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Abstract 

This paper discusses the problem of adaptation in automatic speech recognition systems (ASRS) and suggests several 
strategies for adaptation in a modular architecture for speech recognition. The architecture allows for adaptation at different 
levels of the recognition process, where modules can be adapted individually based on their performance and the performance 
of the whole system. Two realisations of this architecture are presented along with experimental results from small-scale 
experiments. The first realisation is a hybrid system for speaker-independent phoneme-based spoken word recognition, 
consisting of neural networks for recognising English phonemes and fuzzy systems for modelling acoustic and linguistic 
knowledge. This system is adjustable by additional training of individual neural network modules and tuning the fuzzy 
systems. The increased accuracy of the recognition through appropriate adjustment is also discussed. The second realisation 
of the architecture is a cormectionist system that uses fuzzy neural networks FuNNs to accommodate both a prior linguistic 
knowledge and data from a speech corpus. A method for on-line adaptation of FuNNs is also presented. (~) 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction: The problem of adaptive speech 
recognition 

Speech recognition is an extremely difficult task to 
be performed by a computer system. This is because 
of the variability in the way people speak [2,3,26,28], 
which results in complex speech signals that have to 
be processed by automatic speech recognition sys- 
tems (ASRS). There are several key areas of  research 
which have been pointed out in [3] as significant for 
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the current development of spoken language systems. 
These are: robust speech recognition, automatic train- 
ing and adaptation, spontaneous speech, dialogue 
models, natural language response generation, speech 
synthesis and speech generation, multilingual sys- 
tems, and interactive multi-modal systems. A spoken 
language system, as defined in [2], combines speech 
recognition, natural language processing, and human 
interface technology. There are now systems that 
work reasonably well on continuous and spontaneous 
speech, although in a very restricted domain. 

We take the view that the above goals can best 
be achieved if an integrated approach is used, i.e. 
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Fig. 1. A general block diagram of an Intelligent Human Computer Interface (from [12]). 

that everything about the speech recognition task (a 
priori known, or acquired during the operation of the 
system, knowledge) should be used in the system 
[8-10,12]. For example, speech corpus data [28,34], 
phonetic rules [2], linguistic knowledge [26], AI 
methods [29], skills from pedagogy and teaching lan- 
guages [2], should be brought together and used in 
one system. Advanced knowledge engineering tech- 
niques are needed to facilitate this integrated approach 
to building ASRS [11,12,14,15,19]. 

The task of speech recognition becomes more 
complicated when the ASRS is used as a part of an 
intelligent human computer interface (IHCI). A gen- 
eral block diagram of IHCI is graphically depicted in 
Fig. 1. The system allows for retrieving information 
from a database or for connecting to other com- 
munication ports by using both speech and text. It 
consists of the following major blocks (as described 
in [12]): 
• Speech recognition and language modelling blocks. 
• Similarity-based query block. This module carries 

out approximate reasoning over a user's query and 
allows for vague, fuzzy queries. 

• Knowledge acquisition block. This module per- 
forms knowledge acquisition, e.g. extraction of 
rules from raw data. The module can be used 

for explanation purposes. Different rule extraction 
algorithms can be applied [12,13,25]. 

• Answer formation block. This module produces 
the answer to the user and performs a dialogue at 
any phase of the information retrieval. It has both 
speech synthesis and text generation sub-modules. 

The task of speech recognition becomes more com- 
plicated when the ASRS is required to adapt to 
new data and to accommodate new knowledge as 
they become available. The question is how to tune 
such a complex system that consists of many units, 
modules and blocks linked together, for a better 
performance in an always changing environment 
in the presence of a huge variability of input data. 
Can an ASRS adapt to new accents and new speak- 
ers as it works, i.e. on-line, "on the fly". This is 
the major research problem this paper is concerned 
with. 

