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Abstract. The chapter presents a new methodology for building adaptive, incre-
mental learning systems for image pattern classi�cation. The systems are based
on dynamically evolving fuzzy neural networks that are neural architectures to re-
alise connectionist learning, fuzzy logic inference, and case-based reasoning. The
methodology and the architecture are applied on two sets of real data - one of
satellite image data, and the other of fruit image data. The proposed method and
architecture encourage fast learning, life-long learning and on-line learning when
the system operates in a changing environment of image data.
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1 Approaches to Pattern Recognition

Most image pattern recognition tasks involve six major sub-tasks: image seg-
mentation, target identi�cation, attribute selection, sampling, discriminant
function generation, and evaluation. This chapter focuses upon a novel ap-
proach for generating discriminant functions that minimise the limitations of
conventional algorithms. Speci�cally, this new approach is capable of process-
ing high dimensional feature vectors, computationally e�cient, and suitable
for evaluating both static and dynamic input streams.

Perlovsky [1] de�ned three classes of pattern recognition algorithms based
on how they divide the feature space into acceptance regions: discriminating
surfaces, nearest neighbours, and model based approaches. Pattern recog-
nition algorithms can also be viewed by how they apply knowledge: model
based, rule based, and example based. Model based algorithms include all
deterministic and statistical algorithms where discriminant functions are gen-
erated by prior knowledge of the acceptance region's structure of the feature
space. Many of these algorithms fall into Perlovsky's de�nition of a nearest
neighbour algorithm. For these algorithms, a small number of examples are
required to estimate the parameters. Another advantage is that, when the

? To appear in Soft Computing for Image Processing by S.K. Pal, A. Ghosh, and
M.K. Kundu (eds.), Physica-Verlag, 1999



data �ts the assumed model, an estimate of the mapping precision can be
determined prior to analysis. However, there are costs associated with the
model based algorithms. The data must support the model and the entire
population must be fully visible, available and representative. In general,
these algorithms are unadaptable because the boundary between two accep-
tance regions is not supposed to change. Rule based algorithms apply knowl-
edge without requiring any inductive examples. They divide the feature space
by de�ning boundaries between acceptance regions. Inferences are generated
based upon expert opinion. Rule based algorithms are highly adaptable. Ac-
ceptance regions are �nely tuned to minimise mapping error and are noise
invariant. However, the drawbacks are severe. Often the exact mapping from
the inputs to the outputs is unknown. The generation of rules requires a large
amount of direct operator invention. Because rules form discriminating sur-
faces, new rule sets are required when the data distribution is not static or
output labels of extracted attributes change.

Example based approaches minimise the limitations of model based and
rule based algorithms. Example based algorithms do not contain any prior
knowledge about the structure of the acceptance regions in the feature space.
Often they operate by building discriminating surfaces, which makes them
adaptable. The drawbacks are that they require a large number of training
examples to estimate a large number of independent parameters.

For su�ciently complex systems the three models are limited by di�er-
ent resources. Model based algorithms are limited by the available computer
space since all the examples must be fully visible to the system prior to gener-
ating the discriminant functions. Rule based systems are limited by problem
complexity, and example based systems are limited by processing power.

In addition to the algorithmic structure, image pattern recognition al-
gorithms are plagued by the dilemma of discriminant function speci�cation
versus generalisation. In order to obtain a high degree of similarity discrim-
inant functions must map the inputs to a small feature space distance to
their known outputs. For high precision, a high-order discriminant function
is required. However, these high-order functions do not generalise well to new
data. These two exclusive criteria must be optimized.

One way to utilize the advantages and to overcome the disadvantages of
the di�erent methods above is to merge them into one system. That is the
topic of this chapter.

2 Merging Approaches into Hybrid Systems

Advances to the image pattern recognition problem have occurred on several
fronts. The most notable was Zadeh's [2] idea of fuzzy membership functions
This de-convolution of attributes from crisp values to the concept of belong-
ing has been shown to increase the ability of the discriminant functions to
generalise and assign more precise labels [3,4].
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Perlovsky [1] cited that the argument between prior knowledge and adapt-
ability has continued throughout the history of science. Grossberg [5] de�ned
this as the stability/ plasticity dilemma. Optimum pattern recognition algo-
rithms were identi�ed as requiring a mix of these seemingly exclusive prop-
erties. Although no unifying mixture of algorithms has been identi�ed, rules
based algorithms have been successfully mixed with example based to pro-
duce systems that attempt to minimise the prior knowledge versus stability
dilemma. These hybrid systems include fuzzy neural networks [6{10], rule
based algorithms with mixed neural networks, and example based algorithms
[11{14].

