
UML as an Ontology Modelling Language�

Stephen Cranefield and Martin Purvis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

E-mail: fscranefield, mpurvisg@infoscience.otago.ac.nz

Abstract

Current tools and techniques for ontology develop-
ment are based on the traditions of AI knowledge
representation research. This research has led to
popular formalisms such as KIF and KL-ONE style
languages. However, these representations are lit-
tle known outside AI research laboratories. In con-
trast, commercial interest has resulted in ideas from
the object-oriented programming community ma-
turing into industry standards and powerful tools
for object-oriented analysis, design and implemen-
tation. These standards and tools have a wide and
rapidly growing user community. This paper ex-
amines the potential for object-oriented standards
to be used for ontology modelling, and in particular
presents an ontology representation language based
on a subset of the Unified Modeling Language to-
gether with its associated Object Constraint Lan-
guage.

1 Introduction
In recent years a number of subfields of artificial intelligence
have been aiming to increase the ability of their systems to
interact with humans and other external agents by developing
and sharingontologies— formally specified models of bod-
ies of knowledge defining the concepts used to describe a
domain and the relationships that hold between them. Re-
search areas investigating the design of ontologies include
agent-based software interoperability[Genesereth and Ketch-
pel, 1994], knowledge acquisition[SMI, 1998] and natural
language processing[Batemanet al., 1995].

Various formalisms have been developed for expressing
ontologies, notably the Knowledge Interchange Format (KIF)
[NCITS, 1998] and knowledge representation languages de-
scended from KL-ONE[Brachman and Schmolze, 1985]. In
this paper we examine the use of an alternative formalism for
representing ontologies: a subset of the Object Management
Group’s Unified Modelling Language (UML) together with
its associated Object Constraint Language (OCL). Object-
oriented analysis, design and implementation is a maturing

�This paper will appear in the on-line proceedings of the IJCAI-
99 Workshop on Intelligent Information Integration

field with many industry standards emerging for distributed
computation. The large user community and commercial sup-
port for object-oriented standards warrants the investigation
of standard object modelling techniques for ontology devel-
opment.

This work is motivated primarily by consideration of the
role that ontologies play in agent-based infrastructures for
supporting queries over open and dynamic collections of het-
erogeneous and distributed information sources. Systems
such as SIMS[Knoblock and Ambite, 1997], Infosleuth[Ba-
yardoet al., 1997] and Observer[Menaet al., 1999] use on-
tologies to model the semantic structure of individual infor-
mation sources, as well as to describe models of a domain that
are independent of any particular information source. The
challenges for these systems are to support the construction
of user queries using domain ontologies that may be initially
unfamiliar to the user, and to allow queries to span multi-
ple information sources by representing and computing the
mappings between domain ontologies and the ontologies sup-
ported by individual information sources.

2 Common Ontology Modelling Languages

The most common formalisms used to represent ontolo-
gies are the Knowledge Interchange Format (KIF)[NCITS,
1998] and KL-ONE style knowledge representation lan-
guages[Brachman and Schmolze, 1985].

KIF provides a Lisp-like syntax for expressing sentences
of first order predicate logic and also provides extensions for
representing definitions and metaknowledge. KIF is a highly
expressive but low-level language for representing ontolo-
gies; however, the Stanford University Knowledge Sharing
Laboratory’s ontology editing tool, Ontolingua[Farquharet
al., 1996], allows users to build KIF ontologies at a higher
level of description by importing predefined ontologies defin-
ing concepts such as sets, standard units, time and simple ge-
ometrical functions. In particular, theframe ontology[KSL,
1994] allows ontologies to be defined in terms of relations,
classes (and subclasses), functions and sets.

Much of the research on ontology design and use is per-
formed by researchers using knowledge representation tools
descended from KL-ONE[Brachman and Schmolze, 1985].
KL-ONE was the basis for much work in the field of knowl-
edge representation. It implemented “structural inheritance



networks”: networks containing descriptions of named con-
cepts with generalisation/specialisation links between them.
Descendants of KL-ONE include LOOM[ISI, 1998] and a
family of logics calleddescription logicsor terminological
logics[Donini et al., 1996; Owsnicki-Klewe, 1990]. The KIF
frame ontology discussed above also allows this type of spec-
ification to be used in conjunction with more general KIF sen-
tences.

In a description logic, concepts can be introduced by sim-
ply naming them and specifying where they fit in the general-
isation/specialisation hierarchy. The following examples are
adapted from Nebel[1990]:

Human
�

� Anything

Set
�

� Anything

where
�

� represents concept specialisation andAnything is a
predefined concept representing the class of all things.