Building adaptive speech recognition systems, 
where the system is able to adapt to new accents 
and new speakers, is an extremely difficult task for 
computers to achieve, but humans can do this very 
well. We listen to a new accent for some time and 
then adapt our perception to improve our recognition 
and understanding. How the human brain achieves 
such adaptation is still not known. Speech signals 
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Fig. 2. The first two formants of  vowels in New Zealand and Australian English. 

are processed in different parts of the brain, that 
can be aggregated in two fuzzy clusters for "low 
level processing" and for "higher level processing". 
Apparently adaptation happens at each part of the 
auditory pathway from the cochlea to the Broca's and 
the Wernike's areas in a correlated way [22]. Every 
human being adapts differently in terms of time re- 
quired, selected and preferred phonemes, words and 
phrases, known meaning, etc. Can similar results be 
achieved in an ASRS? 

Different aspects of adaptation in ASRS have been 
discussed in several papers where different approaches 
have been explored. Mainly statistical and probabilis- 
tic models, e.g. Hidden Markov Models, have been 
explored [6,31,32]. Connectionist methods that have 
been developed for on-line adaptation (see for exam- 
ple [30]) need to be experimented on speech recog- 
nition problems. The problem of adaptation in ASRS 
has been around for many years but now its solu- 
tion becomes feasible due to some properties of the 
connectionist and the hybrid connectionist systems 
[1,12,26,36]. 

In this paper, several principles are explored and 
several strategies are suggested that led to a better 
performance of the experimented two realisations 
of a general architecture of an adaptive ASRS. The 
first realisation, HySpeech/1, is a hybrid neuro- 
fuzzy system that allows for selective adjustment of 

parameters of individual neural network and fuzzy 
system modules that comprise the system. The second 
realisation, HySpeech/2, is a connectionist system 
that is built with the use of fuzzy neural networks 
FuNNs [12,17]. It allows for automatic adaptation of 
individual phoneme neural network modules. 

The main principles of the architecture explored 
here are modularity and local specialisation. Each 
phoneme classifier is realised as a separate phoneme 
unit, so phoneme units can be adjusted/adapted/tuned 
individually [12,20]. Very often an ASRS needs to 
adapt only to a few differently pronounced sounds 
that cause problems in the overall recognition pro- 
cess. If we look at the fundamental frequencies of 
the typically pronounced vowels in Australian and 
New Zealand English, we notice a few differences. 
It may be the case that only a few vowels need 
to be adjusted before a system, initially trained on 
New Zealand English, begins to correctly recognise 
Australian English (see Fig. 2). 

2. Hybrid neuro-fuzzy systems for phoneme and 
word recognition 

The following are the key principles used in 
the conceptual design of the general architecture for 
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Fig. 3. A block diagram of HySpeech/1 - a modular hybrid neuro-fttzzy system for phoneme-based speech recognition. 

adaptive speech recognition, realised as HySpeech/1 
and HySpeech/2 systems: 

(1) Mixing training data and explicit knowledge 
in one system. The system should be flexible and 
should use all sources of information available on the 
problem. 

(2) Extendibility. The system should be easily 
extendible by adding new items to the speech cor- 
pus, adding new linguistic knowledge, and adding 
new words to the dictionary according to a concrete 
application. 

(3) Modularity and local specialisation. Indi- 
vidual modules are assigned for classifying each of 

the elementary sounds (phonemes) at each level of 
recognition. 

(4) Hierarchical structure and hierarchical or- 
9anisation of  the adaptation process. A module in 
the hierarchy adapts according to the performance 
of the whole system as well as according to the 
data provided by the module that is functionally 
preceding it. 

HySpeech/1 is an experimental realisation of the 
above principles as a speaker independent system for 
recognising pronounced in isolation words. In the 
concrete experiment the digit words of New Zealand 
English are used. This implementation uses standard 
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Fig. 4. A block diagram of the first layer neural network module (from [33]). 

feed-forward neural networks for the phoneme recog- 
nition module and fuzzy rule-based inference systems 
for representing phonotactic rules, as shown in the 
block diagram of Fig. 3 [20,21,33]. It consists of the 
following modules: 

(1) Speech pre-processin9 module. This module 
transforms raw speech signals into feature vectors. 
26 Mel-scale cepstrum coefficients (MSCC) are used 
as feature vectors to represent each time frame after 
22.050kHz, 16-bit resolution sampling of the speech 
signal. MSCC are cosine transformations on Mel-scale 
central frequencies that form a set of filters considered 
to be close to the way the human inner ear perceives 
and filters speech sounds. 