Example based algorithms can be broken down into two basic categories:
(1) case based reasoning [15], and (2) connectionist algorithms [16]. These two
algorithms process data di�erently. For case based reasoning, case examples
(exemplars) are stored in memory. New examples are compared to existing
cases based upon attribute similarity. The discriminant functions do not con-
tain speci�c parameters to estimate. With connectionist architectures, none
of the individual examples are stored. For each class, the similarity among
the intraclass training examples and the di�erence with the interclass train-
ing examples de�ne the acceptance region. The former allows for dynamic
adaptable training at the cost of huge memory requirement, while the lat-
ter is noise tolerant and provides a smooth asymptotic relationship between
processing time and mapping precision.

In this research, hybrid fuzzy neural networks are merged with case based
reasoning. The new system is capable of dynamic data modelling, case base
retrieval of information, and maintain an open architecture where existing
knowledge is encoded into the system at any time of its operation.

3 Fuzzy Neural Networks (FuNN) and Evolving Fuzzy
Neural Networks (EFuNN)

3.1 Fuzzy Neural Networks FuNNs

Fuzzy neural networks are neural networks that realise a set of fuzzy rules
and a fuzzy inference machine in a connectionist way [7,8]. FuNN is a fuzzy
neural network introduced in [8] and developed as FuNN/2 in [10]. It is a
connectionist feed-forward architecture with �ve layers of neurons and four
layers of connections. The �rst layer of neurons receives the input information.
The second layer calculates the fuzzy membership degrees to which the input
values belong to prede�ned fuzzy membership functions, e.g. small, medium,
large. The third layer of neurons represents associations between the input
and the output variables, fuzzy rules. The fourth layer calculates the degrees
to which output membership functions are matched by the input data, and
the �fth layer does defuzzi�cation and calculates exact values for the output
variables. A FuNN has features of both a neural network and a fuzzy inference
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machine. A simple FuNN structure is shown in Fig. 1. The number of neurons
in each of the layers can potentially change during operation by growing or
shrinking. The number of connections is also modi�able through learning
with forgetting, zeroing, pruning and other operations [8,10].

The membership functions (MF) used in FuNN to represent fuzzy values,
are of triangular type, the centres of the triangles being attached as weights
to the corresponding connections. The MF can be modi�ed through learning
that involves changing the centres and the widths of the triangles. Several
training algorithms have been developed for FuNN [8,10]:

1. A modi�ed back-propagation (BP) algorithm that does not change the
input and the output connections representing MFs;

2. A modi�ed BP algorithm that utilises structural learning with forgetting,
i.e. a small forgetting ingredient, e.g. 10�5, is used when the connection
weights are updated;

3. A modi�ed BP algorithm that updates both the inner connection layers
and the membership layers. This is possible when the derivatives are cal-
culated separately for the two parts of the triangular MF. These are also
the non-monotonic activation functions of the neurons in the condition
element layer;

4. A genetic algorithm for training; and

5. A combination of any of the methods above used in a di�erent order.

Fig. 1. A FuNN structure of 2 inputs (input variables), 3 fuzzy linguistic terms for
each variable (3 membership functions). The number of the rule (case) nodes can
vary. Three output membership functions are used for the output variable.
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Several algorithms for rule extraction from FuNNs have been developed
and applied [8{10]. One of them represents each rule node of a trained FuNN
as an IF-THEN fuzzy rule.

FuNNs have several advantages when compared with the traditional con-
nectionist systems, or with the fuzzy systems [8]:

1. They are both statistical and knowledge engineering tools,
2. They are robust to catastrophic forgetting, i.e. when they are further

trained on new data, they keep a reasonable memory of the old data,
3. They interpolate and extrapolate well in regions where data is sparse,
4. They accept both real input data and fuzzy input data represented as

singletons (centres of the input membership functions).

