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Abstract
The increasing availability and variety of large environmental data sets is opening new

opportunities for data mining and useful cross-referencing of disparate environmental data sets
distributed over a network. In order to take advantage of these opportunities, environmental
information systems will need to operate effectively in a distributed, open environment. In this
paper, we describe the New Zealand Distributed Information System (NZDIS) software architecture
for environmental information systems. In order to optimise extensibility, openness, and flexible
query processing, the architecture is organised into collaborating software agents that communicate
by means of a standard declarative agent communication language. The metadata of environmental
data sources are stored as part of agent ontologies, which represent information models of the
domain of the data repository. The agents and the associated ontological framework are designed
as much as possible to take advantage of standard object-oriented technology, such as CORBA,

UML, and OQL, in order to enhance the openness and accessibility of the system.

1 Introduction

Advancements in electronic data acquisition technologyand their widespread adoption have resulted
in a heterogeneous data landscape, the characteristics of which must be considered when developing
environmental information systems (EIS):

ÿ Data sets are of large size. Because of the ease of automated data acquisition, data sets of
huge proportions have been accumulated and continue to grow.

ÿ Data sets are scattered over a network of heterogeneous platforms. Files may be stored on a
number of different hardware platforms and under various operating systems.

ÿ Data are stored as different media types and according to differing storage formats.

ÿ The associated metadata of data sets are organized according to differing standards and can
have differing interpretations for the same metadata terms.

ÿ Data and processed information must be accessed from a variety of platforms, including Web
browsers.

In light of this situation, we have developed a distributed, agent-based architecture designed for
robust and extensible environmental information systems. This work is part of the New Zealand



Distributed Information Systems project (http://nzdis.otago.ac.nz), and in the following the
architecture presented is referred to as the NZDIS architecture.

First, it is worth emphasizing that environmental information systems involve more than simply
accessing and gathering data. Often information processing and analysis algorithms must be applied
to the data (possibly from multiple data sources) in order to arrive at the desired information or
knowledge. In many cases, a specified environmental analytical task involves the necessity of

ÿ locating and accessing the relevant data sources
ÿ pre-processing and formatting the data to match the input requirements of the analysis module
ÿ processing the input data (this may involve multiple algorithms chained together in possibly

novel ways that are specific to each problem presented to the EIS).
ÿ distributing the output information to the appropriate people so that further iterations of the

problem-solving approach may be applied quickly.
From this perspective, locating and accessing the data is only one aspect of the overall problem-
solving task. Information processing and analysis are also intimately involved and must be
supported by an effective EIS. One of the difficulties associated with previous approaches to
information system development has been the forced separation of the data model and process model
of a system [1]. This separation was at one time thought to be a virtue, when the benefits of well-
structured database systems were first being recognized. As a result of this traditional approach,
there is still the tendency to maintain this forced separation and build separate, closed environments
– one for data access and the other with a fixed set of tools or algorithmic procedures. In many
cases, however, this separation can be a hindrance, and the complexity of the current distributed and
heterogeneous data landscape can require a more flexible approach so that data and process can be
encapsulated into (‘object’ or ‘agent’) modules that have the degree of modularity that is appropriate
for the given problem domain. The NZDIS architecture is designed to provide this flexibility.

In this paper, the overall architecture of the system is described in Section 2. Some of the key
principles of the architecture and the rationale behind some of the design decisions is presented in
Section 3. Section 4 is devoted to a discussion of how metainformation and ontologies are used in
the architecture, and Section 5 presents conclusions and comparisons with other work in this area.

