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Abstract: Biological processes are among the most challenging to predict and con~

trol. It has  recognised that the development of an intelligent system for the

recognition, prediction and control of process states in a complex, nonlinear biological
process control is difficult. Such unpredictable system behaviour requires an advanced,
intelligent control system which learns from observations of the process dynamics and

takes appropriate control action to avoid collapse o_fthe biological culture. In the

present study, a hybrid system called fuzzy neural network is considered, where the

rote ofthe fuzzy neural network; is to estimate the correct feed demand as a function
of the process responses. The feed material is an organic and/or inorganic mixture of
chemical compounds for the bacteria to grow on. Small amounts of the feed sources

must be added and the response of the bacteria must be measured. This is no easy
tas/becausetheprocesssensorsusedarenonnspecificandtheirresponsewouldvarybecause the process sensors used are nonnspecific and their response would vary

during the developmental stages of the process. This hybrid control strategy retains

the advantages of both neural networks and fuzzy control. These strengths include fast
and accurate learning, good generalisation capabilities, excellent explanation facilities
in the form of semantically meaningful fuzzy rules, and the ability to accommodate

both numerical data and existing expert knowledge about the problem under consid-

eration. The application to the estimation and prediction of the correct feed demand

shows the power of this strategy as compared with conventional fuzzy control.

Keywords: Fuzzy neural Networks, Hybrid learning, Knowledge eattraction and

insertion, Estimation, Biological process and control, Bacterial system, Total organic
carbon (TOC).

1 Introduction

Over tho last decade, signilicarit advances have been

made in two distinct". þÿ�i�} ‹�!�C�l�1�l�l�(�)�i�O�g�l�C�E�i�-�lareas: fuzzy logic
and computational neural networks. The theory of

fuzzy logic [18] provides a mathematical frznncworlc

to capture the unctcrtziinties associated with human
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cognitive processes, such as thinking and reasoning.
Also, it provides a znathcrnzitiwl morphology to emu-

late certain perceptual and linguistic attributes asso-

ciated with liurnan cognition. On the other hand,
the computa.tiona.l neural network paradigrns lizive

evolved in the process of unthelearn- the learn-

ing and adaptive features of neuronal mechanisms

inherent in certain biological species. The inte-

gration of two fields has given birth to an emerg-

ing technological field- the fuzzy neural networks.



The fuzzy neural networks have the potential to

capture the benefits of the two fascinating fields,
fuzzy logic and neural networks, into a single entity
[4,13,1,11,6,5,17,3,8,9,1O].

One of the applications of fuzzy neural networks is

in advanced process control. The advanced process
control application in this paper will focus on moni-

toring, description and control of a biological process.
The biological process used in this paper is an exper-
imental system for anaerobic waste water treatment.

During this process bacteria decompose organic mat-

ter, which is gradually degraded to biogas, a mixture

of methane and carbon dioxide. Up to 99 % of the

organic matter can be converted, depending on the

nature of thc organic matter. The anaerobic process
is used as an example, because the process elements

and dynamics a.re typical for a number of biotech-

nological applications as they involve the growth of

rnicroorgaiiisms growing under anaerobic conditions.

Biological processes are among the most challeng-
ing to predict and control [l5, 7]. The behaviour

of cells and inicroorganisms on different conditions

is dependent on many factors, which are often not

fully understood. Especially in mixed bacterial cul-

tures of many different species interrelation between

these bacteria adds a lot of complexity to the system.
Such unpredictable system behaviour requires an ad-

vanced, intelligent control system, which lea.rns from

the observations of the process dyna.mics and takes

appropriate control action.

Another problem with bacterial systems is that

on-line sensors for direct measurement of the essen-

tial paramcters are very expensive and not always
very accurate. This means that especially in systems
where low concentrations are used alternative meth-

ods need to be applied. A commonly used method

is trying to find a relationship between easily mea-

surable parameters and the desired paranieters  
These relationships however are often very complex
and not fully understood. This is where an intelligent
system can be utilised.

At the start of the operation of a biological reac-

tor, the right ingredients must be present. These are

the bacteria that will convert feed material for their

metabolism. The feed material is a mixture with

mainly organic compounds for the bacteria to grow
on. When a bacterial culture has not been in con-

tact with a specific feed material for some time the

bacteria need some time to adapt to this material.