New concepts can also be defined in terms of existing con-
cepts using the operations ofconcept conjunction: the and
operator can be used to specify that the new concept is a com-
mon specialisation of a number of other concepts:

Male-student
�

= (and Man Student)

New roles may be introduced to represent possible rela-
tionships that may hold between instances of a concept and
other individuals in the world, for example:

member
�

� anyrelation

whereanyrelation represents the class of all relations.
Concepts may be specialised by operations such asvalue

restriction, where the operatorall is used to restrict a role’s
possible values to be instances of a certain class, andnum-
ber restriction, where the operatorsatleast andatmost are
used to restrict the possible number of values that a given role
may have. The following example states that a team is a set
for which all values for its “member” role are instances of the
Human concept with the cardinality of the member role being
at least two.

Team
�

= (and Set (all member Human)
(atleast 2 member))

Systems such as KL-ONE and LOOM structure their
knowledge bases to allow certain types of inferences to be
performed efficiently on the user-defined concepts, such as
the following list paraphrased from Owsnicki-Klewe[1990]:

� Subsumption: Is a given concept description more gen-
eral or more specific than another, or can no such rela-
tion be established?

� Coherence: Is a concept description logically coherent,
i.e. can there be an instance of this term?

� Identity: Do two concept descriptions refer to the same
concept?

� Compatibility: Can two concept descriptions have com-
mon instances?

� Common specialisation: What are the properties of the
common specialisation of two concept descriptions?

These types of deduction are designed to help the user in
incrementally designing a coherent set of concepts and in-
stances to describe a domain. Description logics provide a
formal characterisation of the representational and deductive
capabilities of KL-ONE style systems and allow their com-
putations to be studied in terms of completeness, computa-
tional complexity, etc. Although domain knowledge could be
represented using first order predicate logic, the benefit of us-
ing a specialised representation is that special-purpose data
structures and algorithms can be used to support efficient rea-
soning. In addition, the structured knowledge base supports
efficient processing of declarative queries about the defined
concepts.

3 UML for Ontology Modelling
Knowledge representation (KR) systems such as LOOM are
large and complex systems with a steep learning curve and
are little known outside AI laboratories. Instead of using
such technology, the authors are investigating the more main-
stream and rapidly growing arena of object-oriented technol-
ogy to construct a distributed information retrieval and pro-
cessing system. Currently there is no counterpart for the de-
ductive capabilities of KR systems in current object-oriented
technology; however, for distributed information systems
these capabilities are not necessarily needed. Many of the
benefits of KR systems occur during the process of designing
an ontology. This support is undoubtedly useful, but in the
object-oriented world there is also much support available for
the design of models, with mature and commonly used lan-
guages, methodologies and tools available.

The other function of KR systems — to store highly struc-
tured data and answer queries about it — is not an issue in
distributed information systems. The point of systems such as
SIMS, Infosleuth and Observer is to allow disparate databases
and other information sources to be integrated. Nothing can
or should be assumed about the underlying databases and in-
formation storage systems. In particular, it cannot be assumed
that the information sources will be implemented using KR
systems. While systems such as LOOM can be used to im-
plement key components of a distributed information system
infrastructure (such as query planning agents), it is certainly
possible to use other reasoning engines. In the authors’ view,
unless a system that uses ontologies is constructed around a
tool such as LOOM, there seems to be nothing inherently in-
tuitive or appealing in the use of a description logic formalism
to represent ontologies.

The ontology representation formalism presented in this
paper is a subset of the Unified Modeling Language (UML)
[Rumbaughet al., 1998] from the Object Management Group
(OMG) [OMG, 1998], together with its associated Object
Constraint Language (OCL)[OMG, 1997b; Warmer and
Kleppe, 1998]. Benefits of using UML and OCL include the
following:

� UML has a very large and rapidly expanding user com-
munity. Users of distributed information system infras-
tructures will be more likely to be familiar with this nota-
tion than KIF or description logics. This issue should not
be overlooked for its importance in gaining acceptance



of distributed information systems technology amongst
new end-user communities.

� Unlike description logic formalisms, there is a standard
graphical representation for models expressed in UML.
Such a graphical representation is important to allow
users of distributed information systems to browse an
ontology and discover concepts that can appear in their
queries. In contrast, a description logic has a linear syn-
tax but no standard graphical representation. Although
UML currently has no standard linear syntax, the OMG
is in the process of adopting XMI (XML Model In-
terchange) as a standard for stream-based model inter-
change[DSTC, 1999].

� The Object Constraint Language (OCL) is powerful and
allows the expression of constraints that cannot be de-
scribed using description logic. Of course, there is a
trade-off between the expressive power of a language
and the computational complexity of reasoning about it.
This issue is discussed in Section 3.5.

3.1 An Overview of UML and OCL
UML defines several types of diagram that can be used to
model the static and dynamic behaviour of a system. We have
chosen to model an ontology as a static model consisting of
a class diagram to depict the classes in the domain and their
relationships, and an object diagram to show particular named
instances of those classes. A sample class diagram appears in
Figure 1. Section 3.1 explains the classes and relationships
shown in this diagram. In this section we describe the UML
notation used in Figure 1.