2 The System Architecture

Consider how a complex problem solving task might be performed manually by a group of human
analysts, no one of whom possesses all the knowledge needed to solve the problem. A manager
might specify the problem by issuing a brief, high-level statement of the problem to one of his or her
chief analysts. This chief analyst doesn’t know how to solve the problem by herself, but she has the
appropriate experience to know whom to ask to help her solve the problem. First she might go to
certain ‘knowledge brokers’ in various specialized domains, who are acquainted with either specific
people in charge of information resources or domain experts who can help solve a particular type of
problem. She can then contact these specialists directly. However before she does so, she may first
have to plan in her head whom she should contact first, since the input for one special analyst may
require the prior problem-solving work of another special analyst. She may also find that the various
special analysts use technical terminology that don’t match up, and so she may find it necessary to
consult some ‘translation brokers’ who can help explain the terminology used in the various special



analyst reports and put them all on a common footing. Then once the chief analyst has the planand
the list of contacts, she will then be in the position to (a) contact each of the recommended domain
experts in the right order and then (b) collect and collate the reports that she receives from the
experts and produce the final report to the manager.

The NZDIS architecture attempts to borrow some notions from human problem-solving practice
(such as that described above) and apply them to the computer information processing tasks for
environmental information systems. It does so by employing an agent-based software architecture,
where the agents represent encapsulated processing modules that correspond to some of the human
agents that were described in the previous paragraph.

2.1 Agent-based software systems
Agent-based software systems consist of a collection of distributed processing modules, called
‘agents’, that cooperate by sending messages to each other. Agents offer a set of advertised services
whose performance can be requested by users or other agents. We expect an agent to have at least
the following properties:

þ state: agents maintain a state that persists between occasions when they are accessed from the
outside;

þ goals: agents have internal goals that they attempt to meet; the goals are normally stored in a
declarative fashion.

þ pro-activity: agents can take the initiative in order to achieve their goals;
þ autonomy: agents operate without direct intervention from the outside and have control over

their actions and internal state;
The representation of agent state and goals in declarative form has advantages with respect to the
logical construction of an agent and its extensibility and modification. Consequently it is also
convenient for inter-agent communication messages to have a declarative form. Attempts to
construct standard protocols for agent message-passing with declarative content, irrespective of the
internal structure of the agent, are called agent communication languages (ACLs).

To achieve suitable flexibility, ACLs do not normally specify all possible actions to be taken.
Instead, they merely specify the basic intention of a message, typically in the form of speech acts [2],
and then include the message content. The basic notion behind speech acts is that spoken messages
are usually more than simple statements of fact; they usually imply that some action should be taken
upon receipt of the message. The content of the message can be understood by the participants in
an agent conversation if they also share a commonontology[3], which is a separate, publicly
available information model that has been constructed for the given problem domain and serves as
a common dictionary for the agents. For environmental information systems, an ontology would
include metadata about the various data sets that can be accessed by the system. From these
considerations an ACL message might be expected to have

þ the speech act performative (one of a set of known speech acts)
þ the name of the ontology used in the message
þ the sender and recipient of the message
þ the message content
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Figure 1. NZDIS agent-based architecture.

2.2 The NZDIS agent architecture
The NZDIS agent architecture has several types of specialized agents that provide various types of
service within the system:

ÿ User Agent. A user agent is the interface between a user and the other agents in the system. It
provides the user interface of the system.

ÿ Ontology Agent. An ontology agent provides answers to queries about ontologies and metadata.

ÿ Broker Agent. A broker agent accepts registrations from other agents, which advertise their
services with the broker agent. It will then use this information to respond to incoming queries
from agents that wish to locate a certain type of service provider.

ÿ Resource Agent. A resource agent provides an interface between the other agents and the
specific command or query language associated a data resource or information processing module.

ÿ Query Processing Agent. Query processing agents are part of a specialized subsystem that deal
with requests for information from user agents and organize a task plan that will respond to theose
requests.

A schematic illustration of the NZDIS architecture is shown in Figure 1. Each agent is depicted by



a rectangle. Links with black arrowheads indicate messages and links with white arrowheads
indicate that an object reference is accessed.

The User Agent is the gateway to the rest of the system. It supports the formulation of queries
(which may include requests for computations) by means of an appropriate graphical user interface
and by means of a dialogue with the Ontology Agent.