In this start up stage the bacteria are more sensitive

to overloading with feed material. ln a system that

is not adapted, overloading will lead to an accumu-

lation of the substrate or of one of the intermediate

products, which are likely to be toxic and will lead

to inhibition of growth and eventually to the dead of

the bacterial culture. Adapted systems will have the

ability to convert more substrate and prevent accu-

mulation of intermediate products. Adapted cultures
have the ability to provide more buffering capacity
to the reactor mixture. On the other hand, if insuffi-

cient feed material is supplied the bacteria will fail to

grow and without growth there is no acclimatisation
and the process will fail as well. Process failure will

be characterised by washout of bacteria. ’l‘his occurs

when the growth of bacteria is lower than the amount

of bacteria that flow out. If the process succeeds in

the initial critical stage, the bacteria will start to grow

successfully. The growth will be selflaccelerating and

the demand for feed increases to a certain maximum.

Further increase of the feed will lead to overloading
of the process and again, process failure.

The prediction of the f‘eed rate and the estimation

of the feed demand as a function of the process re-

sponses will be the objective of this work. "l‘hc intent

of this paper is to demonstrate how a novel fuzzy neu-

ral nctwork, FuN N (Fuzzy Neural Network) [8, 9, 10].
can be used for the estimation of the correct feed rate.

2 Data Acquisition and Analy-
sis

As process variables, the following measured param-
eters are used:

o temperature: The temperature dependency of

all parameters is related to the change of the

growth rate depending on the temperature. The

growth rate behaves  an optimum curve with

an optimum value depending on the type of or-

ganism. Deviations from the optimum value will

result in thc decrease of the growth rate, which

results in lower gas and CH.; production. If the

growth rate decreases too much the pil can de-

crease and the ORP can increase due to accumu-

lation of iuterinediate products.

o pH: A low pil indicates an accumulation of in-

termediate products (in this case fatty acids).
This means the bacteria are growing under

stressed conditions. This will result in a decrease

of the gas production and CH.; concentration.

During an accumulation of intermediate prod-
ucts the ORP will go up.

0 Oxidation Reduction Potential (ORP):
The ORP measures the balance of all chemical

oxidation-reduction couples in the reactor. Ev-

ery chemical oxidant will be reduced to some ex-

tent if it has oxidised another chemical. This

makes a pair for each oxidant or reductant. The

overall balance between oxidants and reductants

is measured by the ORP in mV. ORP is a difli-

cult concept and is hard to interpret, but it may
indicate the difference between different process



states. Production of hydrogen gas and anaero-

bic conditions in general tend to lower the ORP,
aerobic conditions will raise the ORP. A stressed

system may have a higher ORP than a healthy
system.

0 CH4: The methane concentration olf the gas

produced ir1 the reactor is measured. Success-

ful biodegradation is parred with production of

methane gas. In a stressed system other bac~

teria, producing carbon dioxide and other gases
will predominate. This leads to a lower methane

content of the gas.

¢ gas production: Gas production is a direct

measure for the metabolic activity of the bac-

teria. Successful biodegradation is parred with

production of methane gas. In a stressed sys-

tem other bacteria, producing carbon dioxide

and other gases will predominate. This leads to

a lower rnetliane content of the gas.

o ieed rate supply: The feed rate supply is mea-

sured to calculate the amount of feed supplied to

the system. On basis of the gas, and especially
the methane production the conversion rate and

treatment efficiency can be calculated which will

be used to estimate the right feeding rate. The

feed material is an organic and/or inorganic mix-

ture of chemicals compounds for the bacteria to

grow on.

A problem with biological process control is that

on-line sensors which detect the essential parameters
do not exist, and if they exist they are prohibiteljf
expensive. Several parameters such as pH and ORP

(Oxidation Reduction Potential) can be measured,
but their significance and relation to the process is

often not fully understood. It is also common for

sensors and process variables to behave differently
during different stages in the process. For instance,
the dynamics of gas production in an anaerobic pro-

cess are much slower in a stressed system than in an

unstressed, well adapted system.
Figures 1 shows the measured parameters over the

time for 7 days. The measurement interval was every
1 minute. The iigurcs present over 10,000 measure-

ment intervals.

