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Abstract. The paper introduces evolving connectionist systems (ECOS) as an effective approach to
building on-line, adaptive intelligent systems. ECOS evolve through incremental, hybrid
(supervised/unsupervised), on-line learning. They can accommodate new input data, including new
features, new classes, etc. through local element tuning. New connections and new neurons are
created during the operation of the system. The ECOS framework is presented and illustrated on a
particular type of evolving neural networks - evolving fuzzy neural networks (EFuNNs). EFuNNs
can learn spatial-temporal sequences in an adaptive way, through one pass learning. Rules can be
inserted and extracted at any time of the system operation. The characteristics of ECOS and
EFuNNs are illustrated on several case studies that include: adaptive pattern classification; adaptive,
phoneme-based spoken language recognition; adaptive dynamic time-series prediction; intelligent
agents.
Key words: evolving connectionist systems; evolving fuzzy neural networks; on-line learning;
spatial-temporal adaptation; adaptive speech recognition.

1. Introduction

The complexity and dynamics of real-world problems, especially in engineering and manufacturing,
require sophisticated methods and tools for building on-line, adaptive intelligent systems (IS). Such
systems should be able to grow as they operate, to update their knowledge and refine the model
through interaction with the environment. This is especially crucial when solving AI problems such
as adaptive speech and image recognition, multi-modal information processing, adaptive prediction,
adaptive on-line control, intelligent agents on the WWW. Seven major requirements of the present
IS (that are addressed in the ECOS framework presented later) are listed below [2,35,36,38]:
(1) IS should learn fast from a large amount of data (using fast training, e.g. one-pass training).
(2) IS should be able to adapt incrementally in both real time, and in an on-line mode, where new
data is accommodated as they become available. The system should tolerate and accommodate
imprecise and uncertain facts or knowledge and refine its knowledge.
(3) IS should have an open structure where new features (relevant to the task) can be introduced at a
later stage of the system's operation. IS should dynamically create new modules, new inputs and
outputs, new connections and nodes. That should occur either in a supervised, or in an unsupervised
mode, using one modality or another, accommodating data, heuristic rules, text, images, etc.
(4) IS should be memory-based, i.e. they should keep a reasonable track of information that has been
used in the past and be able to retrieve some of it for the purpose of inner refinement, or for
answering an external query.
(5) IS should improve continuously (possibly in a lifeÐlong mode) through active interaction with
other IS and with the environment they operate in.
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 (6) IS should be able to analyse themselves  in terms of behaviour, global error and success; to
explain what has been learned; to make decisions about its own improvement; to manifest
introspection.
(7) IS should adequately represent space and time in their different scales; should have parameters
to represent such concepts as spatial distance, short-term and long-term memory, age, forgetting, etc.

 Unless the above seven issues are addressed in the current and the future IS, it is unlikely that a
significant progress is made in areas, such as adaptive speech recognition and language acquisition,
adaptive intelligent prediction and control systems, intelligent agent systems, mobile robots, visual
monitoring systems, multi-modal information processing, and many more.

Several investigations [18,28,43,55,65,66,67,69,74] proved that the most popular neural network
models and algorithms are not suitable for adaptive, on-line learning, that includes multilayer
perceptrons trained with the backpropagation algorithm, radial basis function networks [58], self-
organising maps SOMs  [47,48] and these NN models were not designed for on-line learning in the
first instance. At same time some of the seven issues above have been acknowledged and addressed
in the development of several NN models for adaptive learning and for structure and knowledge
manipulation as discussed below.
    Adaptive learning is aiming at solving the well-known stability/plasticity dilemma
[3,4,7,8,9,13,47,48]. Several methods for adaptive learning are related to the work presented here,
namely incremental learning, lifelong learning, on-line learning.

 Incremental learning is the ability of a NN to learn new data without destroying (or at least fully
destroying) the learned patterns from old data, and without a need to be trained on the whole old and
new data. Significant progress in incremental learning has been achieved due to the Adaptive
Resonance Theory (ART) [7,8,9] and its various models, that include unsupervised models (ART1,
ART2, FuzzyART) and supervised versions (ARTMAP, Fuzzy ARTMAP- FAM). Lifelong learning
is concerned with the ability of a system to learn during its entire existence in a changing
environment [82, 69,35,36]. Growing, as well as pruning operation, are involved in the learning
process. On-line learning is concerned with learning data as the system operates (usually in a real
time) and the data might exist only for a short time. NN models for on-line learning are introduced
and studied in [1,2,4,7,11,17,22,28,31,35,36,42,44,46,53,69].

 The issue of NN structure, the bias/variance dilemma, has been acknowledged by several authors
[6,7,13,65,68].  The dilemma is concerned with the situation where if the structure of a NN is too
small, the NN is biased to certain patterns, and if the NN structure is too large there are too many
variances that result in over-training, and poor generalisation, etc. In order to avoid this problem, a
NN (or an IS) structure should dynamically adjust during the learning process to better represent the
patterns in the data from a changing environment. Three approaches have been taken so far for the
purpose of creating dynamic IS structures: constructivism, selectivism, and a hybrid approach.

Constructivism is concerned with developing NNs that have a simple initial structure and grow
during its operation through insertion of new nodes and new connections when new data items
arrive.  This approach can also be implemented with the use of an initial set of neurons that are
sparsely connected and that become more and more wired with the incoming data [62,73,15,19]. The
latter implementation is supported by biological facts [62,73,77]. Node insertion can be controlled
by either a similarity measure, or by the output error measure, or by both. There are other methods
that insert nodes based on the evaluation of the local error, e.g. the Growing Cell Structure,
Growing Neural Gas, Dynamic Cell Structure [19,11,13]. Other methods insert nodes based on a
global error evaluation of the performance of the whole NN. Such method is the Cascade-
Correlation [15]. Methods that use both similarity and output error for node insertion are used in
Fuzzy ARTMAP [9]. Cellular automata systems have also been used to implement the constructivist
approach [11,4]. These systems grow by creating connections between neighbouring cells in a
regular cellular structure. Simple rules, embodied in the cells, are used to achieve the growing effect.
Unfortunately in most of the implementations the rules for growing do not change during the
evolving process.  This limits the adaptation of the growing structure. The brain-building system is
an example of this class [11].
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 Selectivism is concerned with pruning unnecessary connections in a NN that starts its learning
with many, in most cases redundant, connections [26,29, 49,56,59,64]. Pruning connections that do
not contribute to the performance of the system can be done by using several methods, e.g.: optimal-
brain damage [50]; optimal brain surgeon [26]; structural learning with forgetting [29,49]; training-
and-zeroing [32]; regular pruning [56].
   Genetic algorithms (GA) and other evolutionary computation techniques that constitute a  heuristic
search technique for finding the optimal, or near optimal solution from a solution space, have also
been widely applied for optimising a NN structure [20,23,13,39,40,71,79,80]. Unfortunately, most
of the evolutionary computation methods developed so far assume that the solution space is compact
and bounded, i.e. the evolution takes place within a pre-defined problem space and not in a
dynamically changing and open one, therefore not allowing for continuous, on-line adaptation. The
GA implementations so far have also been very time-consuming.
    Some NN models use a hybrid constructivist/selectivist approach [52,61,70]. The framework
proposed here also belongs to this group.
  Some of the above seven issues have also been addressed in the knowledge-based neural networks
(KBNN) [24,33,38, 63,76,83] as knowledge is the essence of what an IS system has learned. KBNN
have operations to deal with both data and knowledge, that include learning from data, rule
insertion, rule extraction, adaptation and reasoning. KBNN have been developed mainly as a
combination of symbolic AI systems and NN [24, 30,76], or as a combination of fuzzy logic systems
and NN [25,30,33,38,39,44,45,51,63,83], or as a combination of a statistical technique and NN
[2,4,12,57].

