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1. Introduction

The speech recognition field is one of the most challenging fields that has faced sci-

entists for a long time. The complete solution is still far from reach. The efforts are

concentrated with huge funds from the companies to different related and supportive

approaches to reach the final goal. Then, apply it to the enormous applications that are

still waiting for the successful speech recognisers that are free from the constraints of

speakers, vocabularies or environment. This task is not an easy one due to the inter-

disciplinary nature of the problem and as it requires speech perception to be implied

in the recogniser (Speech Understanding Systems) which in turn point strongly to the

use of intelligence within the systems.

The bare techniques of recognisers (without intelligence) are following wide va-

rieties of approaches with different claims of success by each group of authors who

put their faith in their favourite way. However, the sole technique that gains the ac-

ceptance of the researchers to be the state of the art is the Hidden Markov Model

(HMM) technique. HMM is agreed to be the most promising one. It might be used

successfully with other techniques to improve the performance, such as hybridising

the HMM with Artificial Neural Networks (ANN) algorithms. This does not mean

that the HMM is pure from approximations that are far from reality, such as the suc-

cessive observations independence, but the results and potential of this algorithm is

reliable. The modifications on HMM take the burden of releasing it from these poorly

representative approximations hoping for better results.

In this report we are going to describe the backbone of the HMM technique with

the main outlines for successful implementation. The representation and implementa-

tion of HMM varies in one way or another but the main idea is the same as well as the
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results and computation costs, it is a matter of preferences to choose one. Our prefer-

ence here is that adopted by Ferguson [1] and Rabiner et al. [2]-[5].

In this report we will describe the Markov Chain, and then investigate a very

popular model in the speech recognition field (the Left-Right HMM Topology). The

mathematical formulations needed to be implemented will be fully explained as they

are crucial in building the HMM. The prominent factors in the design will also be dis-

cussed. Finally we conclude this report by some experimental results to see the

practical outcomes of the implemented model.

2. Markov Chains

The HMM algorithms are basically inspired by the more than 90 year old mathemati-

cal models known as Markov Chains. To understand the behaviour of the Markov

Chain it is advisable to start with a simple real life example.

Let us consider a simple weather forecast problem and try to emulate a model that

can predict tomorrow’s weather based on today’s conditions. In this example we have

three stationary all day weather, which could be sunny (S), cloudy (C), or Rainy (R).

From the history of the weather of the town under investigation we have the following

table (Table-1) of probabilities of having certain weather tomorrow and being in cer-

tain condition today:

Tomorrow

Sunny(S) Cloudy(C) Rainy(R)

Sunny(S) .7 .2 .1

Cloudy(C) .05 .8 .15

Rainy(R) .15 .25 .6

Table-1 Weather expectation probabilities.

In this case what we are looking for is the weather conditional probability

P(Tomorrow | Today). We realise that tomorrow’s weather depends on today’s condi-

tions as well as the previous several days, but we accept the assumption that

tomorrow’s weather depends only on today’s condition as it is in consistency with the

first order Markov chain. This assumption greatly simplifies the problem of formu-

T
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lating the model even in the actual speech recognition case and we will use it when

we come to tackle the real problem.

We refer to the weather conditions by state q that are sampled at instant t  and  the

problem is to find  the probability of weather condition of tomorrow given today's

condition P(qt+1 | qt).

The approximation for n instants history is:

P(qt+1 | qt, qt-1, qt-2, …, qt-n) ≈ P(qt+1 | qt).

This is the first order Markov chain as the history is considered to be one instant only.

The finite state diagram of the weather probabilistic table is shown in Fig.(1).

Let us now ask this question: Given today is sunny (S) what is the probability that

the next following five days are S, C, C, R and S, given the above model?

The answer resides in the following formula using first order Markov chain:

P(q1=S, q2=S, q3=C, q4=C, q5=R, q6=S) =

P(S)⋅P(q2=S | q1=S)⋅P(q3=C | q2=S)⋅P(q4=C | q3=C)⋅P(q5=R | q4=C)⋅P(q6=S | q5=R)

      = 1 × 0.7 × 0.2 × 0.8 × 0.15 × 0.15

      = 0.00252

The initial probability P(S) = 1, as it is assumed that today is sunny.

Fig.(1) Finite state representation of the weather forecast problem.

3. Hidden Markov Model (HMM)

In the particular problem presented in the previous section, the states were observable

and they represented the weather conditions (S, C, R). They also represented the ob-

servation sequence. This kind of model formulation is very limited due to the need of
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observable state sequence, which is unknown in most problems. The more general

case is by considering the state sequence to be hidden (unobservable) and the obser-

vations are probabilistic functions of the state. This notion implies the double

stochastic process. More precisely, the HMM is a probabilistic pattern matching tech-

nique in which the observations are considered to be the output of stochastic process

and consists of an underlying Markov chain. It has two components: a finite state

Markov chain and a finite set of output probability distributions. The first fruitful in-

vestigation of HMM was done by Baum et al. [6]–[8] in the late 60s and early 70s.

The technique was applied to the speech recognition field by Baker [9].

To understand the HMM we prefer to start with simple example inspired from that

given by Rabiner et al. [3]. Assume that we have two persons, one doing an experi-

ment and the other is an outside observer. Let us consider that we have N urns (states)

numbered from S1 to SN and in each urn there are M coloured balls (observations)

distributed in different proportions. Also we have a black bag belongs to each urn,

each bag contains 100 counters numbered by three numbers. These numbers are the

current urn number Si and the following two urns numbers Si+1 and Si+2 in probability

proportions of .8, .15, and .05 respectively. The counters of the bag belonging to the

urn just before the last are carrying one of two numbers only; SN-1 and SN in prob-

abilities of .9 and .1 respectively. We assume that the starting urn (state) is always

urn1 (S1) and we end up in urnN (SN). The last urn needs no bag as we suggest to stay

there when we reach it till the end of the experiment. We start the experiment at time t

=1 by drawing a ball from urn1 and register the colour then return it back to the urn.