The above listed features of FuNNs make them universal statistical and
knowledge engineering tools. Many applications of FuNNs have been devel-
oped and explored so far: pattern recognition and classi�cation; dynamical
systems identi�cation and control; modelling chaotic time series and extract-
ing the underlying chaos rules , prediction and decision making [8]. A FuNN
simulator is available as part of a hybrid software environment FuzzyCope/3
from http://kel.otago.ac.nz/software.

4 Evolving Fuzzy Neural Networks EFuNNs

4.1 A general description

EFuNNs are FuNN structures that evolve according to the ECOS principles
[11{14]. EFuNNs adopt some known techniques from [17{20] but they also
introduce new NN techniques, e.g. all nodes in an EFuNN are created during
(possibly one-pass) learning. The nodes representing MF (fuzzy label neu-
rons) can be modi�ed during learning. As in FuNN, each input variable is
represented here by a group of spatially arranged neurons to represent a fuzzy
quantisation of this variable. For example, three neurons can be used to rep-
resent \small", \medium" and \large" fuzzy values of the variable. Di�erent
membership functions (MF) can be attached to these neurons (Triangular,
or Gaussian, etc.). New neurons can evolve in this layer if, for a given input
vector, the corresponding variable value does not belong to any of the exist-
ing MF to a degree greater than a membership threshold. A new fuzzy input
neuron, or an input neuron, can be created during the adaptation phase of
an EFuNN.

The EFuNN algorithm, for evolving EFuNNs, has been presented in [13,14].
A new rule node rn is connected (created) and its input and output connec-
tion weights are set as follows: W1(rn) = EX; W2(rn ) = TE, where TE is
the fuzzy output vector for the current fuzzy input vector EX. In case of
\one-of-n" EFuNNs, the maximum activation of a rule node is propagated
to the next level. Saturated linear functions are used as activation functions
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of the fuzzy output neurons. In case of \many-of-n" mode, all the activation
values of rule (case) nodes, that are above an activation threshold of Ahtr,
are propagated further in the connectionist structure.

4.2 The EFuNN learning algorithm

Here, the EFuNN evolving algorithm is given as a procedure of consecutive
steps [13,14]:

1. Initialise an EFuNN structure with a maximum number of neurons and
zero-value connections. Initial connections may be set through inserting
fuzzy rules in a FuNN structure. FuNNs allow for insertion of fuzzy rules
as an initialization procedure thus allowing for existing information to be
used prior to the evolving process (the rule insertion procedure for FuNNs
can be applied [8,10]). If initially there are no rule (case) nodes connected
to the fuzzy input and fuzzy output neurons with non-zero connections,
thenconnect the �rst node rn=1 to represent the �rst example EX=x1
and set its input W1(rn) and output W2 (rn) connection weights as fol-
lows: it <Connect a new rule node rn to represent an example EX>:
W1(rn)=EX;W2(rn) = TE, where TE is the fuzzy output vector for the
(fuzzy) example EX.

2. WHILE <there are examples> DO
Enter the current example xi , EX being the fuzzy input vector (the vector
of the degrees to which the input values belong to the input membership
functions). If there are new variables that appear in this example and
have not been used in previous examples, create new input and/or output
nodes with their corresponding membership functions.

3. Find the normalized fuzzy similarity between the new example EX (fuzzy
input vector) and the already stored patterns in the case nodes j=1,2..rn:
Dj = sum (abs (EX - W1(j) )/ 2) / sum (W1(j)).

4. Find the activation of the rule (case) nodes j, j=1:rn. Here radial basis
activation function, or a saturated linear one, can be used on the Dj input
values i.e. A1 (j) = radbas (Dj), or A1(j) = satlin (1 - Dj).

5. Update the local parameters de�ned for the rule nodes, e.g. age, average
activation as pre-de�ned.

6. Find all case nodes j with an activation value A1(j) above a sensitivity
threshold Sthr.

7. If there is no such case node, then <Connect a new rule node> using the
procedure from step 1.
ELSE

8. Find the rule node inda1 that has the maximum activation value. (maxa1).
9. (a) in case of one-of-n EFuNNs, propagate the activation maxa1 of the

rule node inda1 to the fuzzy output neurons. Saturated linear func-
tions are used as activation functions of the fuzzy output neurons:
A2 = satlin (A1(inda1) * W2)
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(b) in case of many-of-n mode, only the activation values of case nodes
that are above an activation threshold of Athr are propagated to the
next neuronal layer.