In a class diagram, classes are represented by boxes with
three parts: the name of the class, the attributes of the class
(specified by their name, type and visibility) and the oper-
ations of the class (specified by name, argument list, return
type and visibility). For the purposes of representing ontolo-
gies, all attributes can be considered to have public visibil-
ity — an ontology is a shared public view of a domain. At
present we do not use operations in our ontologies, although
these could be used in conjunction with OCL postcondition
constraints that specify the result of the operation. If op-
erations are included, it is possible to declare that they are
queries, i.e. they will not change the state of the object the
operation is invoked on.

Figure 1 shows three types of relationship that may be used
between classes:

� generalisation, represented by lines with large hollow
arrow heads pointing to the super class (e.g. see classes
Role andInterpretiveRole at the top of the figure);

� association, represented by solid lines between two
classes with optionally named ends, orroles (e.g. class
Realisation in the middle of the figure has an associ-
ation with classWork to its right);

� aggregation, an association with a diamond at the ag-
gregate end of the link (e.g. classCD on the left of the
figure has an aggregation relationship withItemOnCD
to its right). UML includes a stronger type of aggre-
gation (composite aggregation, notated by a solid black

diamond) which implies ownership of the parts by the
aggregate. We do not make a distinction between the
two types of aggregation in our ontologies at present.

The ends of association and aggregation relationships may
be annotated with multiplicity indicators giving a range of
numbers (with ‘�’ representing infinity) denoting how many
instances of the class at that end of the relationship can be as-
sociated with each instance of the class at the other end. Also,
a small barbed arrow head may be used to specify that an as-
sociation or aggregation relationship may only be navigated
in one direction (this feature is not used in Figure 1).

Several other constructs of UML are used in Figure 1.
ClassCreativeAct in the top right corner is anassociation
class: a class attached to an association. These can be used
for associations that require attributes (e.g. an association be-
tween two classesstudent andassignment might have a
grade attribute). In the case of Figure 1, association classes
are used for associations that themselves participate in an as-
sociation with another class.

Finally, the large rectangles with folded corners arenotes:
uninterpreted pieces of text that may be anchored with dashed
lines to model elements to provide informal clarification. In
this case, however, the notes are used to attach OCL con-
straints to classes and associations. This is necessary as the
diagram was produced using Rational Rose 98 which does
not provide a general facility for placing OCL constraints on
a model.

A UML object diagramdepicts objects andlinks between
objects — instances of the relationships that hold between the
linked objects’ respective classes. The class of each object
included in the diagram must be specified and the object may
optionally be named. The values of the object’s attributes
must be shown. UML itself does not define a standard set of
primitive types for attribute and operation declarations; how-
ever, the Object Constraint Language does, and it is proposed
that these be used for ontology modelling with UML.

In a class diagram, OCL may be used to constrain attribute
values and possible instances of the relationships. It is beyond
the scope of this paper to give a comprehensive discussion on
OCL, but a brief overview follows.

An OCL expression is written in the context of an instance
of a specific type. The name ‘self’ is used to refer to that
instance. The value of an instance’s attribute can be expressed
by following the expression naming the instance with a dot
and the attribute’s name. The dot notation can also be used
to traverse an association or aggregation relationship. In this
case, the dot is followed by either the name of the class at
the far end of the relationship (with the initial letter changed
to lower case) or by the name of the role at that end of the
relationship (if it is named). The resulting expression can
represent a single instance (if the multiplicity of that role has
an upper limit of 1), a set of instances (when traversing roles
with other multiplicity indicators), or a sequence of instances
(for roles labelled with the constraint “ordered”). Given an
expression representing a collection (a set, sequence or bag),
the arrow operator-> can be used to invoke one of a number
of standard functions and predicates on that collection, e.g.
collection->size.



R
ol

e

In
di

vi
du

al
G

ro
up

E
ns

em
bl

e

C
re

at
iv

eR
ol

e

C
re

at
iv

eA
ct

1.
.1

0.
.*

1.
.1

0.
.*

In
te

rp
re

tiv
eR

ol
e

In
te

rp
re

tiv
eA

ct

1.
.1

0.
.*

1.
.1

0.
.*

--
M

ov
em

en
ts

in
ite

m
ar

e
su

bs
et

of
--

th
os

e
in

re
al

is
at

io
n

an
d

ar
en

't
re

pe
at

ed
<<

in
va

ri
an

t>
>

se
lf.

re
al

is
at

io
n.

w
or

k.
m

ov
em

en
t-

>
in

cl
ud

es
A

ll(
se

lf.
m

ov
em

en
ts

)
an

d
se

lf.
m

ov
em

en
ts

->
si

ze
=

se
lf.

m
ov

em
en

ts
.a

sS
et

()
->

si
ze

--
M

ov
em

en
ts

in
re

al
is

at
io

n
ar

e
a

su
bs

et
of

--
th

os
e

in
w

or
k

<<
in

va
ri

an
t>

>
se

lf.
w

or
k.