Then draw a counter from the corresponding urn bag. The expected possible numbers

on the counters are: 1 (stay in urn1), or 2 (move to the next urn), or 3 (jump to the

third urn). We continue with the same procedure of drawing a counter then a ball from

the corresponding urn and registering the ball colours till we reach state N and till the

end of the experiment at instant T.

The outcome of this experiment is a series of coloured balls (observations) which

could be considered as a sequence of events governed by the probability distribution

of the balls inside each urn and by the counters existing in each bag. The outside ob-

server has no idea about which urn a ball at any instant has drawn from (hidden

states), what he knows is only the observation sequence of the coloured balls (obser-

vations). Several things could be concluded from this experiment:

1. The starting urn is always (S1).
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2. The urn which has  been left can not be visited again (i.e. moving from left to

right direction).

3. Movements are  either by one or two urns to the right.

4. The last urn visited is always urnN (SN).

A chain of 5 urns (states) is shown in Fig.(2).

         π = { 1                   0                     0                   0                   0 }

Fig.(2) States chain of the urn experiment using 5 urns. Each numbered circle repre-
sents a state and the arrows shows the states’ flow during the whole process.

Fig.(2) shows the notations which we intend to use for the rest of the report and

they are defined as follows:

aij represents the probability of state transition (probability of being in state Sj

given state Si)

aij = P(qt+1=Sj | qt=Si) (1)

bj(wk) is the wk symbol (ball colour) probability distribution in a state Sj

 w is the alphabet and k is the number of symbols in this alphabet.

π = {1  0  0  0  0} is the initial state distribution.

In this special case of states chain topology { 1i for              1

Ni1 for              01 )(
=

≤<
=== ii SqPπ

1 2 3 4 5

a12 a23 a34 a45

a13 a24 a35

b1(y)
b1(r)
b1(g)
......
b1(b)

b2(y)
b2(r)
b2(g)
......
b2(b)

b3(y)
b3(r)
b3(g)
......
b3(b)

b4(y)
b4(r)
b4(g)
......
b4(b)

b5(y)
b5(r)
b5(g)
......
b5(b)

a11 a22 a33 a44 a55
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The model is completely defined by these three sets of parameters a, b, and π and

the model of N states and M observations can be referred to by:

λ = (A, B, π) (2)

where A = {aij}, B = {bj(wk)}   1 ≤ i, j ≤N      and  1≤ k ≤ M.

The model that we have just described is a special type of HMM which is normally

used in speech recognition. It is called Left-Right HMM as derived from its way of

behaviour and its topology (moving from left to right during state transition). The rea-

son for using the L-R topology of HMM is due to its inherent structure that can model

the temporal flow of speech signals over time.

It might be not very obvious how the HMM is related to the speech signal model-

ling [10]. This could be envisaged by looking at the speech production mechanism.

Speech is produced by the slow movements of the articulatory organ. The speech ar-

ticulators taking up a sequence of different positions and consequently producing the

stream of sounds that form the speech signal. Each articulatory position could be rep-

resented by a state of different and varying duration. Accordingly, the transition

between different articulatory positions (states) can be represented by A = {aij}. The

observations in this case are the sounds produced in each position and due to the

variations in the evolution of each sound this can be also represented by a probabilis-

tic function B = {bj(wk)}.

The correspondence between the model parameters and what they represent in the

speech signal is not unique and could be viewed differently. The important thing is to

envisage the physical meanings of the states and observations in each view.

4. HMM Constraints for Speech Recognition Systems

HMM could have different constraints depending on the nature of the problem that

wanted to be modelled. The main constraints needed in the implementation of speech

recognisers can be summarised in the following assumptions [11]:

1 – First order Markov chain:

In this assumption the probability of transition to a state depends only on the current

state:

P(qt+1=Sj | qt=Si, qt-1=Sk, qt-2=Sw, …, qt-n=Sz) ≈ P(qt+1=Sj | qt=Si) (3)
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2 – Stationary states’ transition:

This assumption testifies that the states’ transition are time independent, and accord-

ingly we will have:

aij = P(qt+1=Sj | qt=Si)   for all t (4)

3 – Observations independence:

This assumption presumes that the observations come out within certain state depend

only on the underlying Markov chain of the states, without considering the effect of

the other observations. Although this assumption is a poor one and deviates from re-

ality, it works fine in modelling speech signal.

This assumption implies that:

P(Ot | Ot-1, Ot-2, …,Ot-p, qt, qt-1, qt-2, …, qt-p) = P(Ot | qt, qt-1, qt-2, …, qt-p) (5)

where p represents the considered history of the observation sequence.

Then we will have:

bj(Ot) = P(Ot | qt=j) (6)

4 – Left-Right topology constraint:

aij = 0   for all   i+2  < j  < i (7)

{ 1i for              1

Ni1 for              01 )(
=

≤<
=== ii SqPπ (8)

(i.e., π =  {1  0  …  0})

5 – Probability constraints:

Our problem is dealing with probabilities then we have the following extra con-

straints:

aij
j

N

=
=

∑ 1
1

(9)

π j
j

N

=
∑ =

1

1 (10)

b O dOi t
O

( ) =∫ 1 (11)

If the observations are discrete then the last integration will be a summation.
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5. The principal cases of HMM

There are three main cases to be dealt with to formulate a successful HMM. These

are:

Case 1: Evaluation

Given:

Ø a model λ = (A, B, π) ready to be used.