Although the significance and relation of the es-

sential parameters to the process is often not fully
understood, various parameters have a direct or in-

direct impact on the value of a parameter. The de-

pendencies are not always symmetric, eg., if the gas

increases, the ORP decreases, but the reverse must

not be true, etc. "l‘his means that changes in one pa’

raineter may cause changes in the other parameter
and because more complex reactions are possible, re-~

lations between parameters are too complex to catch:

the parameters are all related in one way or another.
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Figure 1: Normalised data for 7 days from an

eXpe1’i1’I1ental control system
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Table l: Correlation coefficients froni measured

data.

Table 1 shows the correlation coeilicients of the

measured data from an experimental control system
for anaerobic wastewater treatment. The correlation

coefficients vary from ~l to +1 and indicate the cor-

relation, or the anti-correlation of two parameters. A.

correlation coctlicient of 0 means there is no correla-

tion detectable.

The correlations of Table 1 appear also in Fig. 2

and Fig.3. The correlation of CH4 to TOC (feed
rate) and the negative correlation of pH and ORP to

TOC is obvious.

2.1 Data Pre-processing

The quality of the results depends on the quality of

the measured data which must be representative. To

improve the quality of the data, obvious rneasnring
errors were eliminated. If, for example, in quality
process control some measured signals have to be in-

vestigated, it becomes necessary to filter these data in

order to overcome the problems of noisy input. In ad-

dition to these methods some transformations of the

measured data such as FFT, could improve the re-

spective results. Both, filter methods as well as FFT,

belong to the class of signal processing techniques.



pl i, ORP, gas pvuducliun and lead sale versus time

Figure 2: pH, ORP, gas production and feed

rate imvsus time
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Figure 3: temperature, CH4 and feed rate ve7’s’u.s

time

Statistical approaches could be used to detect rela-

tionships within a data set describing a special kind

of application. Here correlation analysis, regression
analysis, and discriinination analysis can be applied
adequately. ’il‘l’icsc methods could be used for exam--

ple to facilitate the process of feature extraction. In

the following Study, We, however, employed an FFT

algorithin and considered the giving of pattern infor-

mation which is transformed using an FFT to the

input layer of the fuzzy neural network, as will be

explained in the next section. Data analysis have

been performed with a coruniercially available soft~

ware tool. For further’ inforrnation about FFT and

filter methods see, eg. [l6, l_4].

3 The Experimental System

The research will be target to the development of an

intelligent system for the recognition, prediction and

control of process states in a complex, non-linear bio-

logical process. Challenges will be put to the system
to test its intelligent capabilities. These are (a) use of

non~speciiibacterialstartercultures;(b)useoftoxicbacterial starter cultures; (b) use of toxic

waste materials as feed for the process. At the start

of operation of a biological reactor, the right ingre-
dients inust be present. ’1‘hese are bacteria that will

catalyse the biocliernical conversion processes and 21

feed niaterial.

Initially the reactor is filled with a bacterial cul-

ture grown under aerobic conditions so that the bac-

teria are not adapted to the new environment. Little

amounts of feed are supplied to the reactor in order

to adapt the bacteria to the feed and the response

will be iIlAftei’theinitialcriticalstagetheAftei’ the initial critical stage the

bacteria will start to grow and the demand for feed

increases_ The feeding rate is increased till the Il1l?\X~

imum feed consuniption for the 1’eactoz_’ is reached.

Further increase ol’ the feed at that point will lead

to overloading of the system. This will result in the

accumulation of acids, the pH goes down and the sys-

tem linally dies. This means that they can easily be

inhibited in their growth if to much of the feed is sup-

plied. On the other hand, if insuflicient feed material

is supplied, the bacteria would fail to grow and with-

out growth there is no acclirnrttisation and the pro-

cess will fail, Process failure will be climacterised by
washout of the bacteria and no process response. So

the control system must be able to recognise the dill

ference between a healthy and an ’im/zealthy response

of the bacteria and take appropriate action to avoid

collapse of the biological culture.