 It is clear that in order to fulfil the seven major requirements of the current IS, radically different
methods and systems are essential in both learning algorithms and structure development. A
framework called ECOS (Evolving COnnectionist Systems) that addresses all seven issues above is
introduced in the paper, along with a method of training called ECO training. The major principles
of ECOS are presented in section 2.  The principles of ECOS are applied in section 3 to develop
evolving fuzzy neural network model called EFuNN. Several learning strategies of ECOS and
EFuNNs are introduced in section 3. In section 4 ECOS and EFuNNs are illustrated on several case
study problems of adaptive phoneme recognition, dynamic time series prediction, and intelligent
agents. Section 5 suggests directions for further development of ECOS.

2. The ECOS framework

Evolving connectionist systems (ECOS) are systems that evolve in time through interaction with the
environment. They have some (genetically) pre-defined parameters (knowledge) but they also learn
and adapt as they operate. In contrast with the evolutionary systems they do not necessarily create
copies of individuals and select the best ones for the future. They emerge, evolve, develop, unfold
through innateness and learning, and through changing their structure in order to better represent
data [14,31,35,36]. ECOS learn in an on-line and a knowledgeÐbased mode, so they can
accommodate any new incoming data from a data stream, and the learning process can be expressed
as a process of rule manipulation.
     A block diagram of the ECOS framework is given in fig.1. ECOS are multi-level, multi-modular
structures where many neural network modules (denoted as NNM) are connected with inter-, and
intra- connections. ECOS do not have a clear multi-layer structure, but rather a modular, ÒopenÓ
structure.
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Fig.1 Block diagram of the ECOS framework.

The main parts of ECOS are described below.
(1) Feature selection part. It performs filtering of the input information, feature extraction and
forming the input vectors. The number of inputs (features) can vary from example to example from
the input data stream fed to the ECOS.
(2) Presentation and representation (memory) part, where information (patterns) are stored. It is a
multi-modular, evolving structure of NNM organised in spatially distributed groups; for example
one module can represent the phonemes in a spoken language (one NN representing one class
phoneme).
(3) Higher-level decision part that consists of several modules, each taking decision on a particular
problem (e.g., phoneme, word, concept). The modules receive feedback from the environment and
make decisions about the functioning and the adaptation of the whole ECOS.
(4) Action modules, that take the output from the decision modules and pass output information to
the environment.
(5) Self-analysis, and rule extraction modules. This part extracts compressed abstract information
from the representation modules and from the decision modules in different forms of rules, abstract
associations, etc.

 Initially an ECOS has a pre-defined structure of some NNMs, each of them being a mesh of
nodes (neurons) and very few connections defined through prior knowledge, or ÒgeneticÓ
information.  Gradually, the system becomes more and more ÒwiredÓ through self-organisation, and
through creation of new NNM and new connections.
    The ECOS functioning is based on the following general principles:
(1) ECOS evolve incrementally in an on-line, hybrid, adaptive supervised/unsupervised mode
through accommodating more and more examples when they become known from a continuous
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input data stream. During the operation of ECOS the higher-level decision module may activate an
adaptation process through the adaptation module.
(2) ECOS are memory-based and store exemplars (prototypes, rules) that represent groups of data
from the data stream. New input vectors are stored in the NNMs based on their similarity to
previously stored data both on the input and the desired output information. A node in an NNM is
created and designated to represent an individual example if it is significantly different from the
previously used examples (with a level of differentiation set through dynamic parameters). Learning
is based on locally tuned elements from the ECOS structure thus making the learning process fast
for real-time parallel implementation. Three ways to implement local learning in a connectionist
structure are presented in [6,7, 47,58].
(3) There are three levels at which ECOS are functionally and structurally defined:
(a) Parameter (gene) level, i.e. a chromosome contains genes that represent certain parameters of the
whole systems, such as: type of the structure (connections) that will be evolved; learning rate;
forgetting rate; size of a NNM; NNM specialisation, thresholds that define similarity; error rate that
is tolerated, and many more. The values of the genes are relatively stable, but can be changed
through genetic operations, such as mutation of a gene, deletion and insertion of genes that are
triggered by the self analysis module as a result of the overall performance of the ECOS.
(b) Representation (synaptic) level, that is the information contained in the connections of the NNM.
This is the long-term memory of the system where exemplars of data are stored. They can be either
retrieved to answer an external query, or can be used for internal ECOS refinement.
(c)  Behavioural (neuronal activation) level, that is the short-term activation patterns triggered by
input stimuli. This level defines how well the system is functioning in the end.
(4) ECOS evolve through learning (growing), forgetting (pruning), and aggregation, that are both
defined at a genetic level and adapted during the learning process. ECOS allow for:
creating/connecting neurons; removing neurons and their corresponding connections that are not
actively involved in the functioning of the system thus making space for new input patterns to be
learned; aggregating nodes into bigger-cluster nodes.
(5) There are two global modes of learning in ECOS:
(a) Active learning - learning is performed when a stimulus (input pattern) is presented and kept
active.
(b) Passive (inner, ECO) learning mode - learning is performed when there is no input pattern
presented to the ECOS. In this case the process of further elaboration of the connections in ECOS is
done in a passive learning phase, when existing connections, that store previously fed input patterns,
are used as ÒechoÓ (here denoted as ECO) to reiterate the learning process (see for example fig.9
explained later).
     There are two types of ECO training:
•  cascade eco-training: a new connectionist structure (a NN) is created in an on-line mode when
conceptually new data (e.g., a new class data) is presented. The NN is trained on the positive
examples of this class, on the negative examples from the following incoming data, and on the
negative examples from previously stored patterns in previously created modules.
•  'sleep' eco-training: NNs are created with the use of only partial information from the input stream
(e.g., positive class examples only). Then the NNs are trained and refined on the stored patterns
(exemplars) in other NNs and NNMs (e.g., as negative class examples).
(6) ECOS provide explanation information extracted from the NNMs through the self-analysis/ rule
extraction module. Generally speaking, ECOS learn and store knowledge, rules, rather than
individual examples or meaningless numbers.
(7) The ECOS principles above are based on some biological facts and biological principles (see for
example [31,55,62,68,72,82]).
     Implementing the ECOS framework and the NNM from it requires connectionist models that
comply with the ECOS principles. One of them, called evolving fuzzy neural network (EFuNN) is
presented in the next section.
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3. Evolving Fuzzy Neural Networks EFuNNs

3.1. General principles of EFuNNs

Fuzzy neural networks are connectionist structures that implement fuzzy rules and fuzzy inference
[25,51,63,83,38]. FuNNs represent a class of them  [38,33,39,40]. EFuNNs are FuNNs that evolve
according to the ECOS principles. EFuNNs were introduced in [31,35,36] where preliminary results
were given. Here EFuNNs are further developed.
    EFuNNs have a five-layer structure, similar to the structure of FuNNs (fig.2a). But here nodes and
connections are created/connected as data examples are presented. An optional short-term memory
layer can be used through a feedback connection from the rule (also called, case) node layer (see
fig.2b). The layer of feedback connections could be used if temporal relationships between input
data are to be memorised structurally.