(2) A hierarchical, two-layer, multi-modular con- 
nectionist system for phoneme recognition. This is 
a neural network based block for the recognition of 
New Zealand English phonemes. The first-layer neu- 
ral network module consists of 21 neural networks 
(phoneme units), one for each of the phonemes partic- 
ipating in the spoken words, plus the silence phoneme. 
Each phoneme unit has: 3 x 26 inputs, where three 
consecutive time-frame MSCC vectors are supplied; 
20 hidden nodes; one output node which represents the 
corresponding phoneme class. Fig. 4 depicts the first- 
layer neural network module. All the neural networks 
are trained with real phoneme data from a speech 
corpus of New Zealand English [33,34]. The corpus 
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Table 1 
Details of the Otago Speech Corpus (see also [34]) 

Digit collection Word collection Total 

Number of  words 10 129 139 
Instances of each word 3 3 - 
Number of female speakers t 0 10 20 
Number of male speakers 11 12 23 
Total utterances recorded 630 8514 9144 
Number of  phonemes segmented 1953 8514 10467 
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Fig. 5. A block diagram of  the second layer neural network module (from [33]). 

contains phoneme realisations from 11 male speakers 
and 10 female speakers of NZ English extracted from 
a set of 139 words pronounced three times by each 
of the speakers (see Table 1). It is available from: 
http://divcom.otago.ac.nz: 800/COM/INFOSCI/KEL 
/speech.htm. 

The second-layer neural network module is a sin- 
gle feed-forward neural network which takes three, 
time-consecutive, 21-element output vectors from the 
first-layer neural networks (the phoneme units) and 
produces a corresponding 21 element vector (see 
Fig. 5). This network performs an aggregation of 
classified phonemes over three time intervals. The 
network is trained using a standard backpropa- 

gation algorithm, on both real data and synthetic 
data. 

(3) A language modelling block based on fuzzy in- 
ference. The module has two sub-modules. The first 
sub-module is a fuzzy rule-based system. Fuzzy rules 
can represent the certainty that a given phoneme has 
happened when certain phoneme has preceded it (has 
been recognised in the previous time frame). Different 
sets of fuzzy rules are used for the three main parts of 
each syllable (onset, syllabic and coda). An example is 
shown in Fig. 6 where the block diagram of the fuzzy 
system for recognising the phoneme/s/is given as an 
illustration. Here, two consecutive phonemes are con- 
sidered, denoted as pl  and p2. The fuzzy rules infer 
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Fig. 6. A fuzzy expert module for the phoneme IS~ (from [21]). 

the certainty that the phoneme p2 in the second posi- 
tion is valid based on the certainty of the recognition 
of pl  and p2 in the neural network module and on 
the position of p2 in the syllable, that is coda, syllabic 
or onset. The language modelling block is a multi- 
modular one. That is, one fuzzy rule-base unit is used 
for each of the phonemes. This allows for individual 
tuning of the fuzzy rules for a particular phoneme ac- 
cording to the overall recognition rate of this phoneme 
and the recognition rate of the spoken word that the 
phoneme takes part in [21]. For example, the follow- 
ing rule, taken from the set of rules for recognising the 
phoneme/s/, expresses a valid sequence of the two 
phonemes/r /and Is~ in a coda of a syllable (see also 
Fig. 6): 

IF (within the syllable coda) AND /r/ was pre- 
viously recognised as "high" AND /sl is currently 
recognised as "high" T H E N / s / i s  a "high" choice. 