10. Find the winning fuzzy output neuron inda2 and its activation maxa2.
11. Find the desired winning fuzzy output neuron indt2 and its value maxt2.
12. Calculate the fuzzy output error vector: Err = A2 - TE.
13. IF (inda2 is di�erent from indt2) or (abs(Err (inda2)) > Errthr)

<Connect/create a rule node>
14. Update: (a) the input, and (b) the output connections of rule node

k=inda1 as follows:
(a) Dist=EX-W1(k); W1(k)=W1(k) + lr1. Dist, where lr1 is the learning

rate for the �rst layer;
(b) W2(k) = W2 (k) + lr2. Err. maxa1, where lr2 is the learning rate

for the second layer.
15. Prune rule nodes j and their connections that satisfy the following fuzzy

pruning rule to a pre-de�ned level:
IF (node (j) is OLD) and (average activation A1av(j) is LOW) and (the
density of the neighbouring area of neurons is HIGH or MODERATE)
and (the sum of the incoming or outgoing connection weights is LOW)
and (the neuron is NOT associated with the corresponding \yes" class
output nodes (for classi�cation tasks only)) THEN the probability of prun-
ing node (j) is HIGH.

The above pruning rule is fuzzy and it requires that all fuzzy concepts
such as OLD, HIGH, etc., are de�ned in advance. As a partial case, a
�xed value can be used, e.g. a node is old if it has existed during the
evolving of a FuNN from more than 60 examples.

16. END of the while loop and the algorithm
17. Repeat steps 2-16 for a second presentation of the same input data or for

ECO training if needed.

5 Case Study 1: Environmental Remote Sensing: A
Case for Spectral Classi�cation

5.1 Sampling Image Data for the Experiment

A System Pour l'Observation de la Terre (SPOT) satellite image of the Otago
Harbour, Dunedin, New Zealand, was used for the classi�cation. The SPOT
image has 3 spectral bands sensing the green, red and infrared portions of the
electromagnetic spectrum. Ten covertypes, containing intertidal vegetation
and substrates, were recorded during a ground reference survey. From the
SPOT image, a minimum of three spatially separable reference areas was
extracted for each of the ten covertypes. All of the sample pixels for a given
covertype were amalgamated and randomly sorted into training and test sets.
Typically, remote sensing data provides a large number of examples for each
class.
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5.2 Natural Confusion Among Classes

The problem with mapping natural systems (inputs) to human determined
classes (outputs) is that some confusion may occur. There are 2 major types
of confusion: (1) errors of omission, false negative errors, and (2) errors of
commission, false positive errors. For the case study problem, considerable
confusion exists among classes 3, 4 and 5 (hisand, lowsand and lowzost).
To graphically illustrate the confusion among these classes, scatterplots were
produced showing the relationship between the inputs and the outputs (Fig.2
and Fig.3).
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Fig. 2. Scatterplot of 3 Ambiguous Classes (infrared versus green inputs)
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Fig. 3. Scatterplot of 3 Ambiguous Classes (red versus green inputs)

While other classes are readily di�erentiable, these classes need special
attention in our classi�cation system.

To ensure an appropriate network structure for classi�cation, learning
and pruning must be�nely balanced to ensure su�cient generalisation to un-
trained data. The parameters that limit the creation of rule nodes or initiate
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pruning and thereby improve generalisation are age, sensitivity, error thresh-
old, and pruning rate. As the age threshold increases, the network retains
what it has learned over a longer time. Pruning is less likely to occur, but
the network will be less likely to regenerate information that it has already
processed, in other words, it is less likely to reproduce a rule node that has
previously been pruned. The pruning rate is a weighting parameter applied
to pruning rule.

Sensitivity and error threshold are directly related to the generation of
new rule nodes. As the sensitivity between input patterns increases, the net-
work is more likely to create new rule nodes. As the error threshold between
the actual output and the calculated output reduces, the network is again
more likely to require additional rule nodes. Both of these parameters tend
to force the network into overspeci�cation.

The learning rate inuences training and overestimating what a node has
learned. The learning rate tends to overestimate what a node has learned.
As such, as the learning rate increases, the nodes will saturate faster than
expected and tend to create larger networks that reduce the generalisation
capabilities.

