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ABSTRACT

For some years software engineers have been attempting to develop useful
prediction systems to estimate such attributes as the effort to develop a
piece of software and the likely number of defects. Typically, prediction
systems are proposed and then subjected to empirical evaluation. Claims are
then made with regard to the quality of the prediction systems. A wide
variety of prediction quality indicators have been suggested in the literature.
Unfortunately, we believe that a somewhat confusing state of affairs
prevails and that this impedes research progress. This paper aims to
provide the research community with a better understanding of the meaning
of, and relationship between, these indicators. We critically review twelve
different approaches by considering them as descriptors of the residual
variable. We demonstrate that the two most popular indicators MMRE and
pred(25) are in fact indicators of the spread and shape respectively of
prediction accuracy where prediction accuracy is the ratio of estimate to
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actual (or actual to estimate). Next we highlight the impact of the choice of
indicator by comparing three prediction systems derived using four different
simulated datasets. We demonstrate that the results of such a comparison
depend upon the choice of indicator, the analysis technique, and the nature
of the dataset used to derive the predictive model. We conclude that
prediction systems cannot be characterised by a single summary statistic.
We suggest that we need indicators of the central tendency and spread of
accuracy as well as indicators of shape and bias. For this reason, boxplots of
relative error or residuals are useful alternatives to simple summary metrics.

Keywords
Prediction systems, estimation, empirical analysis, metrics, goodness-of-fit
statististics.

1. The Problem

A major challenge for managers of software projects is to be able to make accurate
predictions. For example, how long will a project take, how much effort will it require
and how many defects will a particular component contain? To answer this type of
question has been a major goal of workers in the field of software metrics over the
past 25 years. In general, the approach adopted has been to collect various measures
that can then be used to construct a prediction system. For example, one might count
the number of function points or perhaps count the number of reports that are to be
generated.

PREDICTION
SYSTEM

M = Ä(M ,..., M )pred 1 n

M1

Mn

Mpred

Figure 1: The Structure of Prediction Systems

Figure 1 illustrates the basic structure of a prediction system. Prediction systems
must have at least three components. These are (i) a vector of one or more input
measures (M1...n); (ii) the output measure (Mpred) which is the quantity being

predicted; and (iii) the prediction system itself which will be a system of equations
that enable us to derive a value for Mpred from M1...n.

The critical issue for software metrics researchers is how to formulate the prediction
system. In addition, if there are alternative methods of formulating a prediction
system, we would like to have some criterion for selecting the most appropriate
system.
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An example of a prediction system would be to use function points to predict
development effort for software projects in a given environment. Here we might use a
technique such as linear regression analysis in order to determine an equation to link
the input, that is function points (FP), to the predicted variable, that is effort. A
simple linear regression equation will require two further inputs or coefficients β0 and
β1 such that:

effort = β0 + β1FP

By collecting local data it may be possible to find values for β0 and β1 to give useful
predictions of effort. Note that more complex models may require a greater number of
coefficients. Examples of work following this type of approach include the
MERMAID projects (Kok et al. 1990) which have reported promising results.
Another approach would be to use a predefined generic model such as COCOMO II
(Chulani, Clark and Boehm 1998) and use data from previous projects to calibrate the
model to our particular circumstances. Prediction systems do not necessarily involve
mathematical relationships between inputs and outputs. Machine learning algorithms
and expert systems can be used to develop rule-based prediction systems. Pattern-
matching and analogy-based approaches can lead to prediction systems that choose
the most similar past project and base estimates on the actual values of that project.
These methods of generating a prediction system are all data intensive. This can be
contrasted with human-intensive estimating systems which do not depend on the
availability of a systematic dataset of past projects or an explicit prediction equation.