Ø testing observation sequence O = O1, O2, O3, …, OT-1, OT.

Action:

Ø compute P(O | λ) ; the probability of observation sequence given the model.

Case 2: Decoding

Given:

Ø a model λ = (A, B, π) ready to be used.

Ø testing or training observation sequence O = O1, O2, O3, …, OT-1, OT.

Action:

Ø track the optimum state sequence Q = q1, q2, q3, …, qT-1, qT that most likely

produces the given observations, using the given model.

Case 3: Training

Given:

Ø a model λ = (A, B, π) ready to be used.

Ø training observation sequence Ok = O1
k, O2

k, O3
k, …, OT-1

k, OT
k where k is the

number of examples for training the model.

Action:

Ø Tune the model parameters to maximise P(O | λ).

Case 1 is an evaluation procedure as we are seeking to find the probability of pro-

ducing given observation O by a given model λ . This could be used to find out the

best model among many who produces the given observation.

Case 2 is a decoding procedure to detect or unhide the state sequence of a given

observation. The observations could be training examples if we want to study the be-

haviour of each state from different aspects, such as states’ duration or spectral

characteristics of each state. Some techniques utilise the state duration in their
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evaluation procedure and in this case the observation will be the test example to detect

the states’ duration.

Case 3 is the training procedure to optimise the model parameters to obtain the

best model that represents certain set of observations belonging to one spoken entity.

The way is paved now to tackle an important goal of our task, namely derivation of

the mathematical formulas to the three previous cases.

5–1. Case 1 Formulation

Let us take a simple case then generalise to the complete one. Consider that we have 3

states and 5 observations in a process and we want to find P(O | λ). To explain the

whole flow of the process the trellis diagram of Fig.(3) is of big help. The state at each

instant is represented by a small circle, and the arrows represent the state transitions.

From Fig.(3) we can see all the possibilities that the events might take during the

whole process. The dotted lines shows one possibility in which the P(O1 | Q1, λ) is:

∏
=

=
5

1

1111 |(),|(
t

tt qOPQOP λ (12)

1
3

1
3

1
2

1
1

1
1

1
4

1
4

1
3

1
2

1
1

11 ........),|( bbbbbbbbbbQOP qqqqq ==λ (12a)

∑
−

=
+

=
1

1
11

1 )|(
T

t
tqqt

aQP πλ (13)

33231211154.43.32.211
1 .....)|( aaaaaaaaQP qqqqqqqq ππλ == (13a)

)|(),|()|,( 11111 λλλ QPQOPQOP = (14)

332312111
1
3

1
3

1
2

1
1

1
1

11 .........)|,( aaaabbbbbQOP πλ = (14a)

1 2

Observations Instants

3 4 5

State- 3

State- 2

State- 1

States' Transitions

Fig.(3) Trellis Diagram of 3 States, and 5 Instants L-R Model
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This procedure has to be done for all possible states’ sequence (paths). The super-

scripts of O and Q indicate the possibility number. Then the probabilities of all the

paths has to be summed to get the probability of how likely the model produces the

given observation sequence.

)|,()/(
1

λλ ∑
=

=
p

i

ii QOPOP (15)

)|(),|()/(
1

λλλ i
p

i

ii QPQOPOP ∑
=

= (15a)

where p is the number of states’ paths possibilities.

The total number of possibilities increases exponentially with the increasing num-

ber of states and observation instances. The Left-Right topology is substantially

reducing the number of possible paths over the full connection topology (ergodic

models in which every state could be reached from any other state at any instant).

Further reduction in the computational cost can be achieved by the Forward-

Backward Procedure [12]. This technique greatly reduces the computational cost with

simple iterative mathematical formulas. Actually it is a compound procedure com-

posed of forward procedure and backward procedure. In the evaluation case we only

need one of them and the forward procedure will be our preference.

5-1.1 Forward Procedure

Initially consider a new forward probability variable αt(i), at instance t and state i, has

the following formula:

)|,,,,,()( 321 λα ittt SqOOOOPi == K (16)

This probability function could be solved for N states and T observations iteratively:

1 – Initialisation

α π1 1 1( ) . ( )t b O i Ni i= ≤ ≤ (17)

2 – Induction

α αt t ij
i

N

j tj i a b O
t T

j N+
=

+=










≤ ≤ −
≤ ≤∑1

1
1

1 1

1
( ) ( ) ( ) (18)

Fig.(4) shows the induction step graphically. It is clear from this figure how state Sj

at instance t+1 reached from N possible states at instance t.
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3 – Termination

)()|(
1

iOP
N

i
T∑

=

= αλ (19)

This stage is just a sum of all the values of the probability function αT(i) over all

the states at instant T. This sum will represent the probability of the given observa-

tions to be driven from the given model. That is how likely the given model produces

the given observations. The proof of the termination formula will be given later on.

5-1.2 Backward Procedure

This procedure is similar to the forward procedure but it takes into consideration

the state flow as if in backward direction from the last observation entity, instant T,

till the first one, instant 1. That means that the access to any state will be from the

states that are coming just after that state in time and as shown in Fig.(5).

Sj

S1

S2

S3

SN

t+1t

)(itα )(1 jt+α

Fig.(4) Forward Probability Function
Rpresentation

a1j

a2j

a3j

aNj
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To formulate this approach let us consider the backward probability function βt(i)

and define as:

).,|,,,()( 21 λβ itTttt SqOOOPi = = ++ K (20)

In analogy to the forward procedure we can solve for βt(i) in the following two

steps:

1 – Initialisation:

βT i i N( ) , . = ≤ ≤1 1 (21)

These initial values for β’s of all states at instant T are arbitrarily selected.