Fig.2a The five layers basic structure of the EfuNNs.

Fig2b  EFuNN with a short term memory and a feedback connection
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The input layer represents input variables. The second layer of nodes (fuzzy input neurons, or fuzzy
inputs) represents fuzzy quantization of each input variable space. For example, two fuzzy input
neurons can be used to represent "small" and "large" fuzzy values. Different membership functions
(MF) can be attached to these neurons (triangular, Gaussian, etc.) (see fig.3).

Fig.3. Membership functions (MF) and  the local, normalised, fuzzy distance function

The number and the type of MF can be dynamically modified in an EFuNN which is explained later
in section 3. New neurons can evolve in this layer if, for a given input vector, the corresponding
variable value does not belong to any of the existing MF to a degree greater than a membership
threshold. A new fuzzy input neuron, or an input neuron, can be created during the adaptation phase
of an EFuNN (see fig.10a,b and the explanation in section 3). The task of the fuzzy input nodes is to
transfer the input values into membership degrees to which they belong to the MF.
   The third layer contains rule (case) nodes that evolve through supervised/unsupervised learning.
The rule nodes represent prototypes (exemplars, clusters) of input-output data associations,
graphically represented as an association of hyper-spheres from the fuzzy input and fuzzy output
spaces. Each rule node r is defined by two vectors of connection weights Ð W1(r) and W2(r), the
latter being adjusted through supervised learning based on the output error, and the former being
adjusted through unsupervised learning based on similarity measure within a local area of the
problem space. The fourth layer of neurons represents fuzzy quantization for the output variables,
similar to the input fuzzy neurons representation. The fifth layer represents the real values for the
output variables.
    The evolving process can be based on two assumptions: (1) no rule nodes exist prior to learning
and all of them are created (generated) during the evolving process; or (2) there is an initial set of
rule nodes that are not connected to the input and output nodes and become connected through the
learning (evolving) process. The latter case is more biologically plausible [82]. The EFuNN
evolving algorithm presented in the next section does not make a difference between these two
cases.
   Each rule node, e.g. rj, represents an association between a hyper-sphere from the fuzzy input
space and a hyper-sphere from the fuzzy output space (see fig.4a), the W1(rj) connection weights
representing the co-ordinates of the center of the sphere in the fuzzy input space, and the W2 (rj) Ð
the co-ordinates in the fuzzy output space. The radius of an input hyper-sphere of a rule node is
defined as (1- Sthr), where Sthr is the sensitivity threshold parameter defining the minimum
activation of a rule node (e.g., r1, previously evolved to represent a data point (Xd1,Yd1)) to an

d1f   =  (0, 0, 1, 0, 0, 0)
d2f   =  (0, 1, 0, 0, 0, 0)

1  -
The local normalised
fuzzy distance

d4 d5d2 d1 d3

µ (membership degree)

x

Dist(d1d2) = D(d1d3) = D(d1d5) =1
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input vector (e.g., (Xd2,Yd2))  in order for the new input vector to be associated with this rule node.
Two pairs of fuzzy input-output data vectors  d1=(Xd1,Yd1) and d2=(Xd2,Yd2) will be allocated to
the first  rule node r1 if they fall into the r1 input sphere and in the r1 output sphere, i.e. the local
normalised fuzzy difference between Xd1 and Xd2  is smaller than the radius r and the local
normalised fuzzy difference between Yd1 and Yd2 is smaller than an error threshold Errthr. The
local normalised fuzzy difference between two fuzzy membership vectors d1f and d2f that represent
the membership degrees to which two real values d1 and d2 data belong to the pre-defined MF, are
calculated as D(d1f,d2f) = sum(abs(d1f - d2f))/sum(d1f + d2f)). For example, if d1f=(0,0,1,0,0,0)
and d2f=(0,1,0,0,0,0) (see fig.3), than D(d1,d2) = (1+1)/2=1 which is the maximum value for the
local normalised fuzzy difference .
     If data example d1 = (Xd1 ,Yd1), where Xd1 and Xd2 are correspondingly the input and the
output fuzzy membership degree vectors, and the data example is associated with a rule node r1 with
a centre  r1

1, than a new data point d2=(Xd2,Yd2), that is within the shaded area as shown in fig.3
and fig.4a, will be associated with this rule node too. Through the process of associating (learning)
of new data points to a rule node, the centres of this node hyper-spheres adjust in the fuzzy input
space depending on a learning rate lrn1, and in the fuzzy output space depending on a learning rate
lr2, as it is shown in fig.4a on the two data points d1 and d2. The adjustment of the centre r1

1  to its
new position r1

2 can be represented mathematically by the change in the connection weights of the
rule node r1 from W1(r1

1 ) and W2(r1
1) to W1(r1

2 ) and W2(r1
2) according to the following vector

operations:
W2 (r1

2 ) = W2(r1
1)  + lr2. Err(Yd1,Yd2). A1(r1

1)
W1(r1

2)=W1 (r1
1) + lr1. Ds (Xd1,Xd2)

where: Err(Yd1,Yd2)= Ds(Yd1,Yd2)=Yd1-Yd2 is the signed value rather than the absolute value of
the fuzzy difference vector; A1(r1

1) is the activation of the rule node r1
1 for the input vector Xd2.

The learning process in the fuzzy input space is illustrated in fig.4b on four data points d1,d2,d3 and
d4. Fig.4c shows how the centre of the rule node r1 adjusts after learning each new data point when
two-pass learning is applied. If lrn1=lrn2=0, once established, the centres of the rules nodes do not
move. The idea of dynamic creation of new rule nodes over time for a time series data is graphically
illustrated in fig.4d.