The experimental system is shown in Figure (S. The

process is an anaerobic digestion perforrned in PLIIELCF-

obic reactor. The bioreactor is rnaintainerl at þÿ�3�5 �C

by a heated water jacket. The feed is supplied to

the bioreactor from a bottle by a food pump Pl con-



trolled by an output from the supervisory PC. Differ-

ent purnp rates are obtained hy turning the pump on

for a required part of lf) minutes. A weighing scale

S] rneasures the quantity of feed used. After filling
the reactor, excess liquid will exit the rviaan via an

outlet at the top. This will contain a mixture of liq-
uid and produced  The mixture is separated into

three streams in il separator. The first stream is re-

circulated back into the reactor for mixing by pump

P2, the recirculation. In the recirculation loop several

sensors are inserted for the process variables inc1ud~

ing pI~I (S3), Oxidation Reduction Potential (ORP,
S4) and the temperature (S5). The second stream is

the excess liquid collected in a container. T he third

stream is the produced gas. An infrared rnethane

analyser analyses the rnethane content of the gas.
The gas is then collected in tr Mariotti flask, which

is u bottle filled with acidified water to prevent the

produced CO2 from dissolving. The g215 displaces the

Water l‘I’()ll1 the bottle, which is pressure balaricefl so

that no pressure is needed to force the water out of

the bottle. The displaced liquid is collected on a sec~»

ond weighiri scale S2. Data. from the sensors and the

scales is collected und stored on minute intervals on

the supervisory computer.

4 The Modelling Technique -

the Fuzzy Neural Network

FuNN

The fuzzy neural network FUNN [8, 9, ]_0l uses a

rnlllti-layered þÿ�[�) ‹�1�‘�C�C�[�)�f�I�‘�(�)�1�’�1(MLP) network and it ex-

tended BP training ulgorithrn. In this connection-

ist structure, the input and output nodes represent
the input states and output control/decision sig--
nals respectively, and in the hidden layers, there are

nodes functioning as rnerrrbership functions (MIPS)
and rules. This eliminates the disadvantage of a nor-

mal fcedl‘orwa.rrnulti-l_ayernetwhichisdifficultforrnulti-l_ayer net which is difficult for

an outside observer to undcrstanrl or to modify.
T he architecture facilitates learning from data and

approxirnate reasoning, as well as iuzzy rule extrac-

tion and insertion. It allows for the combination of

both nrrrnerical and fuzzy data. and fuzzy rules to be

used in one system, thus producing the synergistic
benefits associated with the two sources. ln addi-

tion, it allows for adaptive learning in a dynamically
changing environment.

Below at brief description of the components of the

PMNN structure and functionalities, and the philoso-
phy behind this architecture, are given.

4.1 The architecture of FuNN

The general FuNN arcliitecture consists of 5 lay-
ers with partial leedforward connections as shown in
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Figure 4: A FuNN structure for two fuzzy rules:
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F ig. 4. In this connectionist structure a modified BP

training algorithm was developed. The first and last

layer uct as the fuzzifier and the defuzzifier, respec-

tively. ln the condition layer, uniforrnly distributed

triangular membership functions are used. Single-
tons are applied in between the action and the output

layer, as connection weights, which represent the cen-

tre of n. membership functions. FuNN is also adapt-
able where the mernhership functions of the fuzzy
predicates, as well as the fuzzy rules inserted before

training or adaptation, may adapt and change ac-

cording to new training data.

° Input Layer: Nodes in layer one are input
nodes which represent input linguistic variables

[19]. The nodes in this layer only transmit input
values to the next layer, condition element layer.

o Condition Layer: Nodes in this layer uct ns

fuzziflcation processors. The input values are fed

to the condition element layer which performs
fuzzilication. This is irnplernented using three»~

point triangular membership functions with cen-

tres represented  conuection weights. The tri-

angles are completed with the ruinirnurn and

rnaximurn points attached to adjacent centres,
or shouldered in the case of the first and last

membership functions.

The triangular rnenibership functions are al-

lowed to be non-symmetrical and any input value

will belong to inaxirnurn of two rnernbership
functions with degreesdiffering from zero. It will

always involve two membership functions unless

the input value falls exactly on a rnernbership
function centre in which case the single rnernber-



ship will be activated. These niembersliip de-

grees for any given input will always sum up

to one, ensuring that some rules will he given
the opportunity to iire for all points in the input
space. This centre-lizised menibersliip approach
taken by þÿ�l�* ��u�NN avoids the problems of uncovered

regions in the input space. These do not always
limit centres and widths in such a way ns to G11-

sure complete coverage. While algoritlnns could

be formulated and used in such cases to force the

rnernberships to cover the input space, the sim-

ple centre-based approach taken by FLINN seems

both more efficient and more natural, with fewer

arbitrary restrictions. lt should be noted that

there are no bins connections necessary for this

representation in l1‘uNN.

