
Automating information processing tasks:
an agent-based architecture�

Stephen Cranefield, Bryce McKinlay, Emanuela Moreale
and Martin Purvis

Department of Information Science
University of Otago

PO Box 56, Dunedin, New Zealand
E-mail: scranefield@infoscience.otago.ac.nz

Abstract

This paper describes an agent-based architecture designed to provide automation support
for users who perform information processing tasks using a collection of distributed and
disparate software tools and on-line resources. The architecture extends previous work on
agent-based software interoperability. The unique features of the information processing
domain compared to distributed information retrieval are discussed and a novel extension of
hierarchical task network (HTN) planning to support this domain is presented.

1 Introduction

The recent rapid growth of the Internet, coupled with the decreasing cost and increasing com-
puting power of desktop computers, has brought about a dramatic increase in the number of
information and computational resources potentially available to a single user. Consequently, a
number of research areas have emerged or developed a new lease of life due to this phenomenon,
in particular information retrieval from distributed and heterogeneous resources and the interop-
eration of disparate and distributed software tools. A common theme in this work is the use of
an ‘agent’ metaphor, whereby different parts of a distributed system are encapsulated as service-
providing agents communicating in a common declarative language. This research effort has
led to the design of agent-communication languages (ACLs) such as Knowledge Query and Ma-
nipulation Language (KQML) [1] and the Foundation for Intelligent Physical Agents (FIPA) [2]
ACL [3], and the development of agent architectures to support extensible and open agent sys-
tems [1].

�This research was funded by grants from the University of Otago Research Committee and the New Zealand
Public Good Science Fund. An initial prototype and some elements of the design were developed by Aurora Dı́az.

This paper describes an architecture inspired by these developments and extended to address
the problem of automating information processing tasks performed using distributed and dis-
parate software tools and resources. This work is based on the premise that many computer users
have a tool kit of familiar software tools and information resources that must be used in con-
junction to perform tasks. If the tool kit does not consist of a single suite of software, designed
by a single vendor and residing on the same hardware and software platform, there can be a
significant time and memory overhead in performing the correct sequence of tool invocations,
user-interface commands, data transfers and file format transformations required to achieve each
information processing task. It can also be time-consuming for users to adjust their work prac-
tices to incorporate new tools in the tool kit or replace tools with updated versions or competing
products.

An example of such a problem domain in the authors’ environment is that of administering
a university course. At the authors’ institution, course information processing and management
tasks include extracting initial class lists from the central database, adding and deleting students
from the class roll, ‘publishing’ assignments and making any required data sets available, config-
uring an electronic assignment solution system, marking student assignments on-line, changing
marks when errors in marking are detected, producing statistical summaries of the class marks,
making exercise solutions and student marks available on the network, and producing a final end-
of-semester report of the class marks. Information may be created, deleted or modified at each
stage of the process. Currently these tasks are performed using a tool kit approach: the course
administrator uses a number of different tools to perform the tasks, some being general-purpose
tools he is familiar with, and some being specially written for work in this problem domain.
Furthermore, over several years many of these tools have changed: the database software used
has changed, the home-grown on-line assignment marking support utility has evolved through
three generations, and other software tools (such as the spreadsheet utility) have been upgraded
to newer versions.

To support users in this type of problem domain, the authors have previously proposed a
“desktop utility agent” architecture [4–6] that extends previous work on agent-based software
interoperability [1] by the addition of a specialised planning agent and a user agent that controls
the automation of common sequences of actions of behalf of the user. This paper describes a pro-
totype of an extended version of this architecture and in particular discusses the representation of
information processing actions and plans and the requirements this imposes on the architecture.
The discussion is illustrated with a simple example from the university course administration do-
main: automating the (possibly repeated) invocation of an on-line assignment-marking support
utility and its associated resource retrieval actions in order to generate a class set of marks for an
assignment.