The membership functions for the fuzzy values 
used in the fuzzy rules are shown in Fig. 7. The second 
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Table 2 
Different pronunciations of the digits allowed in HySpeech/1 

Word Pronunciation(s) 

Zero zerou serou zeorou 
One wan 
Two tu 
Three 0rl OrI frl 
Four f3 f~r 
Five faiv faif fai 
Six slks 
Seven sevln sevan sevn 
Eight eit ei 
Nine nain nai 

sub-module of the language model is a look-up ta- 
ble. The table contains the dictionary of  words. The 
phonemes recoguised in the fuzzy rule modules are 
matched partially to these words. Many-to-many 
matching is allowed. For example, any of  the recog- 
nised phoneme sequences o f / f a i /  and /faif/ will 
match the word "five" from the look-up-table, as 
shown in Table 2. A tolerance parameter is used 
here. It defines how much the sequence of  recognised 
phonemes in the fuzzy rule-based system must match 
a pre-defined table of  allowed sequences of  phonemes 
representing acceptable pronunciation of certain word 
from the dictionary. The most closely matched word 
is chosen, but lesser matched words can potentially 
be used for user initiated correction or for further 
adaptation of the system. This parameter takes values 
between 0 and 1, the former meaning that an exact 
match is needed, the latter meaning that any sequence 
will match the reference word. 

The HySpeech/1 realisation is an experimental one 
aiming to facilitate different adjustment and adaptation 
strategies. It allows for different options to be explored 
through switching on and off different modules that 
participate in the recognition process. 

3. Adjustment strategies for hybrid neuro-fuzzy 
systems for phoneme and word recognition 

The HySpeech/1 architecture was designed to 
explore different adjustment strategies in order to 
improve the recognition rate. Modules can therefore 
be included or excluded from the functioning of  the 
whole system, and modules can be separately ad- 

justed according to performance results, as shown in 
Fig. 3. 

Several adjustment strategies are described below 
and investigated on the recognition of the 20 New 
Zealand English phonemes and subsequently on the 
digit words, based on the Otago Speech Corpus. The 
system is then tested on new speakers with the same 
accent. These strategies and experimental results are 
given below. 

(1) Adjusting the phoneme neural networks 
through selective, additional training. Different val- 
ues of the training parameters can be explored for 
different phoneme neural networks. The best values 
can be found or adjusted through experimentation. 
Here two different values of 0.02 and 0.1 of the learn- 
ing rate are used in two different experiments with 
all the 21 elementary neural networks (see Fig. 3). 
The latter experiment gave better results, illustrated 
in Fig. 8 on the pronounced word "zero" by a new 
speaker. Additional training of poorly performing 
networks can be done on specifically prepared data, 
for example more negative data on false positively 
recognised phonemes, or more positive data on false 
negatively recognised phonemes. 

(2) Adjusting the aggregation neural network by 
using both real and synthetic data. The training of 
the second-layer network was done in the experiment 
presented here in two ways: (1) with the use of syn- 
thetic data only; and (2) with the use of both synthetic 
and real data, as obtained from the first-layer neural 
network classification. The synthetic training data was 
generated using random generators. Here, linguistic 
information was used. The range of the values was 
chosen also to reflect the level of activation expected 
from the first layer networks. For example, it is known 
that the short (stop) consonants have a period of  si- 
lence to precede the utterance. This information, along 
with the information from the activation of the first- 
layer network, is used when synthetic data for these 
phonemes is generated [33]. 

Two experiments with the second layer neu- 
ral network module were carried out, the first one 
with the use of synthetic data only, and the sec- 
ond one with the use of both synthetic and real 
data. The second experiment showed a better per- 
formance. Neural network 2 module suppresses 
the falsely positive activation values from layer 
one (see Fig. 8c for the word "zero") but it may 
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Table 3 

Scaling values of  the input signals for linguistic model l ing (from [21]) 

Phoneme t k f v 0 s z n r w 

0.05 0.15 0.15 0.20 0.10 0.05 0.05 0.10 0.05 0.10 

Phoneme I e A i ~ u ei ai ou q 

0.15 0.20 0.10 0.15 0.05 0.10 0.05 0.15 0.15 0.30 0.30 

suppress some of the true positive activation too (see 
Fig. 8f for the word "one". In the worst scenario 
it would make the final recognition of the spoken 
word impossible (see the experiment in Fig. 8i for 
the spoken word "seven"). The latter phenomenon 
can create additional problems for the following 
language modelling block where the fuzzy rules 
"would expect" higher true positive values as input 
signals. 