The important question is of course, how accurate is a prediction system? For a data
intensive prediction system, we might want to know if it could be improved if we
changed the values of β0 and β1? Should we consider using a non-linear model? How
do machine learning approaches compare with algorithmic models? All these questions
require some indication of predictive performance in order to be able to obtain
meaningful answers. Although this question would seem a straightforward one, there
are in fact a large number of different prediction quality indicators that that have been
used in the literature. Moreover, it would appear that they are not all assessing the
same thing. We believe that the lack of understanding of what different prediction
quality indicators are in fact assessing is hindering progress in this important branch of
software engineering. We suggest that there are at least three dimensions to the quality
of a prediction system. First, there is the central tendency of the errors or residuals, in
other words, what would be a typical error? Second, there is the spread or variance.
Here we are more interested in the range of values, perhaps what is the worst case? In
each case indicators will be more or less robust to the presence of skewed
distributions of error values.  Third, there will be the shape of the distribution of the
errors.  For example, a skewed distribution might be important if one were risk averse.

The next section examines a range of indicators of prediction quality that have been
discussed in the literature. We compare these indicators by considering their
underlying meaning defined in terms of describing the observed residual values of the
prediction system. This is followed by a simulation study in which we illustrate how



4

the different indicators give conflicting results and how the choice of indicator depends
upon oneÕs objectives in using the prediction system as well as the choice of analysis
technique and the nature of the dataset used to derive the prediction system. We
conclude by offering some guidelines as to the choice of appropriate indicators.

2. Prediction Quality Indicators

Many different prediction quality indicators have been proposed over the years by
researchers when attempting to evaluate or compare prediction systems. This section
describes twelve different indicators that have either been widely used or embody
significantly different notions of prediction quality.

In this section, we illustrate the behaviour of the prediction quality indicators using
the dataset collected by Belady and Lehman in 1979 and reported by Conte et
al.(1986). The relationship between effort and size for this dataset is shown in Figure
2. Although it is an old dataset, it illustrates a number of points about software
datasets. They are usually positively skewed i.e. have a large number of small
datapoints and relatively few large data points. Furthermore, they usually include
atypical data points, for example the points labelled, A, B, and C. Atypical points
may be an effect of skewness or the effect of a non-stable variance for the relationship
between effort and size. For whatever reason the points labelled A, B and C are likely
to be high influence points with respect to any model fitted to the dataset.

Figure 2. The relationship between size and effort reported by Belady and
Lehman
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In order to assess the quality of predictions, it is necessary to compare the predictions
produced by a prediction system with actual values. Ideally, the evaluation of
prediction quality should be independent of the construction of the prediction system.
This means we should take a random sample of past projects and use that data to
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construct our prediction system. Then we should take a second random sample, and
apply the prediction system to the second sample. In practice, we seldom have a
sufficiently large population of past projects to use this approach. There are
alternative strategies that can be used:

1. Leave one out: Leave one data point out of the dataset, construct the prediction
system using the remaining projects, and predict the value of the omitted project.
Repeat this process for each project in the dataset. This approach, sometimes
known as jackknifing, is useful if you have a small dataset (e.g. 10-30 projects).
Shepperd and Schofield 1997 is an example of this type of validation.

2. Training and testing subsamples. Divide the dataset into two random subsamples.
Use one of the subsamples to construct the prediction system and use the
prediction system to obtain predictions for the other subsample. It is usual for the
training subsample to be based on 2/3 of the dataset. This is useful when you have
a large dataset (e.g. >100 projects). MacDonell, et al. 1997 is an example of this
type of validation.

3. x-fold cross-validation: This is a mixture of the two approaches. Create a number
of different training and testing subsets by dividing the dataset into x (e.g. 6)
mutually exclusive subsamples of approximately the same size. Each of these
subsamples is regarded as a testing subsample for the training subsample made up
of the other projects. This give x different testing-learning subsets. Generate the
prediction system on each learning subsample and apply it to the corresponding
testing subsample. This is useful for a moderate dataset (e.g. 50-100 projects).

It is also common to use the full dataset to generate the prediction system and to use
the prediction system to predict the value of each of point in the dataset. If the
predictions are based on the full dataset, we are assessing goodness of fit rather than
prediction quality although the quality indicators are constructed in exactly the same
way. KemererÕs validation of four project cost models is such an example (Kemerer
1987).