2 Architecture overview

A prototype system has been built to test the architecture in the university course administration
domain. Currently only one task in this domain is automated: the marking of electronically
submitted programming assignments. The prototype consists of six agents that communicate via

KQML messages (see Figure 1). A facilitator agent provides matchmaking services by routing
requests for services to the appropriate agents (currently only the “recruit” mode of matchmaking
[7] is implemented). The user interacts with the user agent to initiate a (possibly complex)
task. This agent then asks for a plan to be generated for that task and controls the execution
of the resulting plan. The marking agent is a wrapper around an existing tool that allows a
tutor to systematically locate, compile, run and enter a mark for electronically submitted student
programming assignments. The other two agents (the resource metadata repository agent and
the relational data access agent) will be discussed later.

Planner

GUI

User Agent

Repository

Operators

Facilitator

Resource Metadata

Relational Data
Access Agent

Current State

URCs

Current Plan

Available Tasks

Marking Agent

Methods

Figure 1: The prototype system architecture

The system is implemented using Java and Amzi! Prolog [8]. A key feature is the develop-
ment of our own JATLiteBean, a Java Bean [9] component that wraps around and extends the
Java-based JATLite agent template from Stanford University’s Center for Design Research [10].
An important feature of the JATLiteBean is its message-handling architecture. An agent can
dynamically register message handlers for expected incoming messages (such as replies to the
agent’s own requests), allowing it to maintain a “thread of control” involving the transmission
and receipt of many messages despite the asynchronous nature of KQML message-passing. This
is particularly important for the user agent which is responsible for executing plans — a process
that involves requesting other agents to perform actions and then continuing its execution once a
reply is received verifying that the action has been performed.

3 Automating information processing tasks

Although the current prototype system is being tested in a single domain, the architecture is
designed to support the general problem of automating information processing tasks performed
using distributed and disparate software tools and resources. This section outlines a number of
general issues about this problem area that have guided the design.

3.1 A relational ontology

For multiagent systems to be open and extensible, they must have one or more commonly under-
stood ontologies defining the meaningful expressions that may appear in messages. In general, a
powerful knowledge representation language such as Knowledge Interchange Format (KIF) [11]
may be required to define a domain. However, for many information processing problems the
full representational power of first order logic is unlikely to be required. Furthermore, for many
problems there is likely to be an existing formal description of the domain: the relational model
used for the domain database(s). Therefore, this architecture assumes that the user has defined
the domain ontology as a relational data model. This choice has influenced the model of action
in which the planner is based and has allowed the frame problem to be addressed in a novel way
(see Section 4).

3.2 HTN planning

From their experience with the manual interoperation of their software tool kit, users will already
have a good understanding of the way in which their tasks can be broken down into a sequence
of actions to be performed by different tools, and the operations needed to transform data be-
tween different formats and machines. Therefore the planning support provided is not based on
traditional goal-directed planning techniques, but instead is based on hierarchical task network
(HTN) planning [12]. With this type of planning the planner is provided not only with operators
describing the possible agent actions in the domain, but also with a set of parameterised abstract
tasks that can be performed and a list of “methods”, each describing a possible way to resolve a
subtask into an ordered networks of subtasks. In this way a domain expert (the user in this case)
can provide the planner with domain-specific knowledge.

3.3 Data format abstraction

To allow for tools and information resources to be changed and upgraded it is important that
operators and plans abstract away from details about the data formats and access protocols of
their resources. Therefore plans are only concerned with the intellectual content of resources
(expressed as relational algebra expressions). At run time, the resource metadata repository
agent stores metadata about the known information sources: their intellectual content, format,
and their location and access protocol expressed as a uniform resource locator (URL). Following
the terminology of the Internet Engineering Task Force each metadata record will be referred
to as a URC (Uniform Resource Characteristic) [13]. Agents needing input data must request

resource information from the metadata repository, specifying the intellectual content and in
addition the desired data format and access protocol. In this regard the agents are more fussy
about their inputs than their associated planning operators: it is possible that the execution of a
valid plan could fail because of a mismatch of output and input data formats at run time. The run-
time system is responsible for dealing with this problem by providing an appropriate collection
of data conversion agents.

If the metadata repository agent knows of a suitable resource it returns a URL to the request-
ing agent. If the resource is available only in a different format from that requested it should
issue a request (via the facilitator) for a new copy of the resource to be generated in the desired
format. However, at present this behaviour is not implemented.

With this separation of information content from format, new tools can replace old ones
without affecting the rest of the system, provided that they can be given agent wrappers with the
same interface as the tools they replaced.