The layer one and layer two networks were tested 
on six new speakers (three males and three females) 
each pronouncing the digit words three times. In or- 
der to test the influence of  the fuzzy system on the 
final recognition rate, two experiments were carried 
out: in the first one the outputs from neural network 
2 module are directly fed into the look-up table, with- 
out using the fuzzy linguistic rules module. When the 
fuzzy system was included in the recognition process, 
initially the results deteriorated. This is not surprising 
as we noticed that the output activation values of the 
neural network 2 module are too small for some of the 
phonemes in order to properly activate the otherwise 
correct linguistic rules with their pre-defined member- 
ship functions as shown in Fig. 7. 

The challenging issue here is to find out how to 
adjust the neural network outputs, or to adjust the 
membership functions in the fuzzy rules, in order to 
improve the recognition rate. As we used separate 
fuzzy rule modules for the different phonemes, the 
membership functions for the different modules can 
be adjusted individually. For example, what is consid- 
ered a "small" input signal for the phoneme/e / fuzzy 
rules, can be "medium" for the phoneme In~ and can 
be "large" for the phoneme/p  fuzzy rules. 

(3) A selective adjustment of input values and 
membership functions of the fuzzy system units. 
The fuzzy system units should be able to correctly 
recognise phonemes even if they are not perfectly 
recognised at the previous neural network level. The 

linguistic rules can subsequently account for the cor- 
rect utterance. The modularity and the specificity 
principles used when the fuzzy system was built al- 
low for individual tuning of the inputs and tuning the 
membership functions in each of the fuzzy phoneme 
units. The following formula was used to scale the 
fuzzy system input values (that is computationally 
equivalent to scaling the membership functions): 

= x . ( 1  - y p ) q -  yp, 

where x is the output vector from the neural network 2 
module; Xp is the scaled input vector to the phoneme p 
fuzzy unit; yp is the tuning parameter for this unit. The 
value of yp was chosen individually for each of the 
phonemes based on the recognition rate of the neural 
network 2 module for this particular phoneme and 
their activation values as shown in Table 3 [21]. So 
the values are statistically defined based on a statistical 
evaluation of the test recognition rate of the previous 
in the hierarchy module. Automatic optimisation of 
this parameter could be performed through a genetic 
algorithm, or another optimisation technique [5]. After 
the adjustment of the membership functions according 
to Table 3, the recognition rate of the system on the 
entire test data set increased significantly as shown in 
Fig. 9. The test set consisted of three male and three 
female speakers, who were new to the system. 

(4) Adjustin9 the tolerance coefficient in the higher 
level language modellin9 block. In the look-up-table 
module, a level of system's tolerance was introduced 
to define the level of partial match that the system will 
tolerate as explained in the previous section. Through 
adjustment of this parameter a further improvement 
of the overall recognition rate can be achieved. This 
parameter will play a more significant role when a 
larger vocabulary is employed (see for example [37]). 

The adjustment strategies discussed above and illus- 
trated on the experimental HySpeech/1 system prompt 
for the need of tools and algorithms which, rather than 
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using an ad hoc manual adjustment, perform automatic 
adaptation to new data and speakers. 

4. Towards adaptive connectionist-based systems 
for phoneme and word recognition 

A block diagram of an adaptive connectionist sys- 
tem HySpeech/2 is shown in Fig. 10. The system con- 
sists of similar blocks as the ones in HySpeech/1 as 
both systems are different realisations of the same gen- 
eral architecture from Fig. 1 as explained in Section 
2. The modules in HySpeech/2 are as follows: sig- 
nal processing, elementary sound (phoneme) recog- 
nition, language modelling, user interface (answer 
formation). Additionally, a new module for adaptation 
has been added. A multi-modular, adaptive structure 
of fuzzy neural networks FuNN is used for building 
the adaptive phoneme recognition module and for 
accommodating existing phonetic rules [ 12,17]. 

A separate FuNN specialises in recognising one 
phoneme, or another elementary speech unit, as shown 
in Fig. 11. This FuNN can accommodate linguistic 

knowledge in the form of fuzzy IF-THEN rules and 
can be trained on existing speech (phoneme) data. The 
input vectors, in the experimental system, are three 26- 
element Mel-scale coefficient vectors (MSC) obtained 
after transforming three consecutive time frames of 
the signal, each of them of 11.6 ms duration, with 50% 
overlap. 