m
ov

em
en

t.n
um

be
r-

>
in

cl
ud

es
A

ll(
se

lf.
m

ov
em

en
tR

ea
lis

at
io

n.
m

ov
em

en
t.n

um
be

r)

T
em

po

--
S

pe
ci

fy
w

hi
ch

tr
ac

ks
be

lo
ng

to
w

hi
ch

ite
m

<<
in

va
ri

an
t>

>
se

lf.
tr

ac
k[

nu
m

be
r]

.n
um

be
r

=
S

eq
ue

nc
e{

se
lf.

st
ar

tin
gT

ra
ck

..
se

lf.
st

ar
tin

gT
ra

ck
+

se
lf.

m
ov

em
en

ts
->

si
ze

-
1}

--
M

ov
em

en
tn

um
be

rs
ar

e
co

ns
ec

ut
iv

e
--

st
ar

tin
g

at
1

<<
in

va
ri

an
t>

>
se

lf.
m

ov
em

en
t.n

um
be

r-
>

in
cl

ud
es

A
ll(

S
eq

ue
nc

e{
1.

.s
el

f.m
ov

em
en

t-
>s

iz
e}

)

--
T

ra
ck

an
d

Ite
m

nu
m

be
rs

ar
e

--
co

ns
ec

ut
iv

e
st

ar
tin

g
at

1
<<

in
va

ri
an

t>
>

se
lf.

tr
ac

k.
nu

m
be

r-
>

in
cl

ud
es

A
ll(

S
eq

ue
nc

e{
1.

.s
el

f.t
ra

ck
->

si
ze

}
)

<<
in

va
ri

an
t>

>
se

lf.
ite

m
.n

um
be

r-
>

in
cl

ud
es

A
ll(

S
eq

ue
nc

e{
1.

.s
el

f.i
te

m
->

si
ze

}
)

F
or

m

M
ov

em
en

t

nu
m

be
r

:I
nt

eg
er

1.
.*

0.
.*

1.
.*

{o
rd

er
ed

}0.
.*

1.
.1

0.
.* 1.

.1

0.
.*

La
be

l

na
m

e
:S

tr
in

g

A
ge

nt

W
or

k

tit
le

:S
tr

in
g

1.
.*

0.
.*

+C
re

at
or

1.
.*

+C
re

at
io

n

0.
.*

0.
.1

0.
.*

0.
.1

0.
.*

1.
.*

1.
.1 1.
.*

{o
rd

er
ed

}

1.
.1

R
ea

lis
at

io
n

re
co

rd
in

gV
en

ue
:S

tr
in

g
da

te
:D

at
e

1.
.*

0.
.*

+I
nt

er
pr

et
er 1.
.*

+I
nt

er
pr

et
at

io
n

0.
.*

1.
.1

0.
.*

1.
.1

0.
.*

C
D

tit
le

:S
tr

in
g

ca
ta

lo
gu

eN
um

:S
tr

in
g

1.
.1

0.
.*

1.
.1

0.
.*

M
ov

em
en

tR
ea

lis
at

io
n

1.
.1

0.
.*

1.
.1

0.
.*

1.
.1

1.
.*1.
.1

1.
.*

Ite
m

O
nC

D

nu
m

be
r

:I
nt

eg
er

m
ov

em
en

ts
:S

eq
ue

nc
e(

In
te

ge
r)

st
ar

tin
gT

ra
ck

:I
nt

eg
er

1.
.*

1.
.1

1.
.*

{o
rd

er
ed

}
1.

.1
1.

.1
0.

.*
1.

.1
0.

.*

T
ra

ck

nu
m

be
r

:I
nt

eg
er

1.
.*

1.
.1

1.
.*

{o
rd

er
ed

}

1.
.1

1.
.1

0.
.*

1.
.1

0.
.*1.

.1

1.
.*

1.
.1

1.
.*

{o
rd

er
ed

}

--
S

pe
ci

fy
w

hi
ch

tr
ac

ks
co

rr
es

po
nd

to
w

hi
ch

m
ov

em
en

tr
ea

lis
at

io
n

<<
in

va
ri

an
t>

>
le

tf
ir

st
In

de
x(

ite
m

:T
,s

:S
eq

ue
nc

e(
T

))
:I

nt
eg

er
=

s-
>i

te
ra

te
(e

lt:
T

;p
os

:In
te

ge
r=

0
|i

fp
os

<=
0

th
en

if
el

t<
>

ite
m

th
en

po
s-

1
el

se
-p

os
+

1
en

di
f

el
se

po
s

en
di

f
).

m
ax

(0
)

in
se

lf.
tr

ac
k.

nu
m

be
r

=
fir

st
In

de
x(

se
lf.

m
ov

em
en

tR
ea

lis
at

io
n.

m
ov

em
en

t.n
um

be
r,

se
lf.