The Ontology Agent manages the interaction between the user agent and individual ontologies,
which can be organized in a directory hierarchy. It also maintains a translation directory to keep
track of translations that are available between related attributes of separate ontologies.

The Translator Broker agent serves as a broker for individual Translator agents that can perform
complex translations between attributes. In the course of information query processing involving
multiple data sources, the need may arise to translate values from attribute A in one data source into
another attribute B associated with another data source. One can envision three situations:

1. A and B have the exactly the same type and value metrics (no translation necessary).
2. A and B are of the same type, but rescaling is necessary. In this case it is not necessary to call

a specialized Translator agent, and the translation can be embedded into the query during the
action of the Query Planner (see Figure 1).

3. A more complication functional mapping is required to translate between A and B. In this case
a Translator agent will need to be called to perform the required mapping between A and B.

The Translator Broker provides a front-end for these translations and resolves the type of translation
that will be required.

On the right side of Figure 1 are shown the Resource Broker Agents along with the Data Source
Agents and Computational Module agents. Each Data Source Agent manages the interaction
between the system and a particular data source and can be implemented as a wrapper to the data
source. Computational module agents provide a similar type of interface to the system for individual
processing modules. Resource Broker Agents are a type of broker agent. On startup, a Data Source
Agent or Computational module agebt will register with a Resource Broker Agent, identifying the
data source that it oversees or computation it performs and the associated ontology. Since data
sources may be spread across the Internet, it is appropriate, in order to avoid a single point of failure,
for the Resource Broker Agents also to be distributed and to share information with each other.

The Query Processing Subsystem (QPS), shown in the centre of Figure 1, consists of a number of
cooperating agents that collectively take a general query from the user and break it down into
individual tasks. A query is processed as follows:

ÿ Initially, a FIPA ACL message is sent by the User Agent to the Potential Sources Chooser agent.

ÿ The Potential Sources Chooser agent performs the following:
þ Consults the Ontology Broker agent and Resource Broker agents to identify potential data

sources that will need to be accessed to answer the query.
þ Consults the Translator Broker to see if the translation can be performed inline with the query,

or if a Translator agent will be needed during plan execution. The Translator Broker agent may



also need to be consulted to check whether there are available Translator agents that can
translate between related attributes for multiple data sources. If adequate sources are not
available, a message may be sent back to the User agent requesting a reformulation of the query.

þ Ultimately sends the query to the Query Planner agent.

ÿ The Query Planner agent generates a plan of execution by taking the original query and splitting
it up into a structured set of subqueries, joins, etc. such that the subqueries can be directed to
individual data sources. It first checks the Query Cache Manager agent to see if it is possible to
reuse cached results from previous queries. It also consults the Translator Broker agent to see if
a translation between related attributes can be performed inline at this stage, or if a Translator
agent will be needed to perform the translation later on. The generated plan is then sent to an
Executor agent to execute the plan.

ÿ The Executor agent executes tasks that were specified in the generated plan. Individual Query
Worker agents are generated to carry out tasks – each performs a query or computation operation
with respect to a single data source (accessed via a Data Source agent) or Computational Module.
Upon receiving results from a Query Worker agents, the Executor agent
þ generates an answer object and makes the reference to this object available to the User Agent

by sending a message back to the User agent, and
þ send the reference to this object to the Query Cache Manager.

ÿ The Query Cache Manager maintains references to objects representing cached queries. It also
removes Query Worker Agents when they are no longer needed.

ÿ Data Source agents and Computational Module agents provide an object-oriented query interface
to their respective information sources. Note that each Data Source or Computational Module
agent may accept queries in a different ontology.