3.4 Interleaving planning and execution

Execution of a task may involve invoking a tool that requires human interaction. The user’s
actions may affect the contents of any resources created by that tool. For example, in the marking
task the user fills in each student’s mark on a form before moving to the next student. The user can
also have a direct effect on the future evolution of the overall task. For example, a user interacting
with the marking tool is not required to mark every student’s work in one session. Instead the
tool can be repeatedly invoked until all submissions have been marked. To allow a route for
information flow from the user’s actions at execution time back to the planner, operators may
include run-time variables [14] as parameters. These are instantiated when the corresponding
agent action is performed. Planning and execution may be interleaved: the planner may generate
a plan containing one or more unexpanded compound tasks. Once the initial actions in the plan
have been executed, the instantiation of run-time variables may allow these tasks to be expanded
further — this is done by the user agent passing the plan back to the planner to be refined.

One novel use of run-time variables in this architecture is to incorporate current information
about the domain into the plan at run time. The relational data access agent can perform the
action eval_rel_exp(RelExp, RuntimeVar) resulting in the instantiation of RuntimeVar
to a term representing the set of tuples in the relation denoted by RelExp . This use of this
feature is discussed later in the context of the example plan in Figure 4.

3.5 Recording information currency

Planning and executing information processing tasks requires explicit representation and reason-
ing about changing information resources. Information about the domain may be generated or
altered as actions are performed (e.g. a student’s mark may be corrected by a “change mark”
action). Also, in a distributed system involving a number of different tools there may be dupli-
cation of information across various files and databases. For each known resource it is necessary
to record how current it is. One solution would be to just ‘forget’ about resources that are known
to be out of date. However, these can still be useful if used in the correct way, for example, an

up-to-date file of student marks can be created by appending the latest output from the marking
tool to the ‘old’ file of student marks. To ensure that this can be done correctly it is necessary
to locate the correct version of the student marks resource. This capability is provided by the
resource metadata repository: each URC contains a record of the range of world states for which
the resource is valid. Requests for a resource URL should specify both the intellectual content (a
relational algebra expression) and the state for which information is wanted.

The user agent is responsible for initiating the execution of each action in the plan. When it
receives confirmation that the action has been performed it generates a new state name and noti-
fies the resource agent that this new state has been reached. It also uses information in the plan to
notify the resource metadata repository agent about any new or updated resources that will have
been created by the agent that performed the action. That agent will have created the resources
and sent URCs describing them directly to the metadata repository. However, in case these mes-
sages are late arriving, the user agent must warn the metadata repository that they should be
expected if they have not already arrived. The user agent also notifies the metadata repository
agent of any resources that have become outdated as a result of the action (this information is
represented explicitly in the plan).

3.6 Domain initialisation

When the architecture is used for the first time in a new domain the user must provide the do-
main ontology, agent wrappers for the tool, operators describing the actions of these agents, and
the domain tasks and methods. However, general purpose tools such as file format conversion
utilities are useable across domains provided that their agent wrappers work in terms of lower
level ontologies, e.g. an ontology describing file formats [4]. Providing user interface support
for the definition of the domain ontology, operators and methods, and supporting the automatic
generation of tool wrappers are important considerations, but at present we assume that the user
and planning agents are already equipped with the appropriate domain knowledge and that the
tools have already been encapsulated as agents.

4 The plan representation

This section will illustrate the design of the planning component of the architecture by showing
an example planning operator and an example plan in the domain of university course admin-
istration. To clarify the structure of this domain, a simplified version of its relational model is
shown in Figure 2. There are three base relations: student, recording details about students,
component, describing the individual course assessment components (assignments, tests and the
final exam), and assess, recording each student’s mark for each component of the course.

Figure 3 shows an example operator specification. The operator mark represents the invo-
cation of an interactive tool that allows a tutor to systematically run each student’s submission
for a particular assessment component (Cmpt) and record a mark for it. Not all submissions may
be marked in one session, so the third argument is declared (by the use of the “!” prefix) to be

Table student

Attribute stu_id stu_name

Domain String String
Key stu_id

Table assess

Attribute stu_id cmpt_id mark

Domain String String Decimal(1)
Key stu_cmpt = stu_id+cmpt_id

Table component

Attribute cmpt_id description out_of weight

Domain String String Integer Integer
Key cmpt_id

Figure 2: The relational model for the course administration domain

mark(Cmpt, ToMarkIDs, !MarkedIDs)

Affects: assess.
Variables

NewData: (a relation with the same structure as assess)
Constraints

assess 0 = assess
�

[NewData,
key values(NewData; stu cmpt) = MarkedIDs� fCmptg,
MarkedIDs � ToMarkIDs.