tr
ac

k.
ite

m
O

nC
D

.m
ov

em
en

ts
)

+
se

lf.
tr

ac
k.

ite
m

O
nC

D
.s

ta
rt

in
gT

ra
ck

-
1

--
T

he
st

ar
tin

gT
ra

ck
of

ea
ch

Ite
m

O
nC

D
is

th
e

su
cc

es
so

r
of

th
e

--
pr

ev
.i

te
m

's
la

st
tr

ac
k

<<
in

va
ri

an
t>

>
le

tn
um

T
ra

ck
sP

er
Ite

m
:S

eq
ue

nc
e(

In
te

ge
r)

=
se

lf.
ite

m
O

nC
D

->
co

lle
ct

(m
ov

em
en

ts
->

si
ze

),
la

st
T

ra
ck

P
er

Ite
m

:S
eq

ue
nc

e(
In

te
ge

r)
=

nu
m

T
ra

ck
sP

er
Ite

m
->

ite
ra

te
(

el
t:I

nt
eg

er
;a

cc
:S

eq
ue

nc
e(

In
te

ge
r)

=
S

eq
ue

nc
e{

0}
|a

cc
->

in
cl

ud
in

g(
el

t+
ac

c-
>l

as
t)

).
su

bS
eq

ue
nc

e(
2,

nu
m

T
ra

ck
sP

er
Ite

m
->

si
ze

+
1)

,
in

se
lf.

ite
m

O
nC

D
->

co
lle

ct
(s

ta
rt

in
gT

ra
ck

+
m

ov
em

en
ts

->
si

ze
-

1)
=

la
st

T
ra

ck
P

er
Ite

m

Figure 1: UML class diagram for a CD publisher’s catalogue



3.2 Example
Figure 1 shows an example UML class diagram modelling the
concepts and relationships in the catalogue system for a clas-
sical music compact disc publisher. This model concentrates
on three classes:

Work
This class (located centre right) represents a piece of music,
i.e. the work of art itself. It is an aggregation ofMovement
objects (which are ordered sequentially starting at 1) and will
have one or moreCreativeAct relationships associating it
with anAgent and aRole (instances will include roles with
name “composer”, “librettist”, etc.).CreativeAct might be
better represented as a ternary relationship rather than an as-
sociation class with an association toRole, but Rational Rose
98 does not support the UML n-ary relationship notation.

Realisation
This class (located to the left ofWork) represents a partic-
ular recording of a work (or part of a work) made by the
recording company. It consists ofMovementRealisation
objects that are in turn associated withMovement objects. It
has one or moreInterpretiveAct relationships that asso-
ciate it with an agent in someInterpretiveRole such as
conductor, performer or narrator.

CD
This class (centre left) consists of an ordered sequence of ob-
jects of classItemOnCD. An ItemOnCD object represents a
whole or partial instance of a work appearing on aCD. Note
that aRealisation (in whole or part) may occur on more
than oneCD. A CD is an aggregate of (ordered)Track objects,
and so is anItemOnCD. The OCL constraint in the lower left
corner specifies which of aCD’s tracks belong to each item on
theCD (i.e. this constraint restricts the possible instances of
the aggregation relationship betweenItemOnCD andLabel).
A CD is also associated with a recordingLabel (e.g. Naxos).

Some of the classes in the diagram are incomplete (con-
taining no attributes) and a full version of the ontology would
show more details such asname attributes for the classes
Agent, Role, Tempo andForm.

3.3 Required Extensions to UML and OCL
UML allows ends (or “roles”) of association and aggregation
links to be annotated with the constraint “ordered”, meaning
that navigating that role from an object results in a sequence
of objects rather than a set. However, there is no syntax de-
fined in an object diagram to specify the actual ordering on
the instances of that relationship. This would be simple to in-
clude by allowing a new constraint type “precedes” to relate
two association links in an object diagram.

OCL contains some predefined functions on collections of
objects, as well as a simple “mapping” function on bags, sets
and sequences called “iterate”. This iterates over the col-
lection, using an expression involving the current element to
modify a single accumulator value at each step. However, this
function is highly frustrating to use due to its support for only
a single accumulator value. This problem could be solved if
a tuple type were introduced to OCL. An accumulator could
then be a tuple of several different values.

OCL lacks the facility to use temporary variables and func-
tions to avoid having to repeat subexpressions in an expres-
sion. The example in Figure 1 uses a non-standard “let” con-
struct to solve this problem. The need for a “let” construct has
also been noted by Hamieet al. [1998a], along with a number
of other shortcomings of OCL and some proposed solutions.

3.4 Semantics of UML
As an ontology is a formal model of a domain, it is im-
portant that the language used to describe it has formal se-
mantics. Unfortunately the official OMG document ‘defin-
ing’ the semantics for UML gives an informal description in
English [OMG, 1997a]. This shortcoming is currently be-
ing addressed by a number of researchers who have proposed
various different forms of semantics for UML, including a
direct mathematical model of the system being described in
UML [Breu et al., 1997], a description using the specifica-
tion language Z[Evanset al., 1998] and operational seman-
tics describing how a UML model evolves as new elements
are added to it[Övergaard, 1998].