2 – Induction:

β βt ij j t t
j

N

i a b O j t T T i N( ) . ( ). ( ), , , , ,= = − − ≤ ≤+ +
=

∑ 1 1
1

1 2 1 1K (22)

Equation (22) can be well understood with help of Fig.(5). We are still looking

from left to right in calculating the partial probability function (from t to T). However,

at each instant we consider that we have β at t+1 and we need to calculate it at time t;

as if we are moving backward in time.

ai1

a
i3

ai2

a
iN

Si

S1

S2

S3

SN

t t+1

)(itβ )(1 jt+β

Fig.(5) Backward Probability Function
Rpresentation
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5-1.3 Computing P(O | λ) from Forward and Backward Probability Functions

The probability function of the model P(O | λ) can be computed from both α  and β

functions. Fig.(6) demonstrates this computation graphically. At instant t, the event of

being in state qi and moving to state qj at instance t+1 is calculated by αt(i) which ac-

counts for the path termination in state qi. The transition to state qj is weighted by the

product aij⋅bj(Ot+1). At instance t+1 the event of observation sequence to the instant T

starting from state Sj, while being at state Si during instant t, is represented by the

backward probability function βt+1(j).

Then P(O | λ) is directly concluded to be:

∑∑
= =

++=
N

i

N

j
ttjijt jObaiOP

1 1
11 )().(.).()|( βαλ (23)

Substitute (22) in (23) to get:

P O i it t
i

N

( | ) ( ) ( )λ α β=
=
∑

1

(23a)

Sj

)(1 jt+β

Fig.(6) Forward - Backward Probability Functions
to find P(O/  )

aj1

aj2

aj3

ajN

λ

Si

S1

S2

S3

SN

t

)(itα

a1i

a2i

a3i

aNi

S1

S2

S3

SN

aij.bj(Ot+1)

t+1t-1 t+2
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5-1.4 Proof of Termination Formula in Forward Probability Function

From (18) we have:

α αt t ij
i

N

j tj i a b O
t T

j N+
=

+=










≤ ≤ −
≤ ≤∑1

1
1

1 1

1
( ) ( ) ( ) (18)

Let t = T-1 and substitute in 18 to get:

α αT T ij
i

N

j Tj i a b O( ) ( ). . ( )=








−

=
∑ 1

1

(18a)

α αT T ij
i

N

j Tj i a b O( ) ( ). . ( )= −
=
∑ 1

1

(18b)

From (23) we have:

∑∑
= =

++=
N

i

N

j
ttjijt jObaiOP

1 1
11 )().(.).()|( βαλ (23)

Substitute t = T-1 in (23) to get:

∑∑
= =

−=
N

i

N

j
TTjijT jObaiOP

1 1
1 )().(.).()|( βαλ (23b)

We have from (21)

βT i i N( ) , . = ≤ ≤1 1 (21)

Substitute for βT(i) in (23b) and rearrange the equation to get:

∑ ∑
= =

− 



=

N

j

N

i
TjijT ObaiOP

1 1
1 )(.).()|( αλ (24)

The term inside the square brackets is the same as that in (18b), substitute it and

you will get the final needed formula:

)()|(
1

iOP
N

i
T∑

=

= αλ (19)

5-2. Case 2 Formulation

This case deals with the uncovering the hidden states of the model given the observa-

tion sequence and the model. This means that we have to find the optimal state

sequence Q = (q1, q2, q3, …, qT-1, qT) associated with the given observation sequence

O = (O1, O2, O3, …, OT-1, OT) presented to the model λ  = (A, B, π). The criteria of

optimality here is to search for a single best state sequence through modified dynamic
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programming technique called Viterbi Algorithm [13]. We need to maximise

P(Q | O,λ) to detect the best state sequence. This could be achieved via maximising

the joint probability function P(Q,O | λ) using the Bayesian Rule which states that:

)|(

)|,(
),|(

λ
λλ

OP

OQP
OQP = (25)

The denominator has nothing to share in maximising P(Q | O,λ) as it does not in-

clude the state sequence factor Q. To go through the Viterbi Algorithm method let us

define the probability quantity δt(i) which represents the maximum probability along

the best probable state sequence path of a given observation sequence after t instants

and being in state i. This quantity can be mathematically represented by:

]|,,[max)( 21121
,,, 121

λδ titt
qqq

t OOOSqqqqPi
t

KK
K

== −
−

(26)

The best state sequence can be backtracked by another function ψt(j). The com-

plete algorithm can be described by the following steps:

Step 1: Initialisation

Ni1,)()( 11 ≤≤= Obi iiπδ  (27)

ψ1 0( )i = (28)

Step 2: Recursion

Nj1T,t2,)(])([max)( 1
1

≤≤≤≤= −≤≤ tjijt
Ni

t Obaij δδ (29)

Nj1T,t2,])([max arg)( 1
1

≤≤≤≤= −≤≤ ijt
Ni

t aij δψ (30)

Step 3: Termination

P i
i N

T
* max[ ( )]=

≤ ≤1
δ (31)

q iT
* arg ( )]=

≤ ≤
 max[

1 i N
Tδ (32)

Step 4: Backtracking

q qt t t
* *( )= ≥ ≥+ +ψ 1 1 , T -1 t 1 (33)

It is clear that (29) of Viterbi recursion is similar to (18) of forward induction, ex-

cept the interchange of summation by maximisation. One thing could be noted here

is that Viterbi Algorithm can also be used to calculate the P(O | λ) approximately by

considering the use of P* instead. This is acceptable as it gives comparable results

and can be justified through the modified equation (15) to do the summation on the
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most probable state sequence, which has the major weight among all the possible

states' paths.

