representation, meta-knowledge and meta-

reasoning. More theoretical investigations on the limitations of ECOS are needed.

13. Conclusions

This chapter presents a framework ECOS for evolving connectionist and fuzzy
conneetionist systems, and evolving fuzzy neural networks EFUNN, in particular,
for building on-line, adaptive learning systems. Real problems have been used to

illustrate the potential of this approach. Several applications of ECOS and

EFuNNs have been demonstrated in the chapter, namely: adaptive speech
recognition; financial applications; multi-modal information processing and

integrated audio and video information processing;intelligent agents. ECOS have

features that address the seven major requirements to the next generation neuro~

fuzzy techniquespresentedin section one.
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