Semantics for OCL, which necessarily include semantics
for class diagrams, have been proposed by Richters and
Gogolla[1998] and Hamieet al. [1998b].

3.5 Reasoning about Ontologies in UML
When choosing an ontology representation language, it is not
sufficient only to consider the ease with which the language
can be used to describe the domain. It is also necessary to
consider the types of automated reasoning about ontologies
that may be required. There is a well-known tradeoff between
the representational power of a formalism and the tractability
(and even the solvability) of reasoning with it[Levesque and
Brachman, 1985].

For example, KIF provides all the expressive power of first
order predicate logic, but reasoning about ontologies in plain
KIF requires general theorem-proving capabilities. In con-
trast, description logic provides a much more structured and
less general language for describing ontologies, and there-
fore specialised inferences can be performed on ontologies
described using description logic. Much research has been
undertaken to investigate the computational properties of var-
ious types of inferences on different variants of description
logic [Nebel, 1990].

The ontology representation language used in this paper —
a UML class diagram (containing OCL constraints) in con-
junction with an object diagram — contains both a highly
structured model that could support automated reasoning (the
basic class and object model, ignoring the OCL constraints)
and an expressive language that it would not be practical to
attempt general-purpose reasoning reason with. Further re-
search is needed to clarify what types of inference it would be
desirable and possible to support for ontologies represented in
UML. This partly depends on the type of system the ontolo-
gies are intended for. We do not suggest that UML be con-
sidered as an alternative to description logic formalisms in
all situations. For example, although Haimowitz et al.[1988]
found a KR tool to be inadequate for ontology modelling in
a medical expert system, UML would not provide a straight-
forward alternative for modelling ontologies such as this that



form part of a deductive system. It would either be neces-
sary to express the semantics of UML class diagrams within
the deductive system’s logic (which would increase the com-
plexity and length of its deductions) or a hybrid system would
have to be constructed so that inferences that can be made due
to the (implicit) semantics of the ontology can be integrated
with the explicit deductive reasoning of the system.

For systems where the required type of reasoning about
ontologies can be restricted to answering specific specialised
questions, UML is a stronger candidate. However, it remains
to identify the questions we would like answered about our
ontologies. Consider the example of a distributed information
retrieval system — there are several stages at which particular
inferences about ontologies may be needed:

� The initial construction of the ontology. This is the area
well supported by description logics which provide in-
ference mechanisms for checking the integrity of the on-
tology as it is constructed. Would similar capabilities
be useful for object-oriented modelling with UML and
is there a reason why current object-oriented modelling
methodologies have not included the use of such mech-
anisms?

� Assisting users to form queries within an ontology. For
example, it may be useful for the system to help users
discover concepts that can appear in queries, e.g. by find-
ing and displaying all shortest navigation paths from a
given class to classes or attributes with names matching
a user-supplied pattern.

� Decomposing and translating queries expressed in one
or more high-level domain ontologies into a query plan
involving ontologies for specific data sources. This re-
quires both a representation for the relationships be-
tween ontologies and a mechanism for reasoning about
them.

We expect that the sort of reasoning required for distributed
information systems could be performed using the class and
object diagrams alone. In many cases the OCL constraints
can be regarded as extra detail specifying how systems that
implement the ontology should behave. For example, the
class diagram in Figure 1 states that a CD contains ItemOnCD
objects as well as tracks. Each ItemOnCD object also con-
tains a subset of the CD’s tracks. An OCL constraint specifies
which of the CD’s tracks are associated with each item. This
constraint is an important part of the ontology when viewed
as aspecification. Any implemented system that claims to
support this ontology must respect this constraint. However,
for the purposes of information retrieval, this constraint can
be ignored as an implementation detail.

Alternatively, it may be possible to define a set of standard
OCL constraints forming a language that can be supported
by automated reasoning, such as the types of slot constraints
provided by description logic. This would be equivalent to us-
ing the frame ontology with Ontolingua: KIF plus the frame
ontology can be seen as a higher level language that can be
translated to other structured formalisms such as LOOM (pro-
vided that other, plain KIF sentences, are not also included
in the ontology). This is an important subject for future re-
search.

MOF Model
(a meta-metamodel)

An ontology modelled
using UML

Another ontology modelled
using UML

UML described using
the MOF model

Another ontology modelling
language described using

the MOF model(a metamodel)

Figure 2: A MOF-based ontology repository

4 Supporting Multiple Ontology Languages
A single ontology representation language is not necessarily
convenient for modelling all domains. It may be useful to
have several ontology representation languages available to
the ontology designer. The Infosleuth project has an inter-
esting approach to supporting multiple modelling languages
[Bayardo et al., 1997]. A simple frame-based language
is used to define specific ontology representation languages
such as object models and entity-relationship diagrams. The
actual ontologies are then expressed as instances of these lan-
guages. This is a three layer model, with the frame layer
acting as a meta-metamodel, the definitions of the ontology
representation languages being metamodels and the ontolo-
gies themselves being models.