A major problem is how to design optimal FuNNs 
which would have enough connections and member- 
ship functions (MF) to be trained on existing data and 
to adapt to new speakers. On the other hand, there 
should not be too many redundant connections as they 
would make the FuNNs slow to adapt in a real time 
and prone to local minima and overfitting. Overall, 
the task is to optimise a phoneme FuNN structure in 
a continuous, adaptive way. In the next sections the 
FuNN structure and its functionality is explained. A 
method for adaptation of FuNNs on phoneme data is 
presented. In the experiments, shown later in the pa- 
per, three membership functions are used to denote 
"low","medium" and "high" values of each of the 26 
MSC. Two membership functions are used for the out- 
put variable ("the uttered sound is [unlikely/likely] to 
be this particular phoneme"). 
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Fig. 11. The use of a FuNN module for a single phoneme recog- 
nition. 

5. The architecture of FuNN 

Different types of hybrid symbolic-cormectionist 
and fuzzy-neural networks have been developed by 
several authors and applied successfully to several 
problems (see for example [4,7,12,17,3 5]). They have 
the advantages of both neural networks and fuzzy 
inference systems. They allow for data mining and 
fuzzy rule manipulation (inference, tuning, extraction, 
insertion). 

The fuzzy neural network FuNN uses a multi-layer 
perceptron (MLP) network and a modified back- 
propagation training algorithm. The general FuNN 
architecture consists of five layers of neurons with 
partial feed-forward connections as shown in Fig. 12. 
It is an adaptable feed-forward neural network where 
the membership functions of the fuzzy predicates, 
as well as the fuzzy rules inserted before training or 
adaptation, may adapt and change according to new 
data. A brief description of the components of the 

FuNN architecture and the philosophy behind this ar- 
chitecture is given below. 

The input layer of neurons represents the input vari- 
ables. The input values are fed to the condition element 
layer which performs fuzzification. FuNN is imple- 
mented using three-point triangular membership func- 
tions with centres represented as the weights into this 
condition element layer. The triangles are completed 
with the minimum and maximum points attached to 
adjacent centres, or shouldered in the case of the first 
and last membership functions. The triangular mem- 
bership functions are allowed to be non-symmetrical 
and any input value will belong to a maximum of two 
membership functions with degrees above zero. Addi- 
tionally, the input value will always involve two MF, 
tmless the input value falls exactly on a membership 
function centre in which case only a single member- 
ship will be activated, but this equality is unlikely 
given floating point variables. These membership de- 
grees for any given input will always sum up to one, 
ensuring that some rules will be given the opporttmity 
to fire for all points in the input space. Using triangu- 
lar membership functions makes the fuzzification and 
the defuzzification procedures in FuNN fast without 
compromising the accuracy of the solution. Initially, 
the membership functions are spaced equally over the 
weight space, although if any expert knowledge is 
available this can be used for initialisation. In order 
to maintain the semantic meaning of the membership 
functions contained in this layer of connections, some 
restrictions are placed on adaptation. Under the FuNN 
architecture labels can be attached to weights when 
the network is constructed. When adaptation is taking 
place the centres are spatially constrained according 
to some constraining rules, such as the membership 
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Fig. 12. A FuNN structure for two initial fuzzy rules: RI: IF xl is A1 (DI1, 1) and x2 is BI (DI2,1) THEN y is C1 (CFI); R2: IF xl 
is A2 (DI1,2) and x2 is B2 (DI2, 2) THEN y is C2 (CF2), where Dis are degrees of importance attached to the condition elements and 
CFs are confidence factors attached to the consequent parts of the rules (adopted from [12]). The (s, a, o) triplets represent specific for the 
layer summation, activation, and output functions. 

function weight representing "low" will always have a 
centre less than "medium", which will always be less 
than "high". 