In this paper we are interested in the behaviour of the prediction quality indicators
rather than obtaining the actual predictive quality of any particular prediction system.
Consequently, we have simply used the full dataset to generate the predictions, and
hence calculate the values of the quality indicators.

2.1 Coefficient of Determination - R2

The coefficient of determination is defined as:
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where there are n predictions, ix  is the ith observed value, $xi  (x-hat) is the ith

predicted value and x  (x-bar) is the mean of the n observed values. Note that if $xi  is

constructed using least squares regression with one independent variable (i.e. one
input variable), R2 is the square of the Pearson correlation coefficient between the
independent variable and xi . In addition, it is equal to the square of the Pearson

correlation between $xi  and xi . The coefficient of determination is only defined for

ordinary least squares multivariate regression.

The R2 value attained for a predictive model provides an indication of the degree to
which the model (i.e. the regression equation) accounts for the variation in the value of
the estimated commodity known as the dependent variable. It is therefore often
interpreted as the explanatory capability of the estimation model - the higher the R2

value, the more effectively the model accounts for the change in estimate value.
Interpreted in another way, a low R2 value indicates that the model may be
unsatisfactory, in that there are factors contributing to the value being estimated that
the model has failed to capture. This may assist the model builder in reformulating the
predictive hypothesis to include other characteristics. In terms of the accuracy of
prediction, the R2 indicator is inadequate, as it provides no information concerning the
extent of correspondence between actual and predicted values.

The R2 value should not be used unless each independent variable included in the
regression model contributes significantly to the equation i.e. the value of every
multiplicative parameter βi included in the model is significantly different from zero.
An R2 value that is significantly different from zero should be regarded as a general
minimum criterion for any predictive system. If it is not significantly different from
zero, there is no prediction system at all, irrespective of the value of other criteria!

The R2 statistic is particularly vulnerable to high influence points (i.e. data points
radically different from the majority of points in a dataset). The effect of high
influence points on the value of R2 can be demonstrated by performing an ordinary
least squares regression on five different variants of the Belady-Lehman dataset as
shown in Table 1.

Table 1 The value of R2 for different variants of the Belady-Lehman dataset
Dataset variant R2

All data points 0.4056
All data points except A 0.6056
All data points except B 0.6149
All data points except C 0.4528
All data points except A, B, and C 0.7512

If least squares regression has not been used to generate a predictive model, it is
possible to calculate the square of the correlation between $xi  and xi , but the value

obtained is not the same as the coefficient of determination.
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2.2 Adjusted Coefficient of Determination - R2 (Adjusted)

In general, the adjusted R2 value is used in preference to the raw value, as this takes
into account the number of parameters included in the model so it is possible to
compare competing models with different numbers of independent variables. When
using multiple regression the introduction of new independent variables can only
increase the R2 value, so even the addition of a random variable might increase the R2

Ð the adjusted R2 value compensates for this tendency. Clearly, if the inclusion of
variables that do not contribute significantly to a model is avoided, the use of the
adjusted R2 is not so important. As with the R2 indicator, the adjusted R2 provides no
information value concerning the extent of correspondence between actual and
predicted values.

2.3 Total Error

Total error is defined as:
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where there are n predictions, x is the true value and x-hat is the predicted value. In
statistical terminology, x xi i− $  is referred to as the residual error (usually referred to as
ei ) and the total error is the sum of the residuals.

If $xi  is an unbiased estimator of xi , then x xi i− $  has an expected value of 0.

Furthermore if $xi  and xi  are both Normally distributed, with variances σ $x
2

 and σx
2

respectively, then the variance of x xi i− $  is obtained from the standard formula for the

variance of the difference between two Normal variables as:

σ σ σ σ σe x x x x
2 2 2= + +$ $cov( , )

σ σ σ σ σe x x x x x xr2 2 2= + +$ $ , $ ,

Where cov( , $ )x xi i is the covariance between x and $xi , and rx x$ ,  is the Pearson

correlation coefficient between xi and $xi .