3 Architectural Design Rationale

In this section we describe some of the design decisions and the rationale behind the NZDIS
architecture. Our overall design philosophy is to design a flexible state-of-the-art agent architecture
while at the same time employing widely-used and industrially tested approaches wherever possible.
In particular, we are using standards from the Object Management Group (OMG), wherever possible,
because of the widespread availability of software implementations of OMG standards from
commercial vendors.

3.1 Agent Communication Language

There are two main ACLs that have been proposed and implemented in the distributed agent research
community, KQML (Knowledge Query and Manipulation Language) [4] and FIPA (Foundation for
Intelligent Physical Agents) ACL [5]. Both employ the basic notions of speech act theory mentioned
above. KQML has been widely used, and there is more field experience with it; FIPA ACL is a more
recent offering, but has received endorsements from industry, notably telecommunications
organisations, and from major portions of the research community. It is our view that FIPA ACL



will ultimately emerge as the standard, and we have adopted it for our use. The content language
of a FIPA ACL message is left unspecified. FIPA has proposed other elements associated with agent
architectures to go along with their ACL specification, but these specifications are still under
development.

Two key types of message that will be sent in our system are user requests for information sent to
the Query Processing Subsystem and reformulated requests sent by the Query Processing Subsystem
to Data Source Agents. Within the message content portion of a FIPA ACL message (left
unspecified by FIPA), we will use the Object Query Language (OQL) [6] for these two types of
messages. OQL is an SQL-like language that has been developed by the Object Database
Management Group (ODMG) to have extensions that support the ODMG Object Model [6], which
in turn is based on and compatible with the OMG Object Model.

3.2 CORBA

The Common Object Request Broker Architecture (CORBA) from the Object Management Group
(OMG), which provides a platform for the interoperation of object-oriented systems in a distributed
environment, is being used for the implementation of the transport layer of inter-agent
communication. The semantics of the distributed agent architecture shown in Figure 1 are being
implemented on top of this CORBA-based transport layer. Since CORBA is language neutral, it
makes it possible to (a) implement some data source agent wrappers in languages compatible with
a given associated legacy data source and (b) implement some elements of the system in languages
that are optimised for performance.

In the NZDIS architecture the results of a query are not returned inside an ACL message – instead,
the ACL "reply" message contains a CORBA reference to a result set server object that implements
a standard interface allowing the result set to be returned in a variety of formats and protocols. This
object is created dynamically by the Executor agent and may either already contain the query result,
or it may produce the results only when asked do to do so by invoking other dynamically created
objects that return the results of subqueries, ontology translations, joins and other operations. These
objects are represented by small circles in Figure 1.

3.3 Ontologies

Ontologies are formally specified models that define the concepts used to describe a domain and the
relationships that hold between them. We use ontologies to model the semantic structure of
individual information sources, as well as to model general aspects of the problem domain that are
independent of any particular information source. Several formalisms have been developed for
expressing ontologies, notably KIF [7] , KL-ONE [8], and KL-ONE-inspired formalisms based on
description logics [10]. We have opted to use the Unified Modeling Language (UML) [9], from the
OMG to represent ontologies, because

ÿ UML is intended to be the standard modelling language for object-oriented design. With some
extensions, it can be used for general ontological models, which will make it easier to user
additional object-oriented approaches, such as OQL for ontological queries.
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Figure 2. An ontology using UML of the conceptual model of spatial entities in the Spatial Data
Transform Standard.

ÿ UML provides a standard graphical representation (unlike other ontology representation
schemes, such as KIF and KL-ONE), and there are commercial tools that use it. Such a
graphical representation is important to allow users to browse an ontology and discover
concepts that can appear in their queries.

ÿ UML has a large user-community, which will make it easier for new users of our system

ÿ The Object Constraint Language (OCL) [11] allows for the expression of constraints that cannot
be described using description logic.

Further discussion of UML and ontologies is given in Section 4.

4 Ontologies and Metainformation

We represent an ontology as a static model consisting of
þ a UML class diagram to depict the classes in the domain and their relationships.
þ a UML object diagram to show named instances of the classes
and use the associated OCL in connection with these diagrams. Although UML does not define a
standard set of primitive types for attribute and operation declarations, OCL does, and we use these
for ontology modelling with UML.