Fig4a  Input / Output mapping and learning.
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Fig.4d Dynamic Creation of new rule nodes over time.
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While the connection weights from W1 and W2 capture spatial characteristics of the learned data
(centres of hyper-spheres), the temporal layer of connection weights W3 from fig.2b captures
temporal dependencies between consecutive data examples. If the winning rule node at the moment
(t-1) (to which the input data vector at the moment (t-1) was associated) was r1=inda1(t-1), and the
winning node at the moment t is r2=inda1(t), then a link between the two nodes is established as
follows:

W3(r1,r2) (t) = W3(r1,r2) (t-1)  + lr3. A1(r1) (t-1) A1(r2)) (t) ,
where:  A1(r) (t)  denotes the activation of a rule node r at a time moment (t); lr3 defines the degree
to which the EFuNN associates links between rules (clusters, prototypes) that include consecutive
data examples (if lr3=0, no temporal associations are learned in an EFuNN structure and the EFuNN
from fig.2b becomes the one from fig.2a).
   The learned temporal associations can be used to support the activation of rule nodes based on
temporal, pattern similarity. Here, temporal dependencies are learned through establishing structural
links. These dependencies can be further investigated and enhanced through synaptic analysis (at the
synaptic memory level) rather than through neuronal activation analysis (at the behavioural level).
The ratio spatial-similarity/temporal-correlation can be balanced for different applications through
two parameters Ss and Tc such that the activation of a rule node r for a new data example dnew  is
defined as the following vector operations:

A1 (r) = f ( Ss. D(r, dnew) + Tc.W3(r (t-1), r))

where: f is the activation function of the rule node r, D(r, dnew) is the normalised fuzzy distance
value and r (t-1) is the winning neuron at the previous time moment.
     Figures 5a,b show a schematic diagram of the process of evolving of four rule nodes and setting
the temporal links between them for data taken from consecutive frames of phoneme /e/ data as
discussed in section 4.

Fig.5a Consecutive phoneme data frames cause creation of links between the rule nodes.

Fig.5b   Schematic diagram of the raw phoneme data and the points in time of rule node creation.
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.
Several parameters were introduced so far for the purpose of controlling the functioning of an
EFuNN. Some more parameters will be introduced later, that will bring the EFuNN parameters to a
comparatively large number. In order to achieve a better control of the functioning of an EFuNN
structure, the three-level functional hierarchy is used here as defined in section 2 for the ECOS
architecture, namely: genetic level, long-term synaptic level, and short- term activation level.
     At the genetic level, all the EFuNN parameters are defined as genes in a chromosome. These are:
(a) structural parameters, e.g.: number of inputs, number of MF for each of the inputs, initial type
of rule nodes, maximum number of rule nodes, number of MF for the output variables, number of
outputs.
(b) functional parameters, e.g.: activation functions of the rule nodes and the fuzzy output nodes
(in the experiments below saturated linear functions are used); mode of rule node activation ("one-
of-n", or Òmany-of-nÓ, depending on how many activation values of rule nodes are propagated to the
next level); learning rates lr1,lr2 and lr3; sensitivity threshold Sthr for the rule layer; error threshold
Errthr for the output layer; forgetting rate; various pruning strategies and parameters, as explained in
the EFuNN algorithm below.

3.2. The EFuNN learning algorithm

The EFuNN algorithm, to evolve EFuNNs from incoming examples, is based on the principles
explained in the previous section. It is given below as a procedure of consecutive steps. Matrix
operation expressions are used similar to the expressions in a matrix processing language such as
MATLAB.
1. Initialise an EFuNN structure with a maximum number of neurons and no (or zero-value)
connections. Initial connections may be set through inserting fuzzy rules in the structure [44]. If
initially there are no rule (case) nodes connected to the fuzzy input and fuzzy output neurons, then
create the first node rn=1 to represent the first example d1 and set its input W1(rn) and output
W2(rn) connection weight vectors as follows:
 <Create a new rule node rn>:  W1(rn)=EX; W2(rn ) = TE, where TE is the fuzzy output vector for
the current fuzzy input vector EX.
2. WHILE  <there are examples in the input stream> DO
Enter the current example (Xdi,Ydi), EX denoting its fuzzy input vector. If new variables appear in
this example, which are absent in the previous examples, create new input and/or output nodes with
their corresponding membership functions.
3. Find the local normalised fuzzy distance between the fuzzy input vector EX and the already stored
patterns (prototypes, exemplars) in the rule (case) nodes rj=r1,r2,É,rn
      D(EX, rj)= sum (abs (EX - W1(j) )) / sum (W1(j)+EX)
4. Find the activation A1 (rj) of the rule (case) nodes rj, rj=r1:rn. Here radial basis activation
function, or a saturated linear one, can be used, i.e. A1 (rj) =  radbas (D(EX, rj)), or  A1(rj) = satlin
(1 Ð D(EX, rj)). The former may be appropriate for function approximation tasks, while the latter
may be preferred for classification tasks. In case of the feedback variant of an EFuNN, the activation
A1(rj) is calculated as:
    A1 (rj) =  radbas (Ss. D(EX, rj) - Tc.W3), or  A1(j) = satlin (1 Ð Ss. D(EX, rj) + Tc.W3) .
5. Update the pruning parameter values for the rule nodes, e.g. age, average activation, as pre-
defined in the EFuNN chromosome. 

6. Find all case nodes rj with an activation value A1(rj) above a sensitivity threshold Sthr.
7. If there is no such case node, then <Create a new rule node> using the procedure from step 1 in an
unsupervised learning mode
  ELSE
     8. Find the rule node inda1 that has the maximum activation value (e.g., maxa1).
9. (a) in case of "one-of-n" EFuNNs (as it is in [9,27,47]) propagate the activation maxa1 of the rule
node inda1 to the fuzzy output neurons:
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             A2 = satlin (A1(inda1) . W2(inda1)
(b) in case of "many-of-n" mode,  the activation values of all rule nodes that are above an activation
threshold of Athr are propagated to the next neuronal layer (this case is not discussed in details here;
it has been further developed into a new EFuNN architecture called dynamic, Ômany-of-nÕ  EFuNN,
or DEFuNN  [42] ) .
     10. Find the winning fuzzy output neuron inda2 and its activation maxa2.
     11. Find the desired winning fuzzy output neuron indt2 and its value maxt2.
     12. Calculate the fuzzy output error vector: Err=A2 - TE.
     13.  IF (inda2 is different from indt2) or (D(A2,TE) > Errthr )  <Create a new rule node>
              ELSE
14.  Update: (a) the input,  (b) the output, an (c) the temporal connection vectors (if such exist) of
the rule node k=inda1 as follows:

(a) Ds(EX,W1(k)) =EX-W1(k); W1(k)=W1(k) + lr1.Ds(EX,W1(k)), where lr1 is the learning rate for
the first layer;

(b) W2(k) = W2 (k) + lr2. Err. maxa1, where lr2 is the learning rate for the second layer;
(c) W3(l,k)=W3(l,k)+lr3. A1(k).A1(l) (t-1) , here l is the winning rule neron at the previous time

moment (t-1), and A1(l) (t-1)  is its activation value kept in the short term memory.
15. Prune rule nodes j and their connections that satisfy the following fuzzy pruning rule to a pre-
defined level:
IF (a rule node rj is OLD) AND (average activation A1av(rj) is LOW) and (the density of the
neighbouring area of neurons is HIGH or MODERATE  (i.e. there are other prototypical nodes that
overlap with j in the input-output space; this condition apply only for some strategies of inseting rule
nodes as explained in a sub-section below)

THEN the probability of pruning node (rj) is HIGH
The above pruning rule is fuzzy and it requires that the fuzzy concepts of OLD, HIGH, etc., are
defined in advance (as part of the EFuNNÕs chromosome). As a partial case, a fixed value can be
used, e.g. a node is OLD if it has existed during the evolving of a FuNN from more than 1000
examples. The use of a pruning strategy and the way the values for the pruning parameters are
defined, depends on the application task.
16. Aggregate rule nodes, if necessary, into a smaller number of nodes (see the explanation in the
following subsection).
17. END of the while loop and the algorithm
18. Repeat steps 2-17 for a second presentation of the same input data or for an ECO training if
needed.