In the rule layer each node represents a single fuzzy 
rule. The layer is also potentially expandable (in that 
nodes can be added to represent more rules as the net- 
work adapts) and shrinkable. The activation function 
is the sigmoidal logistic function with a variable gain 
coefficient (a default value of 1 is used giving the 
standard sigmoid activation function). The seman- 
tic meaning of the activation of a node is that it 
represents the degree to which input data matches the 
antecedent component of an associated fuzzy rule. 
However, the synergistic nature of rules in a fuzzy- 
neural architecture must be remembered when inter- 
preting such rules. The connection weights from the 
condition element layer (also called the membership 
fimctions layer) to the rule layer represent semanti- 
cally the degrees of importance of the corresponding 
condition elements for the activation of a rule node. 

In the action element layer, a node represents 
a fuzzy label from the fuzzy domain of an output 

variable, for example "small" (or "no", "unlikely"), 
"large" (or "yes", "likely") for the output variable. 
The activation of the node represents the degree to 
which this membership function is supported by the 
current data used for recall. The activation function 
for the nodes of this layer is the sigmoidal logistic 
function with the same (variable) gain factor as in 
the previous layer. Again, this gain factor should be 
adjusted appropriately given the size of the weight 
boundary. 

The output layer performs a defuzzification. Single 
values, representing centres of triangular membership 
functions, as is the case of the input variables, are at- 
tached to the connections from the action to the output 
layer. Linear activation functions are used here. One 
of the advantages of the FuNN architecture is that it 
manages to provide a fuzzy logic system without hav- 
ing to unnecessarily extend the traditional multilayer 
perceptron. 

There are four algorithms for training a FuNN 
which are not mutually exclusive but are all provided 
within the same environment and can be switched 
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between as needed. These algorithms are (see also 
[17,18]): 

(a) A partially adaptive training algorithms, where 
the membership functions (MF) of the input and the 
output variables do not change during training and 
a modified backpropagation algorithm is used for 
the purpose of  rule adaptation. This adaptation mode 
can be suitable for systems where the membership 
functions are known in advance, or when the im- 
plementation is constrained by the problem in some 
way. 

(b) A partially adaptive algorithm as in (a) but a 
forgetting factor is introduced as described in [18]. 

(c) A fully adaptive algorithm with an extended 
backpropagation algorithm. This version allows 
changes to be made to both rules and membership 
functions, subject to constraints necessary for retain- 
ing semantic meaning. 

(d) A fully adaptive version as in (c), but with the 
use of  a forgetting factor. 

(e) A genetic algorithm [18]. 
These modes can either be used as alternatives for 
adaptation of FuNNs, or they can be used together 
in any combination that is most appropriate for 
the given phoneme or elementary sound. It may 
be useful to use several different modes in an iter- 
ative manner, with each version of the adaptation 
algorithm best suited to some part of  the adapta- 
tion task. A Windows version of  FuNN, which is 
part of  an integrated hybrid development tool called 
FuzzyCOPE [5,11] is available free from the WWW 
site: http://divcom.otago.ac.nz:8OO/COM/INFOSCI/ 
KEL/fuzzycop.htm. 

FuzzyCOPE allows for different training and adap- 
tation strategies to be tested before the most suitable 
one is selected for a certain application. Some of the is- 
sues involved in this adaptation process are discussed 
below. 

6. Adaptation in modular FuNN-based systems for 
phoneme recognition 

Here only the multi-modular phoneme recognition 
block from HySpeech/2 (Fig. 10) is considered. A 
method for adaptation in a single phoneme FuNN 
module is suggested. 

For the experiment here 45 phoneme FuNNs are 
trained on data from the Otago Speech Corpus. The 
structure of a FuNN was as follows: 78 inputs (three 
MSC vectors, each of 26 elements); 234 condition 
element nodes (3 MF are used for each of the 78 
inputs); 8 rule nodes; 2 action element nodes (2 MF 
are used for the output variable); 1 output. Initially, 
the networks are trained with algorithm (a). Due to 
the large amount of data in the corpus, small subsets 
of the data were randomly selected from the full data 
set during training. This allowed for the control of the 
proportions of the target to non-target data. A testing 
set was retained which was 50% of the total pool of 
data. 