5-3. Case 3 Formulation

This case is dealing with the training issue, which is the most difficult one in all the

three cases. The task of this case is to adjust the model parameters, (A, B, π), accord-

ing to certain optimality criteria. There are many techniques to achieve the task of this

case and we will describe here the well-known Baum-Welch Algorithm, called also

Forward-Backward Algorithm. It is an iterative method to reach the local maximas of

the probability function P(O | λ). Each time the model parameters are adjusted to get a

new model which is proved by Baum et. al. that the new model is either better or

reach a critical condition at which the iteration has to be stopped as the local minima

has reached. The model always converges but the global maximisation cannot be as-

sured. Fig.(7) shows the non-linear optimisation of this problem and how the global

optimality seeking is difficult to locate and greatly depending on the initial point of

search.

λ
Global

Maxima
Local

Maxima
Local

Maxima
Local

Maxima

P(O | λ)

Fig.(7) Optimum Search Possibilities.
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To go through the training procedure let us first define a posteriori probability

function γt(i), the probability of being in state i at instant t, given the observation se-

quence O and the model λ as:

γ λt t ii P q S O( ) ( | , )= = (34)

γ λ
λt

t ii
P O q S

P O
( )

( , | )
( | )

= =
(35)

Since P O q S i it i t t( , | ) ( ) ( )= =λ α β (36)

and from (23a)

P O i it t
i

N

( | ) ( ) ( )λ α β=
=
∑

1

(23a)

then γ α β

α β
t

t t

t t
i

N
i

i i

i i
( )

( ) ( )

( ) ( )
=

=
∑

1

(37)

Let us define another probability function ξt(i,j), the probability of being in state i

at instant t and going to state j at instant t+1, given the model λ and the observation

sequence O.

ξt(i,j) can be mathematically defined as:

ξ λt t i t ji j P q S q S O( , ) ( , | , )= = =+1 (38)

Multiply both sides of (39) by P(O | λ) to get:

)|(),|,()|().,( 1 λλλξ OPOSqSqPOPji jtitt ⋅=== + (39)

From Bayesian Rule

)|,,()|(),|,( 11 λλλ jtitjtit SqSqOPOPOSqSqP ===⋅== ++ (40)

The right-hand side of (40) can be represented by the forward α and backward β

functions, with the help of Fig.(6), as follows:

P O q S q S i a b O jt i t j ij j t t( , , | ) ( ) ( ) ( )= = =+ + +1 1 1λ α β t (41)

Substitute (23a) and (41) in (39) and rearrange to get:

ξ
α β

α β
t

ij j t t

t t

N
i j

i a b O j

i i
( , )

( ) ( ) ( )

( ) ( )
= + +

=
∑

t

i 1

 

 

1 1 (42)
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Also, from (23) we can have:

ξ
α β

α β
t

t ij j t t

t ij j t t
j

N

i

N
i j

i a b O j

i a b O j
( , )

( ) ( ) ( )

( ) ( ) ( )

= + +

+ +
==
∑∑

1 1

1 1
11

(43)

The relation between γt(i) and ξt(i,j) can be easily deduced from their definitions:

γ ξt t
j

N

i i j( ) ( , )=
=
∑

1

(44)

Now, if γt(i) is summed over all instants (excluding instant T) we get the expected

number of times that state Si has left, or the number of times this state has been vis-

ited over all instants. On the other hand if we sum ξt(i,j) over all instants (excluding

T) we will get the expected number of transitions that have been made from i to j.

From the behaviour of γt(i) and ξt(i,j) the following re-estimations of the model

parameters could be deduced:
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After the re-estimation of the model parameters we will have another model λ̂

which is more likely, than model λ, producing observation sequence O. This means

that:

)|()ˆ|( λλ OPOP >

This process of re-estimation can be continued till no improvement in P(O | λ) is

reached, that is we reach local maxima.

6. Discrete Hidden Markov Model (DHMM)

The HMM modelling methods applied so far are for a process that has a discrete ob-

servation sequence. These observations could be the outcome indices of Vector

Quantization technique (VQ) [14],[15]. VQ is a technique of clustering time series

signals, in our case speech signals, into certain number of bins (clusters). Each bin

represents the data belonging to certain population with similar (or minimum differ-

ence) spectral characteristics. The centre of gravity of each bin is assigned to a certain

index and considered as representative of the cluster population in any process on the

signal. The long sequence of speech samples will be represented by a stream of indi-

ces representing frames of different window lengths. Hence, VQ is considered as a

process of redundancy removal, which minimises the number of bits required to iden-

tify each frame of speech signal. VQ was initially used successfully with Dynamic

Time Warping (DTW) to recognise spoken words, and then proved to be successful

with HMM as well. The role of VQ in HMM is to prepare discrete symbols from a

finite alphabet. Each speech input will be quantized by the VQ reference bins. Each

quantized input will be then considered as an observation. There are many other

methods to represent the observations that are beyond the scope of this report, but a

very good reference to recommend is [16].

The type of HMM that models speech signals based on VQ technique to produce

the observations is called Discrete Hidden Markov Model (DHMM). It is an effi-

cient and reliable technique that has comparable results to the more computational

DTW technique. In addition the phones, phonemes, and subwords could be mod-

elled easily with DHMM while it is very difficult with DTW as the latter needs to

detect the segments boundary for comparison. However, VQ is responsible for los-
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ing some information from the speech signal even when we try to increase the

codewords. This loss is due to the quantization error (distortion). This distortion can

be reduced by increasing the number of codewords in the codebook but cannot be

eliminated.

7. Continuous Hidden Markov Model (CHMM)

It is more sophisticated methodology to develop improved HMM models of the

speech signals. This method needs more memory than DHMM to represent the model

parameters but does not suffer from the distortion problem. On the other hand it needs

more deliberate techniques to initialise the model as it might diverge easily with ran-

domly selected initial parameters.