In order to compare the usefulness of the EFuNN to either the Bayes
optimum classi�er (Fig.4) or existing fuzzy neural networks (Fig.5), an ad-
ditional preprocessing step was required. Originally, the training data were
randomly sorted. The existing fuzzy neural networks randomly selected the
training samples with a uniform distribution. The current EFuNN does not
contain this function, so the training data were randomly sorted so that the
age parameter was not a function of output class. To obtain the output mem-
berships, the outputs needed to be unscrambled.

5.3 Experiments

The experiments associated with EFuNN were designed initially to repli-
cate the performance of a conventional FuNN while highlighting its improved
speed. Later experiments were performed to demonstrate the EFuNN's capa-
bilities to improve mapping performance. It will be shown that future research
will develop techniques to minimise data manipulation.

The initial EFuNN experiment was performed with conservative values for
the thresholds and learning rates. In this manner, the system was constrained
to operate as a conventional FuNN with one exception, the data was trained
for a single iteration. Sensitivity, error threshold, learning and forgetting were
assigned to 0.95, 0.001, 0.05, and 0.01 respectively. The age was assigned to
the size of the entire dataset so that all examples contributed evenly during
training.

In an attempt to improve generalization, forgetting and learning rates
were eliminated. The sensitivity was reduced and the error tolerance was
increased. An additional experiment was performed to demonstrate the char-
acteristics of increased speci�cation. To increase speci�cation the learning
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rate was applied with a small forgetting. Finally, the last experiment looked
at incorporating a volatility element by reducing the age parameter to two
time positions. Each conditional training philosophy was applied to each class
trained separately.

The initial test classi�cation accuracy for EFuNN (kappa =0.80; Fig.6)
was identical to the FuNN (kappa = 0.80; Fig.5) and slightly worse than
the MLC (kappa = 0.84; Fig4). The training accuracy was slightly higher.
It is interesting to note that the number of rule nodes for the EFuNN were
considerably larger (279 to 10) than the FuNN. When the learning rate(lr)
and pruning rate (pr) were set to zero, the network generalised better with
ten percent of the rule nodes assigned. The classi�cation accuracy improved
(kappa = 0.82, Fig.7). However, when learning and forgetting were applied
to the initial conditions mapping precision decreased (kappa = 0.57; Fig.8).
The age parameter added considerable volatility to the analysis as reduced
age made the network for lowsand unstable. However, when applied to the
hisand and lowzost networks, mapping error was maintained (kappa = 0.82;
Fig.9).

training data results
random sort maximum likelihood classifier
hisand lowsand lowzost sums percent

hisand 118 0 4 122 97
lowsand 0 80 2 82 98
lowzost 8 3 72 83 87

270
sum 126 83 74 283
percent 94 96 97 95.41

hisand lowsand lowzost sums percent
hisand 58 0 4 62 94
lowsand 0 34 0 34 100
lowzost 4 7 34 45 76

126
sums 62 41 38 141
percent 94 83 89 89.36

Fig. 4. MLC (Bayes rule); kappa = 0.84
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training data results
random sort (3) 15-10-2 fuzzy neural networks in parallel

hisand lowsand lowzost sums percent
hisand 116 0 1 117 99
lowsand 0 80 2 82 98
lowzost 10 3 75 88 85

271
sum 126 83 78 287
percent 92 96 96 94.43
iterations 200 200 300

test data     results

hisand lowsand lowzost sums percent
hisand 53 0 1 54 98
lowsand 0 33 0 33 100
lowzost 9 8 37 54 69

123
sums 62 41 38 141
percent 85 80 97 87.23

Fig. 5. FuNN without learning techniques; kappa = 0.80

training data results
(3) 15-x-5 evolving fuzzy neural networks structure

hisand lowsand lowzost sums percent
hisand 120 0 5 125 96
lowsand 1 82 1 84 98
lowzost 5 1 72 78 92

274
sum 126 83 78 287
percent 95 99 92 95.47
rules 279 279 279
sthr=0.95 errthr=.001 lr=0.05 prune=0.1 fgr=0.01

test data     results

hisand lowsand lowzost sums percent
hisand 58 0 6 64 91
lowsand 0 35 2 37 95
lowzost 4 6 30 40 75