The HySpeeeh/2 architecture allows for adaptation 
to a new speaker, whom the system did not recognise 
at the beginning. This is done through discovering 
the particular sounds which the system did not recog- 
nise correctly and then adapting the corresponding 
FuNNs. 

Adaptation of a FuNN can be done by ap- 
plying different adaptation schemes. One such 
scheme is explained below. After the initial train- 
ing with algorithm (c) the FuNNs were further 
trained with forgetting (algorithm d). The forget- 
ting rate was annealed, so that the networks pro- 
gressively forgot more and more about the un- 
necessary connections. As with the FuNN above, 
these networks were evaluated on the testing 
set. Overall, the best networks were selected and 
tested using a third data set, made up new speech 
data from the corpus. A confusion matrix was 
formed from this data, and is shown graphically in 
Fig. 13. 

The forgetting networks are of a simpler structure 
than the initially trained networks. Connections that 
are at a low absolute value may be discarded. When 
new data is introduced to the system, however, these 
weights can account for the new speaker, and remain 
so that the networks can be adapted. Adaptation of an 
already trained FuNN on new data (new accent, new 
speaker) is performed only if the uttered word was 
not recognised by the whole system and it was discov- 
ered that this FuNN may be responsible for the mis- 
recognition. Then the FuNNs selected for adaptation 
are trained on the new data until the word is cor- 
rectly recognised. The training with forgetting algo- 
rithm makes a FuNN structure robust to catastrophic 
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Fig. 13. Confusion matrix of the activation of all 45 phoneme FuNNs in HySpeech/2, tested on new data. 

forgetting, so a FuNN would perform well on the 
old data as well as on the new data after the addi- 
tional adaptive training. Experimental results on adap- 
tation of FuNNs trained on New Zealand English to 
speakers of different accents (American, Australian, 
Persian) will be presented in a following publication. 

7. Conclusions and directions for further research 

This paper presents a discussion on the issue of 
adaptation in spoken language recognition systems. 
It introduces some strategies for adjustment of  para- 
meters in hybrid neuro-fuzzy systems and for partial 
adaptation in connectionist systems for phoneme and 

word recognition and illustrates these principles on a 
small scale experiment. A general architecture of an 
adaptive ASRS is introduced along with two realisa- 
tions of  it. The first one, HySpeech/1, is a adjustable 
system in terms of further training of the neural net- 
works and tuning the fuzzy system in it depending on 
the current performance of the entire system. Exper- 
imental results are shown on recognition of spoken 
digits. Increased accuracy of the system through ap- 
propriate adjustment is demonstrated on real data. The 
experimental results have been used as hints for fur- 
ther development of the system architecture into a con- 
nectionist system HySpeech/2. The system uses fuzzy 
neural networks FuNN that can accommodate both a 
priori linguistic knowledge and data from a speech 
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corpus and can perform automatic adaptation on new 
accents and new speakers if  necessary. As the inves- 
tigation o f  the adaptation process in the HySpeech/2 
system is in its initial phase, further investigations are 
needed as well as tools to automate the process o f  op- 
timisation, training and adaptation o f  the individual 
FuNNs. 

Further research is needed and anticipated in the 
following directions: 

(1) Developing methods for speech data pre- 
processing, feature extraction and dimensionality 
reduction (see for example [27]). 

(2) Developing and applying to speech problems 
more effective algorithms for fast on-line unsupervised 
and supervised training of  neural network (or FuNN) 
modules (see for example [30] and the ECOS algo- 
rithm [16]). 

(3) Developing multi-lingual systems with the use 
o f  the framework presented in [15]. Such systems 
use shared between several languages neural network 
modules. Developing a bilingual system for New 
Zealand English and M~ori will be the first step in 
this direction. 

(4) Integrating audio and visual information in 
one system (a multi-modal system) for an improved 
adaptation. The visual information of  the lip move- 
ment, for example, can be used for adaptation o f  
the phoneme and word recognition modules (see for 
example [23,24] and also the AVIS framework [19]). 

(5) Developing methods for adaptation that mimic 
the way the human brain works in a brain-like com- 
puting systems [ 1 ]. 
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