Whilst particular estimates may be too high or too low, overall predictive performance
may achieve a level close to zero in terms of total error. With a long-term view of
predictive performance, individual variation may be tolerated as long as global error
falls within a threshold value. This global performance can be measured using the total
error indicator, and an optimal model chosen based upon its value. In terms of
organisational liquidity there may also be a desire that, whatever the individual
estimate error, the global prediction must not be less than the actual value, whilst still
attempting to reach a zero balance.
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2.4 Total Relative Error

Total Relative Error is defined as:
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The total relative error is used to overcome one major drawback of total error as an
indicator, which is its lack of scope of the values being estimated. For example, it may
be acceptable to have a total error of 100 person-days over a set of projects totalling
10 person-years, but this may be quite unacceptable for a set of projects totally just
one person-year.

Of course, relative error also conceals problems. For example, an underestimate of
10% on a set of projects totalling 1 years effort may be manageable, whereas an
underestimate of 10% on a set of projects totalling 10 person-years may not.

2.5 Average Error

In addition to the total error for a set of projects, it is also useful to consider the
average error per project (i.e. the average residual). If the residuals are not Normally
distributed, it is usually preferable to use the median residual rather than the mean
residual.

Total error, mean error and median error are affected by the technique used to
construct the prediction system. Table 2 shows the total error, the mean error and
median error for the Belady-Lehman dataset based on four different analysis
techniques:
1. ordinary least squares regression;
2. robust regression (which is based on ignoring severe outliers and giving low

weights to moderate outliers);
3. median regression (which is based on minimising the deviation from the median);
4. ordinary least squares applied to the dataset with points A, B and C removed

(which is equivalent to deriving a prediction system restricted projects less than
300 KLOC in size).

Table 2 was derived by applying a particular analysis technique to the dataset deriving
a model relating effort to size, and then using the model and the actual size value to
ÒpredictÓ the value of effort.
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Table 2 Total, average and median error for prediction systems derived using different
analysis methods

Regression Analysis
Technique

Total error Mean error Median error

Least squares 3.663×10-3 -1.11×10-5 -80.11

Robust 8893.52 269.5 -6.63
Median 10705.91 324.4 0
Least Squares on
restricted dataset

-2.03×10-6 -6.1×10-5 -36.46

Least squares regression minimises the sum of squares of the residuals which forces
the total error and average error to zero. However, if the residuals are biased or some
of the residuals are outliers, the median error will not be close to zero. Median
regression minimises the sum of the absolute residuals. This forces the median residual
to zero, but if the residuals are not Normally distributed, the total error and average
error of the residuals may not be close to zero. Robust regression is based on reducing
the influence of atypical data points. It will therefore behave similarly to a median
regression.

2.6 Average Relative Error

Just as there is an argument that total error conceals the context of the estimate, there
is a similar problem with average error. Relative error can be accounted for using the
average relative error indicator:

If the relative error per project is not Normally distributed it may be preferable to use
the median relative error rather than the mean relative error.

2.7 Mean Magnitude of Relative Error - MMRE

The Mean Magnitude Relative Error (MMRE) prediction quality indicator is
probably the most widely used indicator in recent years, particularly when assessing
the performance of software effort estimation models. The MMRE is defined by
Conte et al. (1986) as:

1

1n

x x

x
i i

ii

i n −
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It is, however, not particularly meaningful for assessing predictions (as opposed to
providing a goodness of fit statistic). If the aim is to generate an estimate of the effort
for a new project, upper and lower bounds about the estimate are normally required,
in order to present a range of values likely to contain the actual value. In other words
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interest is in the deviation relative to the estimate not relative to the actual. This
formulation of the MMRE can be referred to as the EMMRE (Estimation MMRE).