Input resources
R1 : ontology = course data,

content =select(student; [stu id 2 ToMarkIDs]).
Output resources

R2 : ontology = course data,
content =select(assess; [stu id 2 MarkedIDs; cmpt id = Cmpt]).

Figure 3: The operator for the marking tool (‘
�

[’ represents disjoint union)

a run-time variable. This will be instantiated at run time to be a term representing the set of
student identification numbers for students whose work was marked during the execution of this
operator.

The affects clause in the specification is used to solve the frame problem that must be ad-
dressed in any planning system [15]. This is the problem of describing and reasoning about
actions so that both the effects of the action and the parts of the world state that are unaffected
by the action can be efficiently determined. In this example, the affects clause states that the
operator only alters the relation assess.

The constraints appearing in operators describe how any relations affected by the action are
altered. The new content of a relation may be only partially specified by an operator. For exam-
ple, the marking action involves interaction with a tutor who decides the marks for the marked

student assignments. Therefore, all that is known about this operator is that afterwards a resource
exists that contains marks for all programs that were marked. The actual marks are not (and can
not) be specified by the operator.

In the mark operator, the first two constraints specify how the operator changes the relation
assess. This operator is declared to create new information in the relation assess: marks for
the assessment component Cmpt for all students in MarkedIDs. The first constraint declares
that the contents of the assess relation after the operator executes is the union of the contents
of assess beforehand and a set of new tuples represented by the variable NewData. The actual
value of NewData is unknown until runtime, but the second constraint states that this relation will
consist of a tuple for each student in MarkedIDs, with each tuple having its cmpt_id attribute
equal to Cmpt. More precisely, the constraint states that the set of values in NewData for the key
stu_cmpt— consisting of the pair of attributes (stu_id, cmpt_id) — is equal to the cross
product of MarkedIDs and the singleton set {Cmpt}.

Note that operator constraints are not intended to be used for reasoning within the planner —
this is not necessary in HTN planning as user-defined task expansion methods drive the planning
process. Instead they are simply a specification tool to help model the effects of agent actions.
However, they should be taken into account when designing task-expansion methods, particularly
when adding resource computation links between nodes in a method (see below).

An example plan is shown in Figure 4. The representation extends that used in standard
HTN planning by the addition of constraints and the explicit representation of resources and
the computations required to generate new resources from old. However, unlike standard HTN
planning, our plans are currently restricted to be linearly ordered.

In the plan depicted the task mark(ass1) has been expanded into an eval_rel_exp action
and another task mark(ass1, AllIDs). The designer of the task-expansion method for mark/1
has included a link between its two child nodes specifying that the required input resource to the
mark/2 task (represented by the expression exp1) is in this situation equivalent to the complete
student relation. This is because the run-time variable AllIDs will be instantiated by the rela-
tional data access agent (which executes the eval_rel_exp action) to a term containing all the
student IDs currently in the student relation, and so exp1 reduces to student.

A second method has then expanded the mark/2 subtask into a constraint, an action (corre-
sponding to the marking tool operator shown above) and a recursive call to the mark/2 task which
is currently unexpanded. This method includes a ‘resource computation link’ describing how the
input resources for this recursive call can be computed from other resources that are known to
exist (in the figure the arguments to the select operation have been omitted for brevity). When
interpreting a plan, the user agent is responsible for requesting that these resource generation
actions are performed (this is another function of the relational data access agent).

Once the two actions in this plan have been executed, both run-time variables AllIDs and
MarkedIDs will be instantiated, the constraint will then cause RemainingIDs to be instanti-
ated and the user agent will return the plan to the planner for further expansion of the remain-
ing mark/2 task. Through this combined use of run-time variables, a recursive task-expansion
method and the interleaving of planning and execution, it is possible to generate iterative be-
haviour where the number of invocations of the marking tool necessary to complete the execution
of this plan is solely determined by the user at run-time.