A similar facility is offered by the OMG’s Meta Object
Facility (MOF) [OMG, 1997c; Crawleyet al., 1997; DSTC,
1998]. The MOF defines a standard for CORBA-based ser-
vices to manage meta-information in a distributed environ-
ment. It defines a model (in fact a meta-meta model) that
can be used to describe modelling languages such as UML. It
also defines interfaces that can be used to populate and query
repositories of models defined using various languages. We
intend to use this framework to build an ontology server agent
with similar capabilities to those of the Infosleuth project.
Figure 2 shows the structure of a MOF-based ontology server.

The OMG is currently selecting a standard “Stream-based
Model Interchange Format”[OMG, 1999] for the interchange
of MOF-based models and metamodels. XMI (XML Model
Interchange) is likely to be adopted[DSTC, 1999].

5 Conclusion
We have investigated the use of UML and OCL for the rep-
resentation of information system ontologies and have con-
structed an example ontology in the domain of a cataloguing
system for classical music compact discs. UML and OCL
show promise for representing the kinds of relationships and
constraints that are familiar to systems builders. Future re-
search includes investigating the potential for reasoning about
ontologies expressed using UML — either ignoring the OCL
constraints, or by recognising specific forms of constraints
that are amenable to automated reasoning.



References
[Batemanet al., 1995] John A. Bateman, Renate Henschel,

and Fabio Rinaldi. The generalized upper model
2.0. http://www.darmstadt.gmd.de/publish/komet/gen-
um/newUM.html, 1995.

[Bayardoet al., 1997] R. J. Bayardo, Jr., W. Bohrer,
R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,
M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh,
and D. Woelk. Infosleuth: agent-based semantic integra-
tion of information in open and dynamic environments.
In Joan Peckham, editor,Proceedings of the ACM SIG-
MOD international conference on management of data,
SIGMOD Record 26(2), pages 195–206, June 1997.

[Brachman and Schmolze, 1985] R. J. Brachman and J. G.
Schmolze. An overview of the KL-ONE knowledge repre-
sentation system.Cognitive Science, 9(2):171–216, April
1985.

[Breuet al., 1997] Ruth Breu, Radu Grosu, Franz Huber,
Bernhard Rumpe, and Wolfgang Schwerin. Towards a pre-
cise semantics for object-oriented modeling techniques. In
Haim Kilov and Bernhard Rumpe, editors,Proceedings
ECOOP’97 Workshop on Precise Semantics for Object-
Oriented Modeling Techniques, pages 53–59. Technische
Universität München, TUM-I9725, 1997.

[Crawleyet al., 1997] Stephen Crawley, Simon McBride,
and Kerry Raymond. Meta-Object Facility tuto-
rial (draft). http://www.dstc.edu.au/Meta-Object-Facility/
Tutorial.html, 1997.

[Donini et al., 1996] F. Donini, M. Lenzerini, D. Nardi, and
A. Schaerf. Reasoning in description logics. In G. Brewka,
editor,Principles of Knowledge Representation and Rea-
soning, Studies in Logic, Language and Information,
pages 193–238. CLSI Publications, 1996.

[DSTC, 1998] Distributed Systems Technology Centre.
Meta Object Facility frequently asked questions. http:
//www.dstc.edu.au/Meta-Object-Facility/MOFAQ.html,
1998.

[DSTC, 1999] Distributed Systems Technology Centre.
XMI spec recommended. News item on Meta-Object
Facility Information Web Page, http://www.dstc.edu.au/
Meta-Object-Facility/, January 1999.

[Evanset al., 1998] Andy Evans, Robert France, Kevin
Lano, and Bernhard Rumpe. Developing the UML as a
formal modelling notation. In Pierre-Alain Muller and
Jean Bézivin, editors,Proceedings of UML’98 Interna-
tional Workshop, Mulhouse, France, June 3 - 4, 1998,
pages 297–307. ESSAIM, Mulhouse, France, 1998.

[Farquharet al., 1996] Adam Farquhar, Richard Fikes, and
James Rice. The Ontolingua Server: a tool for col-
laborative ontology construction. InProceedings of the
10th Knowledge Acquisition for Knowledge-Based Sys-
tems Workshop (KAW’96), 1996.

[Genesereth and Ketchpel, 1994] M. R. Genesereth and S. P.
Ketchpel. Software agents.Communications of the ACM,
37(7):48–53, July 1994.

[Haimowitzet al., 1988] Ira J. Haimowitz, Ramesh S. Patil,
and Peter Szolovits. Representing medical knowledge in a
terminological language is difficult. InProceedings of the
Symposium on Computer Applications in Medical Care,
pages 101–105. IEEE Computer Society Press, 1988.