123
sums 62 41 38 141
percent 94 85 79 87.23

Fig. 6. Initial EFuNN for three confused landcover classes; kappa 0.80
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training data results
(3) 15-x-5 evovling fnn structure lr=.0, fr=.0 sth=.5 errthr=.5

hisand lowsand lowzost sums percent
hisand 124 0 4 128 97
lowsand 0 82 0 82 100
lowzost 2 1 74 77 96

280
sum 126 83 78 287
percent 98 99 95 97.56
rules 37 23 39

test data      results

hisand lowsand lowzost sums percent
hisand 57 0 8 65 88
lowsand 0 39 2 41 95
lowzost 5 2 28 35 80

124
sums 62 41 38 141
percent 92 95 74 87.94

Fig. 7. Optimised EFuNN without learning, forgetting and lower thresholds; kappa
= 0.82

training data results
(3) 15-x-5 EFuNN structure lr=.1, fr=.1, sthr =.95, ethr = .05

hisand lowsand lowzost sums percent
hisand 103 8 1 112 92
lowsand 2 32 0 34 94
lowzost 21 43 77 141 55

212
sum 126 83 78 287
percent 82 39 99 73.87
rules 250 249 250

test data      results

hisand lowsand lowzost sums percent
hisand 48 1 0 49 98
lowsand 1 14 0 15 93
lowzost 13 26 38 77 49

100
sums 62 41 38 141
percent 77 34 100 70.92

Fig. 8. EFuNN with leaning and forgetting; kappa = 0.57
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training data results prune=.5 old =2 classes 1 and 3 only
(3) 15-x-5 evolving fnn structure lr=.0, fr=.0 sth=.5 errthr=.5

hisand lowsand lowzost sums percent
hisand 100 0 1 101 99
lowsand 1 82 0 83 99
lowzost 25 1 77 103 75

259
sum 126 83 78 287
percent 79 99 99 90.24
rules 123 23 130

test data     results

hisand lowsand lowzost sums percent
hisand 48 0 0 48 100
lowsand 1 39 1 41 95
lowzost 13 2 37 52 71

124
sums 62 41 38 141
percent 77 95 97 87.94

Fig. 9. EFuNN with lower thresholds, lower age threshold and learning with for-
getting; kappa = 0.82

5.4 Discussion and Future Research

The important point gained by evolving systems is that comparable mapping
accuracies can be obtained with a single iteration, reducing the computa-
tional burden. The FuNN for the same three classes required a total of 700
iterations while the EFuNN required three. The structure of the EFuNN is
also optimized to reduce the computational burden because not all nodes are
recomputed for each training example.

Other experiments will allow connections to cross between EFuNNs to
force training to occur in parallel. These networks also have the capability
to incorporate additional attributes and outputs into the existing network
structure. This is important when new information, such as new imagery or
additional spectral bands become available. Likewise the analyst is able to
identify new output classes to better distinguish among the data.

6 Case Study 2: Fruit Quality Assurance: Based on
Image Analysis

6.1 Introduction

The application of neuro-fuzzy techniques for object recognition has been
extensively studied [21,22]. One area where these techniques have rarely been
applied is in the area of horticultural research, speci�cally for the analysis of
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damage to pip fruit in orchards in order to identify which pest caused the
damage. The solution to these tasks could become part of a larger computer
based system to allow the user to make more informed decisions to improve
the quality of the fruit produced.

Each insect or insect group has speci�c characteristics that allow it to be
identi�ed through the damage to fruit and/or leaves. Once the insect has been
successfully identi�ed, the appropriate treatment can be applied. Examples
of the type of damage are presented below. All the images were in colour,
taken at di�erent orientations, lighting conditions, and sometime contained
more than one piece of fruit on the tree. Furthermore the damage to the fruit
itself was of varying size and shape. There were a total of 90 images taken,
displaying the damage of three types of pests (Fig.10,11, and 12).

Successful analysis of the fruit damage requires a technique that copes
with the di�erences in the images and still extracts the relevant features
to allow positive identi�cation of the pest. Using Daubechies wavelets for
image analysis and comparison has proven to be a successful technique in
the analysis of natural images [23,24]. This is because they can characterise
the colour variations over the spatial extent of the image that can provide
semantically meaningful image analysis. The output of the wavelet analysis
could then become input to a Fuzzy Neural Network (FuNN) or Evolving
Fuzzy Neural Network (EFuNN).