initially the inemhersliip functions are spaced
equally over the weight space, although if any

expert knowledge is available this can he used

for initialisation. ln order to niaintain the se-

mantic meaning of the rnernbership functions

some restrictions are introduced. When adap-
tation takes place the centres are limited to

remain within equally sized partitions of the

weight space. This avoids problems with violat-

ing the semantic ordering of membership func-

tions. Therefore, under the FuNN architecture

labels can be attached to weights when the net-

work is constructed and these will remain valid

for the lifetime of the network. For example, a

membership function weight representing low al-

ways have a. centre less than mcrlium, which will

always be less than high. Simple activation func-

tions are used in the condition element nodes to

perform fuzzihcation.

Rule Layer: Each node in this layer is a rule

node which represents a single fuzzy rule. Thus,
all the nodes in this layer forrn a fuzzy rule base.

The activation function is the sigmoid (logistic)
function with a. variable gain coefficient (a de--

fault value of 1 is used). The connection weights
from the Condition Layer are initialised ran-

domly with small values and fully connected.

The sernantic meaning of the activation of  

node is that it represents the degree to which

input data matches the antecedent component
of the associated fuzzy rule. However the syner-

gistic nature of rules in a fuzzy-neural architec-

ture must be reinembered when interpreting such

rules. The connection weights from the Condi-

tion element Layer (also Called the þÿ�1�m�:�1�n�.�b�e�1 ��s�/�r�i�p
functions layer) to the Rule Layer represent se-

mantically the degrees of importance (DI) of

the corresponding condition elements for the aC~

tivation of this node.

o Action Layer: In this layer links define the con--

sequences of the rules and a node represents a

fuzzy label from the fuzzy quantisation space of

an output variable. The activation of the node

represents the degree to which this membership
function is supported by all fuzzy rules together.
So this is the level to which the ineinbership func-

tion for this fuzzy linguistic label is cut according
to the rules and current facts. The connections

from the Rule Layer to the Action Element Layer
represent conceptually the confidence factors

(CF) or certainties þÿ�o�l �the corresponding rules

when inferring fuzzy output values. They are

subject to constraints that require them to re-

main in specified intervals as for the condition

element layer with the same advantages of se--

mantic interpretability. The activation function

for the nodes of this layer is the sigmoid (logistic)
function with the same or variable gain factor,
and connection weights are initialiserl as in the

previous layer. This gain factor should be ad-

justed appropriately given the size of the weight
boundary.

o Output Layer: It represents the output vari-

ables of the system. This node and links at-

tached to them act as the defuzzifier. This layer
performs the centre of gravity (COG) clefuzzifi-

cation.

Singletons are used as membership functions for

the output labels, which is equivalent to having
the centres only of triangular rnernbership fuuc-

tions, as it was the case of the input variables,
and are attached as connection weights to the

corresponding links. Linear activation functions

are used here.

Adapting the output membership functions

means moving the centres. The requirement that

the niembership degrees to which a particul:n~
output value belongs to the various fuzzy labels

must always sum to one, is always satislied. For

each centre, there is a constraining band (parti-
tion) where this value can move to. This princi-
ple applies in the same way as the input mem-

bership function centres restrictions are.

Details of the superviserl learning algorithms of FUNN

are given below.

4.2 The FuNN Basic Learning Algo-
rithm - a modiiied backpropaga-
tion algorithm

This section explains the algoritlun used for the

FUNN system. That includes a forward and a back-

ward phase.



4. 2 .1 Forward Pass

This phase computes the activation values of all the

nodes in the network from the iirst to fifth layers. In

this a superscript indicates the layer and a subscript
describes connection weights between layers.

o Input Layer: The nodes in this layer only
transmit input values (crisp values) to the next

layer directly without modification.

o Condition Layer: The output function of this

node is the degree that the input belongs to the

given membership function. The input weight
represents the centre for that particular me1n~

bership function, with the minimum and max»

imuln deterrnined using the adjacent member-

þÿ�s�h�i�p ��scentres.

In the case of the first and last membership fuuc-

tion for a particular variable a shoulder is used

instead. Hence, this layer acts as the fuzziiier.

Each membership function is triangular and an

input signal(x) activates only two neighbouring
membership functions simultaneously, the sum

of the grades of these two adjacent membership
functions for any given input is always equal to

1.