[Hamieet al., 1998a] Ali Hamie, Franco Civello, John
Howse, Stuart Kent, and Richard Mitchell. Reflections on
the Object Constraint Language. In Pierre-Alain Muller
and Jean B´ezivin, editors,Proceedings of UML’98 Inter-
national Workshop, Mulhouse, France, June 3–4, 1998,
pages 137–145. ESSAIM, Mulhouse, France, 1998.

[Hamieet al., 1998b] Ali Hamie, John Howse, and Stuart
Kent. Interpreting the Object Constraint Language. In
Proceedings of the 5th Asia Pacific Software Engineering
Conference (APSEC’98). IEEE Press, 1998.

[ISI, 1998] Information Sciences Institute. Loom project
home page. http://www.isi.edu/isd/LOOM/LOOM-
HOME.html, 1998.

[Knoblock and Ambite, 1997] C. A. Knoblock and J. L. Am-
bite. Agents for information gathering. In J. Bradshaw,
editor,Software Agents. AAAI/MIT Press, 1997.

[KSL, 1994] Knowledge Systems Laboratory. The Frame
Ontology. ftp://ftp.ksl.stanford.edu/pub/knowledge-
sharing/ontologies/html/frame-ontology/frame-ontology.
lisp.html, 1994.

[Levesque and Brachman, 1985] Hector J. Levesque and
Ronald J. Brachman. A fundamental tradeoff in knowl-
edge representation and reasoning (revised version). In
Ronald J. Brachman and Hector J. Levesque, editors,
Readings in Knowledge Representation, pages 42–70.
Morgan Kaufman, 1985.

[Menaet al., 1999] E. Mena, A. Illarramendi, V. Kashyap,
and A. Sheth. OBSERVER: An approach for query pro-
cessing in global information systems based on interoper-
ation across pre-existing ontologies.Distributed and Par-
allel Databases, 1999. (to appear).

[NCITS, 1998] National Committee for Information Tech-
nology Standards, Technical Committee T2 (Information
Interchange and Interpretation). Draft proposed Ameri-
can national standard for Knowledge Interchange Format.
http://logic.stanford.edu/kif/dpans.html, 1998.

[Nebel, 1990] B. Nebel. Reasoning and Revision in Hybrid
Representation Systems. Lecture Notes in Artificial Intel-
ligence, number 422. Springer-Verlag, 1990.

[OMG, 1997a] Object Management Group. UML semantics,
version 1.1. ftp://ftp.omg.org/pub/docs/ad/97-08-04.pdf,
September 1997.

[OMG, 1997b] Object Management Group. Object Con-
straint Language specification. ftp://ftp.omg.org/pub/docs/
ad/97-08-08.pdf, September 1997.

[OMG, 1997c] Object Management Group. MOF specifica-
tion. http://www.omg.org/techprocess/meetings/schedule/
TechnologyAdoptions.html#tblMOF Specification,
1997.



[OMG, 1998] Object Management Group. OMG homepage.
http://www.omg.org/, 1998.

[OMG, 1999] Object Management Group. Stream-
based model interchange Web page. http://www.
omg.org/techprocess/meetings/schedule/Stream-
basedModel Interchange.html, 1999.

[Övergaard, 1998] GunnarÖvergaard. A formal approach to
relationships in the Unified Modeling Language. In Man-
fred Broy, Derek Coleman, Tom S. E. Maibaum, and Bern-
hard Rumpe, editors,Proceedings PSMT’98 Workshop on
Precise Semantics for Modeling Techniques. Technische
Universität München, TUM-I9803, 1998.

[Owsnicki-Klewe, 1990] Bernd Owsnicki-Klewe. A general
characterisation of term description languages. In K.-H.
Bläsius, U. Hedtst¨uck, and C. Rollinger, editors,Sorts and
Types in Artificial Intelligence, Lecture Notes in Artifi-
cial Intelligence, number 418, pages 183–189. Springer-
Verlag, 1990.

[Richters and Gogolla, 1998] Mark Richters and Martin
Gogolla. On formalizing the UML Object Constraint Lan-
guage OCL. In Tok Wang Ling, Sudha Ram, and Mong Li
Lee, editors,Proc. 17th Int. Conf. Conceptual Model-
ing (ER’98). Lecture Notes in Computer Science, number
1507, Springer-Verlag, 1998.

[Rumbaughet al., 1998] James Rumbaugh, Ivar Jacobson,
and Grady Booch.The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1998.

[SMI, 1998] Stanford Medical Informatics. The Prot´egé
project. http://smi-web.stanford.edu/projects/protege/,
1998.

[Warmer and Kleppe, 1998] Jos B. Warmer and Anneke G.
Kleppe. The Object Constraint Language: Precise Mod-
eling With UML. Addison-Wesley, 1998.