The MMRE differs from relative error since the absolute value of the difference
between actual and predicted is used. This has the effect of preventing under- and
overestimates from canceling each other out. On the other hand, it obscures the fact as
to whether a prediction system has any bias, the knowledge of which could be used to
make corrections to any prediction generated.

In order to understand what the MMRE measures, consider a random variable x
distributed Normally with mean µ  and variance σ 2

. It has been demonstrated by

Iglewicz (1983) that for a sample of size n where x-bar is the average of the n
observations:

d
n

x xn i= − →∑1

2
σ

π
 as n → ∞

If we rewrite the MMRE as follows:

1
1

1
1

1 1n
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it is clear that if $xi  is an unbiased estimator of xi , the expected value of 
i
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i

x

x
z

ö
=  is 1

and if zi  is distributed Normally with mean 1 and variance σz , the MMRE tends to

the value σ
π

z 2 . This demonstrates that the MMRE is an estimate of the spread of

the variable z that will not be so vulnerable to large outliers as the root mean square
estimate. Since MMRE is a measure of spread it is incorrect to refer to it as a measure
of prediction accuracy. The variable z is a better indicator of prediction accuracy since
it has a defined optimum value (i.e. 1) which indicates clearly whether or not the
prediction system under- or overestimates.

Using the above argument, the EMMRE will be an estimate of spread of the variable

q
z

=
1

.

This discussion indicates that the quality of a prediction system can be reported in
terms of the average or median value of the prediction accuracy variables z or q, and
the MMRE or EMMRE should be used to assess the variability of z and q
respectively.

Table 3 shows these statistics for the Belady and Lehman dataset for each of the four
analysis techniques.
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Table 3. Relative error and spread statistics for the Belady-Lehman dataset
Regression Analysis
Technique

MMRE Mean z Median z EMMRE Mean q Median q

Least squares 1.4179 2.2227 1.8578 0.6499 0.8268 0.5383
Robust 0.5815 1.1806 1.0906 0.8508 1.467 0.9170
Median 0.8618 1.0954 1.0 0.9205 1.5896 1.0
Least Squares on
restricted dataset

0.9172 1.6603 1.5070 0.6400 1.025 0.6636

As would be expected, if we use the median z or median q statistics to assess which
prediction system is best we would assume that the prediction system derived from
the median regression was best with the system obtained using robust regression a
close second.

Similarly it is not surprising that if we were to use the mean q statistic, the least
squares based models appear best. However, it is surprising that the least squares
based prediction systems appear worst when judged on the mean z statistic. All the
relative error statistics make it clear that least squares models overestimate. Thus, the
large mean z value is probably due to one or more severe overestimates. This can be
confirmed by inspecting boxplots of the z and q variables.

Pickard et al. (1999) recommend inspecting boxplots of the residuals to compare
models. This gives a good indication of the distribution of the residuals and can help
explain the behaviour of the summary statistics. Similarly a boxplot of the accuracy
values can clarify the various prediction quality statistics. Figure 3 shows a boxplot of
the q values and Figure 4 shows a boxplot of the z values for each prediction system.
Note, the figures do not include a boxplot of accuracy from the prediction system
based on the restricted dataset because, being based on a different number of data
points, it would not be comparable with the boxplots from the other prediction
systems. Figure 4 confirms that there is one very large z value that will increase the
mean value.

Table 3 makes it clear that all the prediction systems overestimate (with the exception
of the system based on median regression). This is why the EMMRE is less than the
MMRE. This bias is also clear from the boxplots in Figures 3 and 4.

2.8 Pred (n)

Another widely used prediction quality indicator is Pred (n), which is simply the
percentage of estimates that are within n% of the actual value. Typically n is set to 25
so the indicator reveals what proportion of estimates are within a tolerance of 25%.
Clearly, Pred (n) is insensitive to the degree of inaccuracy of estimates outside the
specified tolerance level. For example, a Pred (25) indicator will not distinguish
between a prediction system for which predictions deviate by 26% and one for which
predictions deviate by 260%.
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As with MMRE, it is preferable to formulate Pred (n) for estimating by considering
the percentage of actuals within n% of the estimate.