In CHMM the model parameters are also π, A, and B, but they are represented

differently. The probability density function (pdf) of certain observations O being in

a state is considered to be of Gaussian Distribution (other distributions also valid).

Let us consider it to be bi(O) and has the following general form:

b O c O U i Ni im im im
m

M

( ) ( ; , )= ℵ ≤ ≤
=

∑ µ
1

, 1 (48)

where:

cjm: is the m-th mixture gain coefficient in state i.

ℵ : is the pdf distribution which is considered to be Gaussian in our case.

µim: is the mean of the m-th mixture in state i.

Uim: is the covariance of the m-th mixture in state i.

O:  is the observation sequence of the feature vectors of dimension d.

M: is the number of mixtures used.

N: is the number of states.

The following constraints have to be fulfilled to ensure the consistency of the

model parameters estimation.

c i Nim
m

M

= ≤ ≤
=

∑ 1
1

, 1 (49a)

c i m Mim ≥ ≤ ≤ ≤ ≤0, 1 N, 1 (49b)
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These constraints will lead to proper pdf normalisation, that is 

b O dO i Ni( ) ,= ≤ ≤
−∞

∞

∫ 1 for 1 (50)

The pdf of the observations will be of the form:
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where prime (′) superscript here is referring to the transpose of matrix.

The covariance matrix in (51) could be simplified by using a diagonal matrix with

elements representing the variance of each mixture. This approximation greatly re-

duces the computational cost in spite of the necessity to increase the number of

mixtures to make it work better.

The reestimation formulas in multimixture continuous density HMM will be as

follows:
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where γt(i,m) is the probability of being in state i with m-th mixture at instant t. It is

the same as γt(i) when m=1.
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The following equation represents the modified version of (38) to make it suitable

for the multimixture case:
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For the initial state and the state transition probability distributions they are the

same as for DHMM as in (45) and (46).

8. Mixture Density Components Estimation using Maximum

Likelihood (ML)

The ML estimation is an optimisation technique that can be used efficiently in esti-

mating the different components of multimixture models. We are not going through

the mathematical derivations of the ML but only describe the method to be used in

our task.

Let us first make some definitions:

bi(Ot): probability of being in state i given observation sequence Ot.

cim: probability of being in state i with mixture m (gain coefficient).

bim(Ot): probability of being in state i with mixture m and given  Ot.

Φ(wim|Ot): probability function of being in a mixture class wim given Ot in state i.

Ti: is the total number of observations in state i.

Tim: is the number of observations in state i with mixture m.

N: number of states.

M: number of mixtures in each state.

Now we are ready to implement the algorithm through applying the following

steps:

1. Take several versions of observations of a certain word, say digit zero, spoken

several times by many speakers.

2. Apply Viterbi algorithm to detect the states of each version of the spoken

word.
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3. Put the whole observations belonging to each state from all the versions of the

spoken word into separate cells. Now we have N cells and each one repre-

sents the population of a certain state derived from several observation

sequences of the same word.

4. Apply vector quantization technique to split the population of each cell into

M mixtures and getting wM classes within each state.

5. Use the well-known statistical methods to find the mean µim and the covari-

ance Uim of each class. The gain factor cim can be calculated by:

cim = number of  observations  being in state i and mixture m

total number of observations in state i
(56)

6. Calculate Φ(wim | Ot) from the following formula:
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7. Find the next estimate of imimim Uc ˆ and ˆ,ˆ µ  from the formulas given by ML:
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8. Compute the next estimate of using the formula:
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9. IF          END  THEN   |)|(ˆ)|(| ε≤Φ−Φ timtim OwOw

ELSE Make the new value of Φ(wim | Ot) equal the newly predicted one.

)|(ˆ)|( timtim OwOw Φ=Φ (64)

GO TO STEP 7.

where ε is a very small threshold value.

9. Implementation Factors

There are several factors that may in one way or another have effects on the imple-

mented model. We are going to describe the more important factors and how to

reduce their effects.

9-1. Scaling Factor

The scaling factor is a major issue in implementing the HMM because of the under-

flow that may easily occur when calculating the probability function P(O | λ). This is

due to the long sequence of multiplications of less than one-value probability func-

tions. For instance in using the forward procedure to calculate α i(t) in (18) we can see

easily how many multiplications of probability functions we have to make to calculate

any spoken entities.

The straightforward technique of scaling is started by defining the scaling coeffi-

cient c(t)[2]:
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Now let us compute α i(t) from (18) and then multiply it by c(t). This will lead to:
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The same thing can be done with βt(i) and form the product c(t)·βt(i). The re-

estimation formula of (46) can be rewritten with scaling to become:
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t
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The numerator and the denominator of (67) consist of the product

∏
=

+ =
T

tt cDC
1

1
τ

τ , which can be factored out and retain the original equation of (46).

This scaling technique can also be applied successfully to (47).

The scaling coefficients can be used to find log P(O | λ) by the following method:

Consider that we have ct for t=1,2,3, …,T and we obtained CT from (68), then

from (65) we will get:
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Using (19) we will have:

)|(

1

1 λOP
cC

T

t
tT == ∏

=
(70)

Take the log of the last two terms:
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By using log properties we can obtain:
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Equation (72) shows that log(P(O | λ) can be computed but not P(O | λ) as the

latter will be out of the dynamic range of the computer.
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Viterbi Algorithm also shows itself here again to be a successful technique in cal-

culating log(P(O | λ) even without bothering about the scaling problem.

To follow Viterbi Algorithm let us assume that:

)](log[)( 1Obi iit πφ = (73)

Take the log of both sides of (29) and use (72) to get:
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9-2. Multiple Observation Sequence factor [2]

The main disadvantage of the Left-Right topology of HMM is that the observations

cannot be concatenated into one string and submitted to the model for training. This is

due to the one direction left-right move and once a state is left we can not go back to

it. Accordingly the model will get stuck in the last state after passing the first obser-

vation sequence and no modelling is possible for the other sequences.