3.3. Strategies for locating rule nodes in the rule node space

There are different ways to locate rule nodes in an EFuNN rule node space as it is explained here.
The type selected  depends on the type of the problem the EFuNN is designed to solve. Here some
possible strategies are explained as illustrated in fig.6:
(a) Simple consecutive allocation strategy, i.e. each newly created rule (case) node is allocated next
to the previous and the following ones in a linear fashion. That represents a time order. The
following statement is valid if no pruning technique is applied, but aggregation technique instead, to
optimise the size of the rule layer: at least one example that was associated with rule node rj was
presented to the EFuNN before at least one example that was associated to the rule node (rj+1) (see
fig.6a).
(b) Pre-clustered location, i.e. for each output fuzzy node (e.g. NO, YES) there is a predefined
location where the rule nodes supporting this predefined concept are located. At the center of this
area the nodes that fully support this concept (error 0) are placed; every new rule nodeÕs location is
defined based on the fuzzy output error and the similarity with other nodes (fig.6b);
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(c) Nearest activated node insertion strategy, i.e. a new rule node is placed nearest to the highly
activated node which activation is still less than the Sthr.  A connection between the neighbouring
nodes can be established similar to the temporary connections from W3.
(d) As in (c) but temporal feedback connections are set as well (see fig.2b and fig.6c). New
connections are set that link consecutively activated rule nodes through using the short term memory
and the links established through the W3 weight matrix; that will allow for the evolving system to
repeat a sequence of data points starting from a certain point and not necessarily from the beginning.
(e) The same as above, but in addition, new connections are established between rule nodes from
different EFuNN modules that become activated simultaneously (at the same time moment) (fig.6d).
This would make it possible for an ECOS to learn a correlation between conceptually different
variables, e.g. correlation between speech sound and lip movement.

Fig.6a.

Fig.6b

Fig.6.c

Fig.6d.

\

Fig.6. Different strategies for rule node insertion and connection creation
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3.4 An example of using the EFuNN algorithm in an EFuNN simulator

Here, a small speech data set of 400 phoneme data examples is used to illustrate the EFuNN learning
algorithm. 100 examples of each of the four phonemes /I/ (from ÔsitÕ), /e/ (from ÔgetÕ), /ae/ (from
ÔcatÕ), and /i/ (from ÔseeÕ), which are phonemes 25,26,27 and 31 from the Otago Speech Corpus
available from the WWW http://kel.otago.ac.nz/, are extracted from the speech data of two speakers
of NZ English (one male and one female, numbers 17 and 21 from the Corpus). Each data example
used in the experiment described below consists of 3 time lags of 26-element mel-scale vectors, each
representing the speech signal within a time frame of 11.6msec, and an output label giving the
phoneme class. The speech data is segmented and processed with the use of a 256-point FFT,
Hamming window, overlapping of 50% between the consecutive time frames, each of them being
11.6msec long (see fig.5b).
An EFuNN with 78 inputs and 4 outputs was evolved on the 400 data examples and tested on
another set. Fig. 7a shows the growth of the number of the rule nodes with the progress of entering
data examples for one pass of training and the root mean square error RMSE. Fig.7b shows the
activation of the /I/ output of the evolved EFuNN for the phoneme /I/ test data (the first  100
examples belong to /I/ and the rest do not belong to it). The parameter values for the EFuNN
parameters (e.g. number of evolved rule nodes rn, learning rates lr1,lr2 and lr3, pruning parameters)
are shown on the display of the EFuNN simulator which is available from the WWW:

http://divcom.otago.ac.nz/infosci/kel/projects/CBIIS/).

Fig. 7a shows the growth of the number of the rule nodes with the progress of entering data
examples for one pass of training and the root mean square error RMSE.
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Fig.7b shows the activation of the /I/ output of the evolved EFuNN for the phoneme /I/ test
data

3.5. Learning modes in EFuNN. Rule insertion, rule extraction and aggregation.

Different learning, adaptation and optimisation strategies and algorithms can be applied on an
EFuNN structure for the purpose of its evolving. These include:
•   Active learning , e.g. the EFuNN algorithm;
•   Passive learning (i.e., cascade-eco, and sleep-eco learning) as explained in section 2;
•   Rule insertion into EFuNNs [44]. EFuNNs are adaptive rule-based systems. Manipulating rules is
essential for their operation.  This includes rule insertion, rule extraction, and rule adaptation. At any
time (phase) of the evolving (learning) process fuzzy or exact rules can be inserted and extracted.
Insertion of fuzzy rules is achieved through setting a new rule node rj for each new rule R, such that
the connection weights W1(rj) and W2 (rj) of the rule node represent the rule R. For example, the
fuzzy rule  (IF x1 is Small and x2 is Small THEN y is Small) can be inserted into an EFuNN
structure by setting the connections of a new rule node to the fuzzy condition nodes x1- Small and
x2- Small and to the fuzzy output node y-Small to a value of 1 each. The rest of the connections are
set to a value of zero. Similarly, an exact rule can be inserted into an EFuNN structure, e.g. IF x1 is
3.4 and x2 is 6.7 THEN y is 9.5, but here the membership degrees to which the input values x1=3.4
and x2=6.7, and the output value y=9.5 belong to the corresponding fuzzy values are calculated and
attached to the corresponding connection weights.
•  Rule extraction and aggregation. Each rule node r, which represents a prototype, rule, exemplar
from the problem space, can be described by its connection weights W1(r) and W2 (r) that define the
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association of the two corresponding hyper-spheres from the fuzzy input and the fuzzy output
problem spaces. The association is expressed as a fuzzy rule, for example:
IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is Medium 0.3
THEN y is Small 0.2 and y is Large 0.8
   The numbers attached to the fuzzy labels denote the degree to which the centers of the input and
the output hyper-spheres belong to the respective MF.
   The process of rule extraction can be performed as aggregation of several rule nodes into a larger
hyper-spheres as it is shown in fig.8a and fig.8b on an example of three rule nodes r1, r2 and r3
(only the input space is shown there). For the aggregation of two rule nodes r1 and r2, the following
aggregation rule is used [44]:

 IF (D(W1(r1),W1(r2)) < = Thr1) AND (D(W2(r1),W2(r2)) <= Thr2)
    THEN aggregate r1 and r2 into ragg and calculate the centres of the new rule node as:
    W1(ragg)   = average (W1(r1),W1(r2)), W2(ragg)   = average (W2(r1),W2(r2))
Here the geometrical center between two points in a fuzzy problem space is calculated with the use
of an average vector operation over the two fuzzy vectors. This is based on a presumed piece-wise
linear function between two points from the defined through the parameters Sthr and Errthr input
and output fuzzy hyper-spheres.