Based on the discussion of EMMRE above, it is clear that when the prediction
accuracy (i.e. actual/estimate) is approximately Normal, Pred (n) has (asymptotically)

a functional relationship with EMMRE. If q
x

xi
i

i

=
$

 is distributed normally with mean

µ = 1  and variance σ q
2

, then the proportion of actuals within n% of the estimate

depends on the size of the variance compared with a Standard Normal variate which
has a variance equal to 1. The EMMRE provides an estimate of the variance of q.
Recalling that the mean of q is 1, the proportion of actuals within n% of the estimate
can be calculated using the tables of the standard normal variate and the ratio:

n
q100

σ

For example, if n=25% and EMMRE=0.5, an estimate of σ q
 is 0 5

2
. /

π
 which is

approximately 0.5/1.2533=0.3989. The proportion of actuals within 25% of the
estimate corresponds to the number of actuals in the range 0.75 to 1.25. This depends
on how the variance of q compares with the proportion n/100. In this case an upper
and lower bound of 0.25 around the mean, a standard deviation of 0.3989 corresponds
to plus or minus .25/.3989=0.627 standard deviations about the mean. From tables of
the standard normal deviate, this range corresponds to a probability of 0.46. Thus if a
sample comprises 100 estimate-actual pairs, 46 of the actuals should be within 25% of
the estimate.

Alternatively working backwards, in order to achieve a Pred (25)≥75%, the
probability of a value of q between the values .75 and 1.25 corresponds to 0.75 would
be needed. Thus, q would need to have a standard deviation of 0.216, and EMMRE
would need to have an asymptotic value of 0.27.

However, Pred(25) is not a measure of the spread of q. To understand what it
measures, consider what happens it a distribution is more peaked than a Normal
distribution. A sample from a more peaked distribution would have more values
within 25% of the mean than normal. Similarly a sample from a flatter distribution
would have less values within 25% of the distribution. Thus, Pred(25) is related to the
shape of the distribution q. Shape has two dimensions: skewness which describes
whether or not the distribution is symmetrical about a central value and kurtosis
which describes the extent to which the distribution peaks around its central value.
Pred(25) is therefore a measure of kurtosis.
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2.9 Balanced MMRE

1

1n

x x

x x
i i

i ii

i n −

=

=

∑
$

min( , $ )

A Balanced MMRE was suggested by Miyazaki et al. (1991, 1994) to ÔequallyÕ
weight over- and underestimates. A weakness of MMRE is that it is asymmetric in
that underestimates cannot exceed 100% whereas overestimates are unbounded. This
is particularly perverse inasmuch as this will tend to lead the estimator to choose a
prediction system that under-estimates. The Balanced MMRE indicator overcomes
this problem by dividing the absolute difference of actual and predicted by the lesser
of the actual and predicted. For this reason the Balanced MMRE will tend to give a
higher indication of error than the straightforward MMRE. Thus can be seen by
comparing the balanced MMRE shown in Table 4 with the MMRE and EMMRE
shown in Table 3.

Table 4. Other spread statistics for the Belady-Lehman dataset
Regression Analysis
Technique

Pred (25) Balanced
MMRE

Median
MMRE

Median
EMMRE

Root Mean
Square
Error

Relative
RMS

Least squares 0.12 1.5586 0.858 0.563 1591.07 0.0501
Robust 0.33 1.0419 0.484 0.504 1641.44 0.0509
Median 0.30 1.0720 0.537 0.464 1669.48 0.0513
Least Squares on
restricted dataset

0.20 1.0755 0.562 0.429 274.05 0.0208

The balanced MMRE has not been generally used, but Miyazaki et al. (1994) have
gone on to define other variants such as the inverted balanced MMRE and logarithmic
relative error. We are unaware of other researchers adopting these indicators.