The model has to be modified to accept multiple submissions to allow the model to

be trained by many versions of the same spoken entity.

Let us define the set of observations of the k multiples of observations of a spo-

ken entity by:
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The goal of HMM is to maximise P(O | λ) by adjusting the parameters of λ. In

multiple observations P(O | λ) is defined by:
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in a more abstract way
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The multiple observation sequence implication can be done by normalising the

numerators and denominators of (46) and (47) by Pk to get:
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The same procedure of normalisation could be used in the case of continuous

density distribution to find the parameters of the model.

9-3. Initial Model Parameters Estimate factor:

When we initially try to build an HMM model we normally have nothing but streams

of observations. If we are fortunate then we have parameters from old models, which

is not normally the case. To put the initial model parameters, we have to be careful as

one might easily slip into divergence with bad model initialisation. The problem with

discrete observations HMM is less effective as we can initialise the model parameters

with random values, but taking into consideration the constraints in (9), (10), and

(11). In continuous density HMM (CHMM) the problem is more serious and the pa-

rameters should be judiciously selected to get rid of the divergence fate. Let us take

the problem in Left-Right HMM Topology and suggest a safe way to follow.

The parameters that constitute any model λ  are π, A, and B. For π it is straight

forward and known to be always 0] 0  0  0  0  1[ K=π , of course this is with Left-

Right topology models. For the states’ transition parameters A=[aij] the choice is

also flexible and if we have the topology of Fig(2) then A will be the following ma-

trix for seven states model:
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The values of aij can be selected as:

aii = 0.94, ai,i+1 = 0.04, and ai,i+2 = 0.02 for  51 ≤≤ i

aii = 0.97, ai,i+1 = 0.03 for    i = 6

aii = 1 for    i = 7

These values are deduced from the fact that the observations tend to stay in their

current state and have less tendency to move to the next state and more less tendency

to jump the next state. After optimisation we can see that the observations wanted to

stay in their current state is true, this imply that aii > ai,i+1 and aii > ai,i+2. However,

the observations might prefer to stay in the next state or jump it, i.e. ai,i+1 > ai,i+2 or

ai,i+1 < ai,i+2.

A more precise way is by using initial uniform segmentation of each utterance

into the proposed number of states and apply the following algorithm [11]:

The suitable aij (in programming we use the notation a(i,j)) initialisation is found to

be dependent on states’ duration. In this case the duration D of each state is estimated

by:
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where: K is the number of versions of an utterance in the training set.

N is the number of states

|Xn| is the length of the nth utterance in the training observations.
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Then, the transition matrix elements a(i,j) are estimated by:

For 1 ≤ i ≤ N − 2
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D
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For i = N − 1

D

D
iia

1
),(

−= (80c)

),(1)1,( iiaiia −=+ (80d)

For i = N

1),( =iia (80e)

The formula is inferred from the fact that if there are K elements of duration D in

each state then there will be only one transition to the next state.

What is left now is the most problematic parameters B = {bi(Ot)}, they have to be

very well initialised. In our case we suggest the following steps:

1. Uniformly segment the utterances of each spoken entity by N states.

2. Take the mean and the covariance of each segment.

3. Consider the observations follow Gaussian density probability distribution.

After the previous suggestions for initialising the model parameters we can apply

Viterbi Algorithm to extract the optimum parameters.

The technique described in this section is for unimodal (single mixture) distribu-

tions. To extend it to multimodal (multimixture) distributions the following are

suggested:

1. Apply the same procedures for π, A, B used in unimodal distributions.

2. After uncovering the real state sequence from Viterbi Algorithm, aggregate

the observations, of all the versions of the spoken entity, belonging to each

state in separate cells.

3. Use Vector quantization technique to cluster each cell into several mixtures.
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4. Optimise the clustering by any known statistical technique; such as maximum

likelihood or expectation maximisation.

5. Find the mean and the covariance of each cluster (mixture)

The model is now complete.

9-4. Number of States Factor

There is one thing left which has to be decided from the initial instant of designing the

model. It is the optimum number of states needed to model the problem. There is no

straightforward answer to this requirement. The number of states is decided empiri-

cally depending on the nature of the problem. Sometimes previous experience about

the problem is necessary or one has to suggest different numbers of states then select

the one that gives the best results. Also, if we could define the physical meaning of

the states we can limit the number of states. In an isolated words recogniser the num-

ber of states are suggested to be between 4 and 12. This is justified by assuming that

the states are representing the phonemes or the phones of the utterances. In phonemes

modelling the number of states are mostly assumed to be 3, as the phonemes could be

segmented into initial, stable, and final states.

9–5. State Duration Incorporation

The basic HMM does not take into consideration the state duration factor in its mod-

elling procedure. This is considered a major weakness in the model since the duration

carries important information about the temporal structure of the speech signal. Our

duty now is to find some useful way to include the duration within the conventional

model. Let us first ask this question: What is the probability of being in a state for τ

instants?

The answer lies in finding the probability density function pi(τ) which has the

definition of:

pi(τ) = P(q1=Si, q2=Si, q3=Si, …, qτ=Si, qτ+1=Sj, …) (81)

        = πi (aii)τ-1(1-aii) (81a)
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Now we can calculate the expected duration in state i by the following equation:
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Using (81a) and considering πi = 1 we get:

ii

ii

ii

ii
ii

ii
ii

ii

iiii

iiiii

a

a

a

a
a

a
a

a

aa

aa

−
=

−∂
∂−=

∂
∂−=

−=

−=

∑

∑

∑

∞

=

∞

=

−

∞

=

−

1
1

)
1

()1(

)()1(

)()1(

)1()(

1

1

1

1

1

τ

τ

τ

τ

τ

τ

τ

ττ

Now let us return to our first example about weather forecasting and ask the

question: What is the average number of consecutive sunny, cloudy, and rainy days?