Example: The following two rules (rule nodes) r1 and r2 can be aggregated for Thr1=0.15 and
Thr2=0.05 into a new rule ragg  as it is shown below:

r1: IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is Medium 0.3
THEN y is Small 0.1 and y is Medium 0.9

 r2: IF x1 is Small 0.80 and x1 is Medium 0.2 and x2 is Small 0.8 and x2 is Medium 0.2
THEN y is Small 0.12 and y is Medium 0.88
D(W1(r1),W1(r2))=(0.05+0.05+0.1+0.1)/2/2=0.075 < Thr1=0.15;
D(W2(r1),W2(r2))=(0.02+0.02)/2/1=0.005 < 0.02 < Thr2=0.05;

ragg: IF x1 is Small 0.825 and x1 is Medium 0.175 and x2 is Small 0.75 and x2 is Medium 0.25 
THEN y is Small 0.11 and y is Medium 0.89

Through node creation and consecutive aggregation an EFuNN systems can adjust over time to
changes in the data stream. Fig.8c shows a hypothetical case of how a rule node rj, which represents
a phoneme data cluster, would shift in the phoneme data space with new speakers of different
accents talking to the system over time and the system adapts to them.

     Fig.8a  An evolved EFuNN structure;
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•  Aggregation and abstraction through ECO-learning: Aggregation of rule nodes to represent
association of larger hyper-spheres from the input and the output space can be achieved through the
use of the ECO learning method, when the connection weights W1(1) and W2 (1)  of an evolved
EFuNN1 are used as fuzzy exemplars to evolve an EFuNN2 for smaller values of the sensitivity
threshold Sthr and the error threshold Errthr (see fig.9). This process can be continued further to
evolve a new EFuNN3 with smaller number of rule nodes, therefore smaller number of rules, and so
on. In case of function approximation tasks, the accuracy of the generalisation in this case may
decrease depending on the chosen thresholds Thr1 and Thr2 as aggregation means creation of larger
prototypes that accommodate more examples having similar input vectors and similar output
vectors. For classification tasks where the output value is a symbolic (e.g., ÔyesÕ/ÕnoÕ class label) the
aggregation may not affect the accuracy.

•  Extracting rules for learning  temporal pattern correlation: Through analysis of the weights
W3 of an evolved EFuNN, temporal correlation between time consecutive exemplars can be
expressed in terms of rules and conditional probabilities, e.g.:

IF (W1(r1),W2(r1)) (t-1)

THEN (W1(r1),W2(r2)) (t) (0.3)
The meaning of the above rule is that examples that belong to the rule (prototype) r1 follow in time
examples from the rule prototype r2 with a relative conditional probability of 0.3.

Fig8b The process of aggregation of three rule nodes r1,r2 and r3 into one cluster node ragg ;

Fig.8c  The process of rule node adaptation over time;
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Fig.9. Aggregating rule nodes through ECO learning

•  Changing MF during operation. This operation may be needed for a refined performance after
certain time of the system operation. For example, instead of three MF, the system may perform
better if it had five MF for some of the variables. In traditional fuzzy neural networks this change is
either not allowed, or is extremely difficult to implement. In EFuNNs there are several possibilities
to implement such dynamical changes of MF as it is graphically illustrated on fig.10a,b,c. These are:
(a)  The stored fuzzy exemplars in W1 and W2 that have three MF are defuzzifyied (e.g., through
the center of gravity deffuzification technique) and than used to evolve a new EFuNN structure that
has, for example, five MF (fig.10a); (b) New MF can be created (inserted) without a need for the old
ones to be changed (fig.10b).The degree to which each cluster centre (each rule node) belongs to the
new MF can be calculated through defuzzifying the centres as in case (a); (c) When aggregation of
rule nodes is applied after many epochs, it is possible that input or output MF become fuzzy as the
centers of the rule hyper-spheres move, so that there is no one-to-one defuzzification procedure from
the connection weights back to the real input values as it is the case in fig.10a and 10b. (see an
illustration in fig.10c).

•    On-line parameter optimisation. Once set, the values for the EFuNN parameters will need to be
optimised during the learning process. Optimisation can be done through analysis of the behaviour
of the system and through a feedback connection from the higher level modules. Genetic algorithms
(GA) can also be applied to optimise the EFuNNs structural and functional parameters based on
either standard GA algorithms, or on their possible modifications for dynamic, on-line application.
The latter case is concerned with an optimisation of parameters to adjust to a continuously incoming
stream of data with changing dynamics and changing probability distribution. In this case a segment
of the most recent data is stored regularly into an additional memory and a GA is applied on this
data to optimise the EFuNN.
With the learning and pruning operations as part of the EFuNN learning algorithm, and with some
additional adaptation techniques, an EFuNN can dynamically organise its structure to learn from
data in an adaptive, continuous, incremental, life-long learning mode.
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 Fig. 10a New MF are inserted without modifying the existing ones.

Fig. 10b  Fuzzy MF.

Fig. 10c  The number of the MF increases from 3 to 5;
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3.6. EFuNNs as universal learning machines. Local and global generalisation

EFuNNs are designed to work in an on-line mode, with a continuous input data stream. An EFuNN
is trained (evolved) on input-output vectors of data available over time. Then it is used to generalise
on new incoming data Xd for which the output is not known. Once the output vector Yd for the new
input data becomes known, the input-output pair (Xd,Yd) is accommodated in the EFuNN structure,
which is then used on the next input data, and so on. EFuNNs are memory-based systems, i.e. they
store the incoming information as associated input-output clusters (fuzzy rules, prototypes)
organised in hyper-spherical forms. The clusters (their centres) are adjustable through the learning
parameters lr1 and lr2, so they can ÔmoveÕ in the problem space in order to accommodate new
examples as such become available from the input stream. This continuous, learning process
depends very much on the values set for the learning and pruning parameters. The optimal
performance of EFuNNs in terms of learning error, generalisation, forgetting and convergence can
be achieved through varying their structural and functional parameters. The generalisation ability of
EFuNNs depends on the learning and pruning coefficients which can be dynamically adjusted in an
ECOS architecture through a feedback connection from the higher level decision module or through
optimisation techniques (see fig.1). It will be shown here that EFuNNs are universal learning
machines that can learn, subject to a chosen degree of accuracy, any data set D, regardless of the
class of problems (function approximation, time series prediction, classification, etc.).
     In an on-line learning an EFuNN is evolved incrementally on different segments of data from the
input stream (as a partial case this is just one data item). Off-line learning can also be applied on an
EFuNN, when the system is evolved on part of the data and then tested on another part from the
problem space, which completes the training and testing procedure as it is the case in many
traditional NN models.
    When issues such as universality of the EFuNN mechanism, learning accuracy, generalisation and
convergence for different tasks are discussed, two cases must be distinguished:

(a) The incoming data is from a compact and bounded data space. In this case the more data vectors
are used for evolving an EFuNN, the better its generalisation is on the whole problem space (or an
extraction of it). After an EFuNN is evolved on some examples for the problem space, its  global
generalisation error can be evaluated on a set of  p new examples from the problem space as
follows:

GErr= sum {Erri}i=1,2,Ép,

where: Erri is the error for a vector xi from the input space X, which vector has not been and will not
be used for training the EFuNN  before the value GErr is calculated. After having evolved an
EFuNN on a small, but representative part of the whole problem space, its global generalisation
error can become sufficiently small. This is valid for both off-line learning mode and on-line
learning (when an EFuNN is evolved on k examples and then used to generalise on the next p
examples, as it is the case in section 4 when  EFuNNs are trained on one articulation data and then
tested and adapted on another articulation data of same speakers).
     For an on-line learning mode in which the EFuNN is adjusted incrementally on each example
from the data stream the generalisation error on the next new input vector (for which the output
vector is not known) is called local generalisation error. The local generalisation error at the
moment t, for example, when the input vector is Xdt, and the calculated by the evolved EFuNN
output vector is YdtÕ, is expressed as Errt. The cumulative local generalisation error can be estimated
as:

TErrt = sum {Errt}, t=1,2,Éi.