2.10 Median MRE

A Median MRE indicator was used by Jorgensen (1995) instead of MMRE in order
to avoid the influence of outlier MRE values. It is intended that a Median MRE is
more representative of a typical estimate error than a mean. In a situation where there
are a few very large estimation errors and many smaller errors, that is, the error
distribution is positively skewed, the Median MRE will be less than the MMRE
value. For a negatively skewed distribution the reverse will be true. The Median MRE
is useful when the focus of concern is upon typical estimates rather than extreme
cases. In the light of the discussion of MMRE, it will be clear, that the median MRE
is going to be a more robust estimate of spread than the MMRE since it will be less
susceptible to outliers.

From JorgensenÕs analysis it appears that positive skewing is more commonplace and
in all cases the MMRE exceeds the Median MRE. This is the case for the Belay-
Lehman data as can be seen by comparing the MMRE and median MMRE in Tables 3
and 4.
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An implication of JorgensenÕs result is that if the estimator is concerned with putting
sensible bounds on an estimate, then the variability of underestimates should be
considered separately from the variability of overestimates, allowing non-symmetric
bounds about an estimate.

2.11 Mean Square Error

Conte et al. define the mean square error as:

MSE
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The argument for using the mean square error is that if an estimator is risk averse it
penalises large deviations more than small deviations since it is based upon the mean
of the sum of the squares of the residuals. It should be noted that if you have used
least squares regression, the mean square error should be adjusted according to the
number of independent variables (i.e. you would divide the sum of squares of the
residuals by n-p-1 rather than n, where p is the number of independent variables).
This method of calculation would give an unbiased estimate of the variance of the
residuals. The formula given above is useful for comparing prediction systems derived
using different analysis techniques.

An alternative to the Mean Square Error is the Root Mean Square Error which is the
square root of the MSE.

The mean square error suffers from the problem that it can be difficult to compare
values derived from different data sets although it is clearly possible to compare the
use of alternative models on the same data set.

2.12 Relative RMS

Conte et al. (1986) extend the mean square indicator to give the relative root mean
square error (Relative RMS) to represent the relative mean value of the error
minimised by the regression. This is defined as:
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Since the relative root mean square error divides the square root of the mean square
error by the average value of the dependent variable (which is obviously the same
value for all models fitted to the same dataset), it is directly correlated with the mean
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square error. That is, the rank order of the root mean square for different prediction
systems must be exactly the same as the rank order of the means square error. This
can be confirmed by inspection of Table 4.

Conte et al. state that the relative RMS is only appropriate when using regression
analysis to derive a prediction system. However, it is not clear why this is so, nor
what the asymptotic properties of the statistic are.

2.13 Other Indicators

Other indicators have been proposed such as weighted mean of quartiles of mean
relative errors. Prediction quality indictors related to quartiles can be related to shape

or spread. For example, consider the variable 
x

x
q

ö
= . If q is distributed Normally with

mean 1 and variance σq
2

, and a boxplot is constructed from a set of n variables qi, the

box length (i.e the difference between the 75 percentile value and the 25 percentile
value) will tend to 1.347×σq . However, if the distribution is more peaked than a

Normal distribution the interquartile range will be smaller, if the distribution is flatter
the interquartile range will be wider. Thus, the interquartile range would be a measure
of shape. However, none of these indicators have been used to any significant degree.
For this reason they have been excluded from this analysis. For further details the
reader is referred to Lo and Gao (1997).

From this section we see that many different accuracy indicators have been proposed
and that a na�ve interpretation could lead to the conclusion that many indicators
conflict with one another.  In other words indictor A favours prediction system 1 over
prediction system 2 whilst indictor B favours prediction system 2 over 1.  We have
argued that it is more helpful to regard the accuracy indicators as statistics describing
different properties of the residuals, or error terms.  There are four such properties,
namely central tendency, variance, kurtosis and skew.  Differences in accuracy
indicators can therefore easily be accommodated on the grounds that they are
measuring different properties of the residual variable.  Which properties are most
important depend upon oneÕs objectives.  This will be further explored in Section 4.