The answer is by applying (83) using the values of aii from Table-1 to get:
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 Unfortunately this duration distribution is meaningless when we try to apply it to

speech recognition problems. Therefore, another way to incorporate the duration has

to be considered. One option is to include the state duration in the model formulas,

this requires reformulating the whole model parameters [4]. The model works per-

fectly in this case but the problem now is with the vast increase in computational

cost that makes the use of this new model impractical.

The other option is to use heuristic techniques to include the duration to obtain

comparable performance as the correct theoretical duration inclusion with very low

computational and storage costs. The state duration probability function pj(τ) is es-

timated during the model training case and defined as:

pj(τ): is the probability of being in state j for τ duration.

(83)
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The duration probability density function is considered to be Gaussian with 3 to 5

mixtures.

During recognition the state duration are calculated from the backtracking proce-

dure in Viterbi Algorithm. Then, the log likelihood value is incremented by the log

of the duration probability value as below:

∑
=

+=
N

j
jjpOqPOqP

1

)](log[)]|,(log[)]|,(ˆlog[ τηλλ (84)

where η is a scaling factor.

τj is the normalised duration of being in state j, as detected by Viterbi Algo-

rithm.

9-6. Data Representation Factor

The training and testing speech data are taken from:

http://Kel.otago.ac.nz/hyspeech/corpus

The initial sets of data are the digits 0-9 spoken by 21 speakers (11 males and 10 fe-

males) and each digit is spoken three times by each speaker. Among those words 42

uttered digits are used for training and 15 for testing. The speech data in the Otago

Speech Corpus are sampled at 22050 Hz with short silences before and after each ut-

terance.

The next step is to transform the time signal into Mel scale coefficients. The num-

ber of coefficients are selected to be 26 (12 mels and 12 delta mels with one power

and its delta). Also experiments have been done on 13 coefficients without consider-

ing the dynamic behaviour of the signal. The Mel scale coefficients as extracted

features are selected because they imitate to some extent the feature selection in hu-

man ears. The Mel scale method considers the spectrum to be linearly distributed

below 1000Hz and logarithmically above that. This makes the filter banks move on

linear centres below 1000Hz (i.e. 100, 200, 300, …, 1000) and on logarithmic centres

over that (i.e. 1149, 1320,1516,....). A very good characteristic of the Mel scale coef-

ficients is that they allow the use of Euclidean distance measures in finding the

distance between two examples. This greatly reduces the computational cost of proce-

dures that depend on distance measures like those VQ.
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10. Results and Conclusions

In this section we are going to show some experimental results and discuss some use-

ful conclusions.

10-1. Experiment One

The first experiment dealt with the segmentation of the spoken words into states.

Fig.(8) shows different versions of the spoken word “zero” by three different speak-

ers. We can see clearly how the time signal varied even for the same word. The states

are found by Viterbi Algorithm and assigned clearly to their corresponding segments.

Also we can see that the observations are not always passing through all the states that

the model designed on. In this case state 5 was jumped by digit zero observations

when they were submitted to the digit zero model.

State-2State-1 State3 State-4 State-6 State-7

Fig.(8) States’ Assignment of Digit ZERO Presented to the ZERO State Model.
The analysis uses 13 Mel scale coefficients without taking the dynamic coefficients into consideration.
There are 6 states detected in all the three versions of the spoken digit ZERO, i.e., 1, 2, 3, 4, 6, and 7.

State-2State-1 State-3 State-4 State-6 State-7
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10-2. Experiment Two

The second experiment dealt with the Mel scales coefficients distribution. Fig.(9)

Shows some distributions of Mel scale coefficients and their deltas of state one in

spoken digit zero. The power of the signal and its delta are represented by mel 0 and

delta mel 0. The Mel coefficients capture the stable signal characteristics, while the

deltas capture the dynamic characteristics. Also, we can see from this figure the best

fit probability distribution function (pdf) for each coefficient. It is clear that some co-

efficients like mel 0, mel 1 and their deltas are far from being represented by single

pdf. This consolidates the need of multimodal (multimixture) representation of the

coefficients. In our model we approximate the Mel scale coefficients distribution by 5

to 9 mixtures.

Fig.(9) Mel Scale Coefficients Distribution
The histogram and the best fit normal pdf of mel0,mel1, and mel2 with their deltas.

mel 0 delta
mel 0

mel 1

mel 2

delta
mel 1

delta
mel 2

best
pdf
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10-3. Experiment Three

The third experiment was carried out to show the correspondence between the speech

signal, states, and the spectra. This relation gave us more understanding and  confi-

dence on the behaviour of the observation vectors within each state. Fig.(10) shows

this clearly and we can notice the difference in spectral behaviour of different states.

State-1 State-2 State-3 State-4 State-6 State-7

Fig.(10) Correspondence between the time signal samples, states, and spectrum of
spoken digit zero.
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10-4. Experiment Four

The fourth experiment was about the representation of the state duration distribution

using multimodal (multimixture) probability distribution. Fig.(11) shows the normal-

ised duration probability distribution for unimodal and multimodal (with 3 mixtures)

representation. The multimodal pdf shows superiority in representing the distribution.

Fig.(11) Multimodal Representation of States’ Duration.
The unimodal poorly represents the states’ duration, while the multimodal smoothly follows the dura-
tion distribution even with only three mixtures used.

multimodal

unimodal
actual
distribution

State 4

State 5
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