6.2 Sampling Image Data for the Experiment

To generate a dataset to train an EFuNN or FuNN, the three band RGB
image data was converted to Hue/Saturation/Insensity (HSI) representation.
Then a 4-layer 2D fast wavelet transform was computed on the intensity
component of each image. Extracting a sub-matrix of size 16x16 from each
intensity component resulted in a vector of 256 attributes. The lower fre-
quency bands normally represent object con�guration in the images and the
higher frequency bands represent texture and local colour variation.

6.3 Architecture of the FuNN Classi�cation System

The entire classi�cation system was comprised of 5 FuNNs to reect the �ve
di�erent types of damage that could be expected:
NN-alm-l Neural network to classify appleleaf curling midge leaf damage.
NN-alm-f Neural network to classify appleleaf curling midge fruit damage.
NN-cm Neural network to classify colding moth damage.
NN-lr-l Neural network to classify leafroller leaf damage.
NN-lr-f neural network to classify leafroller fruit damage.

The architecture of each FuNN had 256 inputs, 1792 condition nodes,
(7 membership functions per input) 50 rule nodes, two action nodes, and
1 output. 67 images were used as the training dataset and 23 images were
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Fig. 10. Examples of codling moth damage

Fig. 11. Examples of appleleaf curling midge damage

Fig. 12. Examples of leafroller damage
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used to test the classi�cation system. The reason for the small number of
images used in the experiment is due to the unavailability of electronically
stored images of pest damage. However it was assumed that the variation of
the input data was su�cient enough to accommodate the di�erent types of
damage expected. Each FuNN in the classi�cation system was trained with all
67 images and the output value for the output node was changed depending
on what each network was required to learn. For example the FuNN-alm-l
was trained to give a 1 in position 1 of the output vector for any image that
had appleleaf curling midge leaf damage and 0 in position 1 of the output
vector for all the rest of the images.

After presenting the image data to each FuNN in the classi�cation system
1000 times, the entire system was tested on the 23 test images. Results of the
confusion matrix are shown in Fig.13.

Fig. 13. FuNN with learning and forgetting; kappa=0.10

Recalling the FuNN on the training data resulted in 100% classi�cation.
However when the 23 test images were tested on the FuNNs there were only
slightly more than a third correctly classi�ed (34.78%). Fruit or leaf dam-
age was correctly identi�ed but the kind of pest inicting the damage was
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not. Fine tuning of the parameters for the FuNNs or increasing the num-
ber of membership functions to account for the subtle di�erences in damage
especially from appleleaf curling midge and leafroller warrants further inves-
tigation.

6.4 Architecture of the EFuNN Classi�cation System

A logical next step was to train a set of 5 EFuNNs on the same image data,
and compare the results to that of the FuNNs. The experiment associated
with EFuNN was designed to replicate the performance of a conventional
FuNN while highlighting its improved speed and demonstrate the EFuNN's
capabilities to improve classi�cation performance. The same set of 67 im-
ages was used on a set of �ve EFuNNs with parameters of Sthr=0.95 and
Errthr=0.01. The EFuNN was trained for one epoch. The number of rule
nodes generated (rn) after training was. EFuNN-alm-l: rn=61, EFuNN-alm-f
rn=61, EFuNN-cm: rn=61, EFuNN-lr-l: rn=62, and EFuNN-lr-f: rn=61. The
results of the confusion matrix are presented in Fig.14.

Fig. 14. EFuNN with learning and forgetting; kappa=0.45
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6.5 Discussion and Future Research

It appears that the EFuNNs (48%) are marginally better at identifying what
pest has caused the damage to the fruit than the FuNNs (35%). Computing
the Kappa coe�cient for both the FuNN and EFuNN confusion matrices
substantiates this with results of 0.10 for the FuNN and 0.27 for the EFuNN.
Yet under a Z test at 95% the results are not statistically signi�cant.

7 Conclusion

This chapter presents a methodology that allows for incremental, adaptive,
fast learning of images for their classi�cation. The concept of evolving con-
nectionist systems is used and applied on two case study data sets - satellite
images, and image data of fruit.
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