=

U
.

U
.

=

Op U
.

!Var Runtime variable Var at point of instantiation

select(student, [stu_id in AllIDs])

exp2 =

exp3 = select(student, [stu_id in RemainingIDs])

exp1 =

Precondition resource that is still valid after task execution

Precondition resource that is invalidated by task

Resource created by task (in this case, the old resource is no longer valid as
 the task has changed the information state)

KEY

Name of action or compound task

Output resource can be produced from input resources by operation Op (represents disjoint uniom)

Output resource is known to be equivalent to input resource

select(assess, [cmpt_id = ass1, stu_id in MarkedIDs])

assess assess

student ->

mark(ass1)

eval_rel_exp(project(student, [stu_id]), !AllIDs)

student ->

exp1 ->

exp2

assess

select
assess

exp3 ->

assess

assess assess

exp1 ->

AllIDs = MarkedIDs RemainingIDs

assess assess

student ->

mark(ass1)

mark(ass1, AllIDs)

mark(ass1, AllIDs, !MarkedIDs) mark(ass1, RemainingIDs)

Figure 4: An example plan (the bold node is an unexpanded compound task)

5 Further work

At present the planner for this architecture has not been implemented, as development has fo-
cused on the other aspects of the system while the design of the operator and plan representations
were refined.

An important issue that must be addressed is to provide good user interface support to help
a user set up a new domain for use with this architecture. This involves specifying the domain
relational model, providing wrappers for the tools used and their corresponding operators, and
defining the tasks and task-expansion methods to be used in planning. It is crucial that the
benefits of automation are not outweighed by the initial time and cost of the domain initialisation
phase.

A full implementation should include agents that can assist with the translation of data for-

mats and the translation of messages from one ontology to another. For now, we assume that
there is a single domain ontology and that all resources are delimited text files.

Analysis of the type of automation support required in this architecture has focused on the
university course administration domain. Other information processing domains should be in-
vestigated to see if they have additional requirements that are not currently catered for.

6 Related work

A number of distributed information retrieval projects are discussed in references [16] and [17].
There are a number of planners designed to plan for gathering information from large dy-

namic networks of information sources ([18–21]), but none of these are designed with informa-
tion processing tasks specifically in mind.

XII [18] is a general-purpose planner extended to describe actions that sense the world as
well as causal actions. Although its actions can change the world, it makes a distinction be-
tween information goals and causal goals. Although it could probably be applied to information
processing tasks, its action language is not designed to describe such domains.

Sage [19], the planner used in the SIMS project [22], is a general-purpose planner adapted to
the problem of efficiently accessing multiple information sources in order to satisfy information
gathering queries. It does not include a mechanism to model actions that change the information
state.

Occam [20] is an special-purpose algorithm designed for the same task as Sage. It models
the available information as a relational database schema, but as Occam plans for information
gathering from an unchanging world, this information model is regarded as static. The available
information resources are modelled by associating information retrieval actions with the relations
of the world model that are returned when these actions are executed.

Williamson et al. [21] extend the HTN planning paradigm by explicitly modelling a task’s
provisions (these are named interface ‘slots’ with an attached queue for storing incoming values),
its outcome (indicating the result status of the task) and its result (a value produced by executing
the task). Task networks are extended to include links between the results and provisions of tasks,
indicating a flow of information. This mechanism is claimed to unify and generalise the methods
by which operators can obtain information in traditional planning frameworks: by parameter
binding, the passing of information from other operators via the world state, and through the use
of run-time variables. Provisions also have a role to play in controlling the execution of plans,
with primitive tasks being (re)activated whenever all their required inputs are available.

Our framework takes a different approach to representing and reasoning about information
flow between actions. Resources are described in terms of their intellectual content described
as a relational expression. Together with our use of the resource metadata repository agent this
allows agents to use any available resource that contains the required information — the provider
of the information does not need to be hard-wired into the plan.

We generalise the representation of links between different actions’ output and input re-
sources by allowing specified functions to transform and/or combine existing resources to pro-
duce new ones.