In contrast to the global generalisation error, here the error Errt is calculated after the EFuNN has
learned the previous example (Xd(t-1), Yd(t-1)). Each example is propagated only once through the
EFuNN, both for testing the error and learning (after the output vector becomes known).
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The root mean square error can be calculated for each data point i from the input data stream as:

RMSE(i) = sqrt (sum{Errt }t=1,2,..,i) / i ),

where: Errt= (dt Ðot)
2 , dt is the desired output value and ot  is the EFuNN output value produced for

the tth input vector.   The non-dimensional error index NDEI(i) can also be calculated (as shown in
section 4 and fig.14b,c):

 NDEI(i)=  RMSE (i) /std (D(1:i)),

where: std (D(1:i) is the standard deviation of the data points from 1 to i.

(b) Open problem space, where the data dynamics and data probability distribution can change over
time in a continuous way. Here, local generalisation error only can be evaluated.

For the two cases (a) and (b) above the following two theorems are valid.

Theorem 1. For any stream of input-output data from a compact and bounded problem space, there is
an EFuNN system that can approximate the data to any desired degree of accuracy ξ after a certain
time moment T defined by the distribution of the incoming data if the data represents a continuous
function in the problem space.
    Proof. The proof of the theorem, which is outlined here, is based on the following assumptions.
After a time moment T, each of the fuzzy input and the fuzzy output spaces (they are compact and
bounded) will be covered by the fuzzy hyper-spheres of the rule nodes generated over time, with a
resolution accuracy of r=1-Sthr and Errthr respectively. After a sufficient number of examples from
the stream presented by a certain time moment T, both the global generalisation error and the total
local generalisation error will saturate to a  value E proportional to the chosen value for the error
threshold Errthr, therefore each of them will  become less than the desired accuracy ξ. This is valid

in case of the data stream approximating a continuous function, so that any two data points from a
sufficiently small fuzzy input neighbourhood will have sufficiently small difference in the fuzzy
output space.  It can be precisely proved that any two associated compact and bounded fuzzy spaces
X and Y can be fully covered by associated (possibly, overlapping) fuzzy hyper-spheres [38]. A
similar theorem for multi-layer perceptrons with sigmoidal activation functions was proved in
[10,21]. But here, the on-line learning mode is covered too.
    The EFuNNs can also be used to learn sequences from open spaces (case (b)), where the
probability distribution and the dynamics of the data sequence can change over time. In this case the
system will learn rules and prototypes and the generalisation accuracy will depend on the closeness
of the new input data to already evolved prototypes both in space and time.

     Theorem 2. For any continuous stream of input-output data from an open problem space, used to
evolve an EFuNN, the local generalisation error at a time moment (t+1) will be less than a
predefined value ξ if at the time moment t there is a rule node rj = (W1(rj), W2(rj)), such that
D(W2(rj).(1-Dx), Ydt) < ξ, when Dx = D(W1(rj,Xdt))= min {D(W1(ri), Xdt))}, for i= 1,2,É,rn (rn
is the number of the rule nodes evolved in the EFuNN structure until the time moment t).
     The proof of this theorem uses the definition of local generalisation and the operations from the
EFuNN learning algorithm.
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4. Case Studies of Evolving Systems for On-line Incremental Learning

4.1. ECOS and EFuNNs for adaptive speech recognition

Building adaptive speech recognition systems is an important task in the area of spoken language
processing [72,34,41,61]. Adaptive speech recognition is concerned with the development of speech
recognition systems that: (1) can adapt to new pronunciation (of the same, or a new speaker); (2) can
enlarge their vocabulary of words in an on-line mode; (3) can acquire new languages. Here,
EFuNNs are illustrated on the problem of phoneme adaptation.
   It is well known that, there are a lot of variations in the pronunciation of phones of the same
phonemes, and at the same time there are similarities in the pronunciation of phones of different
phonemes. These make the recognition of phonemes a very difficult task. Four phoneme data is used
here (the same four phonemes as in the example from section 3, but here taken from the words ÔpitÕ,
ÔpetÕ, ÔpatÕ and ÔbeanÕ from the same data base, same two speakers [75]). While fig.7a illustrates the
ÒspatialÓ ambiguity of the phoneme data in the first two-formant space, fig.11a,b illustrates the
temporal variability of the /I/ phoneme data (new speaker, not in the database, pronouncing the word
ÔsitÕ) and the /e/ phoneme data (from the word ÔgetÕ, speaker 17 from the database) within a small
time interval. Fig.11a shows the values of the 26 mel-scale coefficients of the phoneme /I/ data for
each of ten consecutive time frames (each of them 11.6 msec long). It can be seen that while there is
similarity in the mel-scale vector patterns, there is a significant difference in the values of the main
mel coefficients. Fig.11b shows the membership degree to which the second mel-scale coefficient
(which is the main one for the phoneme /e/) belongs to a triangular MF denoting ÒhighÓ value for
each of ten consecutive time frames.

Fig. 11a Phoneme /I/ from ÔsitÕ- 10 consecutive mel scale vectors, each of 26 elements;

Fig. 11b Phoneme /e/ data Ð the membership degrees to which 10 consecutive in time values of the
second mel scale coefficient  belong to the MF of ÒhighÓ value.
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      In the experiment below the data is grouped into two data sets Ð a set A, that constitutes a first
pronunciation of the four phonemes, and a set B Ð a second pronunciation of the same words by the
same speakers. Once evolved on set A the system will be tested on set B and if it does not perfom
well it will be adapted to set B. The level of forgetting on the set A will be tested.
     The following numbers of 78Ðelement frame vectors are used as positive examples (and negative
examples in brackets): /I/ - 174 (85); /e/ - 253 (124); /ae/ -  285(138); /i/ - 325 (159). The data is
taken from the Otago Speech Corpus (see the example in section 3). Initially four EFuNNs were
evolved from the set A through one pass of training for the following parameter values: linear
activation functions; SThr=0.5; lr1=lr2=0.5; lr3=0; no pruning; Errthr=0.01. The classification rate
was evaluated on set A (to evaluate the training error), and on set B (to evaluate the generalisation of
the EFuNNs over a new articulation data of the same speakers (see fig.12). Then all EFuNNs were
further trained for one pass on the set B to adapt to the new articulation data.  After the additional
training the EFuNNs were tested again on set A and set B. The classification rate significantly
improved on both set A and set B. This experiment shows that EFuNNs can successfully adapt to
new pronuncition without forgetting previous ones. When temporal links were evolved, for a small
learning rate of lr3=0.01, the classification accuracy further improved which was expected  after
having seen the temporal variations within the phones of same phonemes from fig.11a,b.