For a triangle-shaped membership function as in

FuNN, the activation functions for a node  are:

_ $ -

tt;
.»lct§ == 1 - - , or < 51: < owl,

fLi+1
 ’li

. (Zi
- 117

Act; = 1 »-

#q cz@_1 < 1.1: < ai,
1-’ --i--1

Act? : 1, :r = ei, (1)
where a is the centre of the triangular member-

ship function.

0 Rule Layer: The connections from the con-

dition to this layer are used to perform pre~

condition matching of fuzzy rules. The connec-

tion weights may be set either randomly and

then trained or according to a Set of rules,
namely rules insertion. The net inputs and acti-

vations are respectively,

Neff I Zwwflctc,

Aa" 2 im" (2)
1+ þÿ�r�.�‘�9 ��N�e�"�"

where g is a gain factor.

¢ Action Layer: The nodes and connection

weights in this layer function as those in the

Rule Layer for Net input and activation:

Net" 33 §J1r1(,,,.flr:t",
T‘

1
.llclftll 2

 N;?;
.  

o Output Layer: This layer performs clefuzzifi-

cation to produce a crisp output value. Among
the commonly used defuzz.i_tication strategies, the

Centre of þÿ�G�7 ��r�i�v�’�i�t�y(COG) inethod was used:

Net" 2: þÿ�§�;�’�1�i�f�o�a�/�l�c�t ��,
(L

Vet"
/il .tu Z?  .  C

L Acta ( )

4.2.2 Backward Pass

The goal of the system is to minimise the following
function. Here the standard BP learning algorithm
is used:

1
p _

__

_‘

rl
__,

2

where yd is the desired output and yo is the current

output. Hence the general learning rule (gradient de-

scent) used is

3E
All) ~

""-

5°/5,
HE

£A’LUt.|..]7- ’f]("" -f- Ctrfxilit,  

where 1; is the learning rate and or is the momentum

coefficient, and using chain Mile we have

 2 fmfrfr  rr .  (7)810 c9Net Um

llence the weight update rule is:

Amis.; = :’}+crAw¢.(8)+ crAw¢. (8)

o Output Layer: The error signal 6° is derived

as in the following:

as as aaa"
50 ;: _i______ 1 _________‘______%__ Z

d
__,

0

þÿ�d�h�/�e�t � aifiaw aNa3’y(9)
3’ y (9)

o Action Layer: The error for nodes in this layer
is calculated based on fuzziiication of desired

outputs and activation of each node. The fuzzi-

Iication of desired output for this layer is same

as 1. Hence we have

5" = þÿ�f�’�(�N�@�r ��)�*�s � þÿ�A�C�f ��(�1�-�.�4�¢�r ��)þÿ�E�U�!�"�-�A�e�t ��)
(10)

o Rule Layer: As in the Action layer, the error

signals need to he computed and this error signal
can be derived as

._ ._ _ _ 1

5’ : Act’ (1 -- /let’ ) Z(’iu,,,.c)") (ll)

0 Condition Layer: If inputs lies in the fuzzy
segment, then the corresponding weight should

be increased directly proportional to the propa-

gated error from the previous layer, because the



error is caused by the weight. This proposition
can be represented by the following equation:

.C
__

6Actf _V _

o W

----SaiZhi; A ) (12)7. (» .

[Ising Ed. l, the adaptive rule of the centre ui,

is derived as

. .
, _r O.; -»-- :: -

, ,Qiiffi   þÿ�1�f ��»S X S þÿ ��-�»�+�1�=

004 0, otherwise

(13)
Hence the adaptive rule of connection weights
becomes

Au1¢_i,_1= þÿ�r�)�6 ��:�1�:-i- crL\w¢. (14)

5 Experimental Results and

Discussions

ln the present study, the role of the fuzzy neural net-~

work is to estimate patterns of changes in the TOC
concentration of feed solution. In order to demon-

strate the potential of the proposed FUNN to mod-

elling of thc biological process dynamics, the 5 mea-

sured parameters temperature, pli, ORP, CH4, and

gas production from an experimental control system,
are used where the number of patterns was l0,080, as

it was mentioned in Section 2. For learning the TOC

concentration, the lirst 5,040 (t:=l to 5,0fl0) patterns
pairs (training data set) was used for training the

FuNN while the remaining 5,040 pairs (t=5,0to to

l0,080) were prepared for validating the identified

model.