Finally, there is no aspect of plan execution intertwined with our representation of resources.
As discussed in Section 4, iterative behaviour can be achieved through the use of run-time vari-
ables and recursive task-expansion methods.

7 Conclusion

An architecture has been developed to provide automated support to users in the general prob-
lem of performing information processing tasks where a variety of disparate software tools and
resources must be used. This type of domain has different requirements from the types of appli-
cations addressed by existing work in agent-based software interoperability (in particular infor-
mation retrieval from distributed sources and the interoperation of complex engineering design
applications). In particular, this architecture must support a model of action that describes how
resources change as domain actions are performed. It is necessary to keep track of the changing
state of the system as actions are performed and the status of resources as they become updated
or outdated. A novel extension of the HTN plan representation has been developed to support
planning in this domain.

References

[1] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of the ACM,
37(7):48–53, July 1994.

[2] Foundation for Intelligent Physical Agents homepage. http://drogo.cselt.stet.it/fipa/, 1998.

[3] FIPA 97 specification documents. http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm,
1997.

[4] S. J. S. Cranefield and M. K. Purvis. Agent-based integration of general-purpose tools.
In Proceedings of the Workshop on Intelligent Information Agents, Fourth International
Conference on Information and Knowledge Management, December 1995.

[5] S. J. S. Cranefield and M. K. Purvis. An agent-based architecture for software tool coor-
dination. In L. Cavedon, A.S. Rao, and W. Wobcke, editors, Intelligent Agent Systems:
Theoretical and Practical Issues, number 1209 in Lecture Notes in Artificial Intelligence,
pages 44–58. Springer, 1997.

[6] A. C. Dı́az, S.J.S. Cranefield, and M. K. Purvis. Planning and matchmaking in a multi-
agent system for software integration. Mathematical Modelling and Scientific Computing,
8, 1997.

[7] D. Kuokka and L. Harada. Matchmaking for information agents. In Proceedings of the
14th International Joint Conference on Artificial Intelligence, volume 1, pages 672–678,
1995.

[8] Amzi! Inc. WWW home page. http://www.amzi.com/.

[9] Java beans specification. http://java.sun.com/beans/docs/spec.html.

[10] JATLite Web pages, Center for Design Research, Stanford University. http://java.stanford.
edu/, 1997.

[11] Knowledge Interchange Format specification. Working Draft, ANSI X3T2 Ad Hoc Group
on KIF, March 1995. http://logic.stanford.edu/kif/specification.html.

[12] S. Kambhampati. A comparative analysis of partial order planning and task reduction
planning. SIGART Bulletin, 6(1):16–25, 1995.

[13] URC working web, Advanced Computing Laboratory, Los Alamos National Laboratory.
http://www.acl.lanl.gov/URC/, November 1995.

[14] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring. In Pro-
ceedings of the 7th National Conference on Artificial Intelligence (AAAI-88), pages 735–
740, 1988.

[15] P. J. Hayes. The frame problem and related problems in artificial intelligence. In J. E. Allen,
J. Hendler, and A. Tate, editors, Readings in Planning, pages 588–595. Morgan Kaufmann,
1990.

[16] G. Wiederhold, editor. Intelligent Integration of Information. Kluwer Academic Publishers,
1996. (a special double issue of the Journal of Intelligent Information Systems, vol. 6(2–3),
June 1996).

[17] M. H. Huhns and M. P. Singh, editors. Readings in Agents. Morgan Kaufmann, 1998.

[18] K. Golden, O. Etzioni, and D. Weld. Omnipotence without omniscience: Efficient sensor
management for planning. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI-94), pages 1048–1054, 1994.

[19] C. A. Knoblock. Planning, executing, sensing, and replanning for information gathering. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2,
pages 1686–1693, 1995.

[20] C. Kwok and D. Weld. Planning to gather information. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI-96), 1996.

[21] M. Williamson, K. Decker, and K. Sycara. Unified information and control flow in hierar-
chical task networks. In Proceedings of the AAAI-96 Workshop on Theories of Planning,
Action, and Control, 1996.

[22] C. A. Knoblock and J. L. Ambite. Agents for information gathering. In J. Bradshaw, editor,
Software Agents. AAAI/MIT Press, 1997.