4 EFuNNs  are
evolved for one pass
on A and tested on
A  and on B (in%)

on A           on B

The evolved on A
EFuNNs are adjusted
for one pass  on B and
tested on A and B

on A        on B

Temporal EFuNNs
are evolved for one
pass on A and tested
on A  and on B
(lr3=0.001)

on A            on B

The  tempora l
EFuNNs that were
evolved on A are
adjusted for one
pass  on B and
tested on A and B
(lr3=0.001)
on A           on B

/I/ 95(99)     71(99) 96(99)     97(99) 94(99)      74(99)  96(99)      98(99)
/e/ 95(97)     74(96) 97(98)     91(98) 95(97)      80(96)  97(98)      93(98)
ae 98(99)     81(93) 99(99)     94(98) 97(99)      81(94)  99(99)      93(98)

/i/ 93(95)     76(82) 92(98)     94(95) 95(96)      75(82)  94(98)      96(95)

Fig.12.  True positive and true negative (in brackets) classification accuracy in % for the four- vowel
experiment

     Fig.13 shows a general framework of an adaptive phoneme-based speech recognition system that
adapts its phoneme modules after every unsuccessful recognition attempt. This framework
constitutes an ECOS and an EFuNN-based system for the task of phoneme recognition.
Classification and adaptation results for the 43 phonemes in NZ English and also a comparative
analysis of using MLP, fuzzy neural networks, GAs and EFuNNs for the task of adaptive phoneme
recognition are given in [43]. The analysis shows that EFuNNs are superior when used for on-line
adaptive phoneme recognition.

     Further development in this area includes building ECOS for evolving spoken languages and
building multi-modal spoken language processing systems  [54,78,37]. The cortical areas of the
human brain that are responsible for the speech and the language abilities of humans evolve through
the whole development of an individual [72,73,82]. Computer modelling of this process, before its
biological, physiological and psychological aspects are made completely known, is an extremely
difficult task. It requires flexible techniques for adaptive learning through active interaction with a
teaching environment. ECOS and EFuNNs are appropriate models to use for the task.
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Fig.13. A block diagram of an ECOS and EFuNN-based adaptive speech recognition system where
the phoneme modules adapt to new data in an on-line mode during the operation of the system

4.2.  EFuNNs for on-line, dynamic time series prediction

EFuNNs, being universal learning machines, can be used for different on-line learning tasks, such as
classification, decision making, dynamic time-series approximation and prediction [60,16]. Here the
latter is illustrated on the gas-furnace bench-mark time-series data set. The gas-furnace data has been
used by many researchers in the area of neuro-fuzzy engineering for control, prediction and adaptive
learning [16]. The data set consists of 292 consecutive values of methane at a time moment (t-4),
and the carbon dioxide CO2  produced in a furnace at a time moment (t-1) as input variables, with
the produced CO2 at the moment (t) as an output variable.
   The following steps were taken in the experiments illustrated in fig.14a,b,c:
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Extraction
(MS)
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Word
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To higher
level
processingUser/

environment
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1) an EFuNN is trained on each data item in an on-line mode and tested immediately to predict the
following data item before it is accommodated in the system (fig.14a);
2)  an  EFuNN is  trained on each data item in an on-line mode and tested immediately to predict
tree steps ahead data item (fig.14b);
3) an EFuNN is trained on the first half of the data and tested on the whole data set (either in an
on-line or in an off-line mode) (fig.14c);
4) the EFuNN from (3) is additionally trained for one pass on the second half of the data.

In the above experiments the EFuNNs were set up with 5 MF for the following parameter values:
sensitivity threshold Sthr=0.9; error threshold Errthr=0.05; learning rate for both the first and second
layer lr=0.5.
   The results shown in fig.14 confirm that an EFuNN can adapt to new data in an on-line mode with
just one pass of training on any new data item without forgetting the old data if that is required for
the functioning of the system. It can also be seen that after certain time moment T the RMSE and the
NDEI converge to a constant value subject to small number. In the case of compact and bounded
problem space the error can be made sufficiently small subject to appropriate selection of the
parameters of the EFuNN (mainly sensitivity threshold, error threshold, learning and forgetting
rates).

4.3. EFuNNs for on-line, intelligent agents

Agent-based techniques allow for implementing modular systems that consist of independent
software modules that can communicate with each other and with the user using a standard protocol,
can ÒnavigateÓ in a new software environment searching for relevant data, processing the data and
passing results [81]. Intelligent agents can perform intelligent information processing, such as
reasoning with uncertainties, rule extraction, generalisation, adaptation. Intelligent agents should be
able to adapt to a possibly changing environment as they work. Such adaptation is crucial for a
mobile robot navigation, for an adequate decision making on operations with a dynamically
changing stock index, or for on-line search on the WWW [5]. ECOS and EFuNNs are well suited to
the above requirements and some preliminary results show a good performance of them.

Fig.14a  EFuNN is trained on each data item in an on-line mode and tested immediately to predict
the following data item before it is accommodated in the system.
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Fig.14b EFuNN is trained on each data item in an on-line mode and tested immediately to predict
tree steps ahead data item

Fig. 14c    EFuNN is trained on the first half of the data and tested on the whole data set (either in
an on-line or in an off-line mode)
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5.  Conclusions and directions for further research

This paper presents a framework ECOS for evolving connectionist systems, and evolving fuzzy
neural networks EFuNN, in particular, for building on-line, knowledge-based, adaptive learning
systems. ECOS have features that address the seven major requirements to the next generation of
intelligent information systems as presented in section one. A significant advantage of ECOS and
EFuNNs is the local learning procedure which allows for a fast learning (possibly Ð one pass) after
every new data item is entered and only few connections and nodes are changed. This is in contrast
to the global learning algorithms where, for each input vector, all connection weights change thus
making the system prone to catastrophic forgetting when applied for adaptive, on-line learning tasks.
      In spite of the advantages of ECOS and EFuNNs when applied for on-line, adaptive learning,
there are some difficulties that should be addressed in the future research. These include finding the
optimal values for the evolving parameters, such as the sensitivity threshold Sthr, the error threshold
Errthr, learning rates lr1, lr2 and lr3, forgetting rate, pruning, etc.  For example, pruning of rule
nodes has to be made specific for every application, thus depending on the definition of age and the
other fuzzy variables in the pruning rule. One solution is to regularly apply genetic algorithms and
evolutionary computation as optimisation procedures to the ECOS and EFuNN structures.
      Evolving connectionist systems could be viewed as a new AI paradigm. They incorporate
important AI features, such as: adaptive learning; non-monotonic reasoning; knowledge
manipulation in the presence of imprecision and uncertainties; knowledge acquisition and
explanation. ECOS are knowledge-based systems, logic systems, case-based reasoning systems and
adaptive connectionist-based systems, all together. Through self-organisation and self-improvement
during its learning process, they allow for simulations of emerging, evolving intelligence to be
attempted.
    At present more theoretical investigations on the limitations of ECOS and EFuNNs are needed
and also more analysis on their biological plausibility.
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