For this purpose, three triangular-type (small,
rnedium, large) rnembership functions of input-
output variables are attached and the following ex~

periment was performed: a 5-15-10-3-] FuNN was

trained with the modified backpropagation algorithm
and fixed MFS. A small learning rate of 0.01 is given
and to stimulate learning capability the momentum

is employed. lt is observed that if the learning rate

(cr) is small, the gradient method will closely approxi-
mate the gradient path, but convergence will be slow

since the gradient must be calculated many times.

On the other hand, if cr is large, convergence will ini-

tially be very fast, but the algorithm will oscillate

about the optimum. Based on these observations, or

was variable during training and individually set for
each of the layers in the l"uNN, while the momentum

and the gain factor in the logistic activation function

were 0.9 and 1, respectively, for layers 2 to 5.

Fig. 5 shows the measured and the estirnated values

of the feed rate (TOC) after 2,000 iterations with firnezl
þÿ�l�c�n�.�1 ��1�L�i�7�1�.�_�qmode, i.e., the MPS of input and Output are

frozen, and demonstrate how FUNN can effectively
model a. biological dynamics. After 2,000 epochs, we
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withFigure 5: Model performance of FuNN

three linguistic labels: (a) Rl\/ISE curves for

the FHNN model; (b) TOC measured and cs-

timated: Actual data is shown by the solid

line, estimated data by the dotted line; (c)
estimation error between measured and esti-

mated data for test data.

had root mean squared error (RMSE) = 0.00l9. The

 neural network estimates the TOC by using the

actual input of the sensors. The results are good and

are suitable for the estimation of the TOC by sensors.

Several diiiferent methods for fuzzy rules extrac-

tion are applicable on the FuNN system [8, 9, l0].
For interpreting a Ful\lN structure in terms of aggre-

gated fuzzy rules an algoritlim is also implemented
[10]. Each rule node is represented as one fuzzy rule.

The strongest connection from a condition element

node for an input variable to the rule node, along
with the neighbouring condition element nodes, are

represented in the associated rule. The connection

weights of these connections are interpreted as de~

grees of importance (DI) attached to the correspond-
ing condition elements. The extracted rules from the

l§‘uNN can be inserted in the other F‘uNN modules

througli the rule insertion -module [10]. Extracted

fuzzy if~then rules from FuNN are described in Table

2.

6 Concluding Remarks

Combined hybrid systems between neural networks

and fuzzy logic are rapidly gaining popularity in the

design of many complex systems. Experience shows

that this type of combined system yields results some-

times superior to those obtained by the fuzzy con-

trol systems. Moreover, fuzzy neural networks are a

promising paradigm in the area of Soft Computing.



They have strengths in both learning from data and

monitoring knowledge.
In this paper, a fuzzy neural network called FUNN

is presented as a demonstration control system and

showed that a hybrid system is capable of modelling
complex chemical and biological processes to estimate

the quality parameter TOC (Total ()rg2,anicCarbon).
It is expected to be used further as a tool for devel-

opment of adaptive systems responding to changing
parameters and characteristics of the process control.

’.llll(:* main advantages of FUNN is to combine both

the benefits of neural networks and liizzy logic sys-
tems into an integrated system, with results being a

FuNN system, which

0 has faster learning speed than normal neural net-

work learning algorithms,

o provides a good explanation on what has been

learned by the network,

0 provides a moans for rules extraction and rules

refinement, and item facilitates adaptive learning
in a dynamically changing environment.

In particular, the adaptive learning algorithms devel-

oped here show that this is a promising approach to

building adaptive intelligent information processing
systems which suits many applications such as sig-
nal processing, speech recognition, time-series mod-

elling and prediction, adaptive control, data mining
and knowledge acquisition, and image processing.

l;\l1JLII"@research is anticipated in applying on-line

adaptive control systems. Of course, the model we

approached to process control systems is by no means

exhaustive; for more approaches we need to fur-

ther consider several other possibilities such as fuzzy-
genetic, neuro-genetic, and neuro-fuzzy--genetic sys-
tems. Such systems are likely to dominated the area

of hybrid intelligent information systems in the near

future. On-line adaptation of fuzzy neural networks

is still to be investigated. That may well be the most

important criterion to compare different fuzzy neural

network structures.
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Table 2: The fuzzy rules generated and their

corresponding degrees.