A sample ontology diagram in this format is shown in Figure 2. Note that for the purposes of
ontology representation, all attributes are considered to have public visibility. Classes are linked by



MOF Model
(a meta-metamodel)

An ontology modelled
using UML

Another ontology modelled
using UML

UML described using
the MOF model

Another ontology modelling
language described using

the MOF model(a metamodel)

Figure 3. A MOF-based ontology repository.

three types of relationship: generalisation (links with arrow heads), aggregation (links with
diamonds), and association (straight links). Association and aggregation relationships can be
annotated with role names and multiplicity indicators.

OCL enables expressions to be written that can constrain attribute values and possible instances of
the relationships. To facilitate these constraint expressions, it features some predefined functions
on collections of objects and some simple mapping and iterate functions. However no constraints
are shown in Figure 2.

Of course, since an ontology is a formal model of a domain, it is important that the language used
to describe it has formal semantics. UML and OCL lacks this at the moment, but this shortcoming
is currently being addressed by a number of researchers [12,13,14,15, 16].

It is also important to consider the degree to which automated reasoning can be applied to
ontological models. The UML-OCL combination that we are using contains both a highly structured
model thatcouldsupport automated reasoning (UML class and object models) and an expressive
language (OCL) that wouldnot be practical for general purpose reasoning. We believe, however,
that the sort of reasoning mostly required for environmental information systems could be performed
using the class and object diagrams alone. The constraints (expressed in OCL) could be regarded
as extra detail specifying how systems that implement the ontologyshould behave. To accommodate
OCL elements into an automated reasoning environment, it would be possible to define a set of
standard OCL constraints that form a language, such as the types of slot constraints provided by
description logics. However this is an area for further research.

A single ontology representation language is not necessarily convenient for modelling all domains.
It maybe useful to have several ontologyrepresentation languages available to the ontologydesigner.
The Infosleuth project has an interesting approach to supporting multiple modelling languages [17].
A simple frame-based language is used to define specific ontology representation languages such as
object models and entity-relationship diagrams. The actual ontologies are then expressed as
instances of these languages. This is a three layer model, with the frame layer acting as a
meta-metamodel, the definitions of the ontologyrepresentation languages being metamodels and the
ontologies themselves being models.

A similar facility is offered by the
OMG's Meta Object Facility (MOF)
[18]. The MOF is the OMG's
Meta-Object Facilitystandard. It defines
a standard for CORBA-based services to
manage meta-information in a
distributed environment. The MOF
defines a model (in fact a meta-meta
model) that can be used to define
modelling languages such as UML. It
also defines interfaces that can be used
to populate and query repositories of



models defined using various languages. We intend to use this framework to build an ontology
server agent with similar capabilities to those of the Infosleuth project. Figure 3 shows the structure
of a MOF-based ontology server. While UML provides a standard graphical interface for ontology
models, an altogether different interface is needed for agents which may need to query or transfer
the model. Several proposals for UML interchange formats have been proposed, and we are using
XMI (XML Metadata Interchange), which is a stream-based interchange format for manipulating
MOF-based meta objects and UML-based models and appears to be emerging as a standard.

5 Conclusions

We have presented an overview of the NZDIS architecture to be used for distributed environmental
information systems. The system employs agent-based software interoperability so that the system
can be expanded and enhanced while remaining online.

There are several related projects that have the goal of integrating distributed information resources:
the Information Manifold [19], SIMS [20], Infosleuth[17], and OBSERVER [21]. The NZDIS
architecture is distinguished from these programmes by the degree to which it offers a distributed
agent-based architecture that is constructed on top of a framework using industry-tested, platform-
independent object-oriented technology, such as CORBA, OCL, OQL, MOF, XMI, etc.
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