3. A Simulation Study

The discussion in Section 2 suggests that the behaviour of prediction quality
indicators is strongly influenced both by the analysis technique and by the
characteristics of the dataset used to derive the prediction system. In order to confirm
this finding, we undertook a simulation study.

We simulated four different datasets. In each case, the dataset comprised 31 data
points each of which was a vector of two variables: one independent variable and one
dependent variable. We chose a dataset of 31 points to represent a moderate size
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dataset and an odd number of points to simplify calculation of medians. The
dependent variable was related to the independent variable by a functional model
including an error term. The four datasets each had different characteristics:

1. A dataset with Normally distributed independent variables and a Normal error
term (i.e. a Normal dataset).

2. A dataset with a Gamma distributed independent variables and a Normal error
term, leading to a skewed dependent variable (i.e. a Gamma dataset).

3. A Normal dataset with 5% severe outliers (which were created by selecting 2 data
points at random and multiplying the dependent value by 10).

4. A Gamma dataset with 5% severe outliers.

Note. This procedure does not guarantee non-negative predictions, so any simulated
errors leading to negative predictions were truncated. This makes the ÒNormalÓ errors
actually truncated Normal error. Each simulated dataset was analysed using three
different analysis techniques: least squares multivariate regression, robust regression
and median regression.

Table 5 Dataset A
Prediction Quality
Indicator

Technique

T1 T2 T3
Total Error 166166.5 -0.00128 174496
Total Relative Error 0.327 -1.90e-09 0.350
Average Error 5360.211 -0.0000413 5328.902
Median Error -0.0000529 -5360.211 268.691
Average Relative Error 0.607 0.0071 0.790
Median Relative Error -3.23.e-09 -0.273 0.0167
Average Accuracy
(actual/estimate)

1.607 1.008 1.790

Median Accuracy
(actual/estimate)

1.000 0.727 1.017

MMRE 34.987 67.557 29.257
EMMRE 1.020 0.735 1.171
Pred (25) -% estimates 52% 29% 42%
Pred (25) - % actuals 52% 39% 45%
Median MRE 0.250 0.563 0.316
Median MMRE 0.250 0.360 0.341
Balanced MMRE 35.651 67.860 30.062
MSE 6.40e08 2.87e07 6.48e08
RRMS 1.164 1.136 1.172

We were interested in confirming the extent to which the prediction quality indicators
were indicators of the analysis technique and the dataset type. In order to avoid post-
hoc rationalisation we organised our simulation as a small blind experiment. One of the
authors (Pickard) simulated the datasets and then analysed them using the different
analysis techniques. She produced the prediction quality statistics shown in Tables 5
to 8. These tables concealed the identity of the analysis technique and the dataset.
One of the other authors (Kitchenham) was then asked to identify the datasets and the
techniques from the tables. Readers might like to attempt the task for themselves
before reading on.
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Table 6 Dataset B
Prediction Quality
Indicator

Technique

T1 T2 T3
Total Error 52541.29 0.00111 69519.56
Total Relative Error 0.143 2.65e-09 0.199
Average Error 1694.88 0.0000359 2242.567
Median Error 0.0000157 -1533.828 578.100
Average Relative Error 0.178 -0.0210 0.197
Median Relative Error 1.22e-09 -0.144 0.056
Average Accuracy 1.178 0.979 1.197
Median Accuracy 1.000 0.856 1.056
MMRE 1.474 1.967 1.475
EMMRE 0.521 0.481 0.556
Pred (25) -% estimates 52 42 55
Pred (25)- % actuals 55 52 52
Median MRE 0.205 0.267 0.262
Median MMRE 0.215 0.349 0.243
Balanced MMRE 1.704 2.129 1.717
MSE 2.05e08 2.01e08 2.06e08
RRMS 1.057 1.048 1.062

Table 7 Dataset C
Prediction Quality
Indicator

Technique

T1 T2 T3
Total Error -0.0135 0.000211 -6579.908
Total Relative Error -4.04e-08 6.30e-10 -0.0193
Average Error -0.0000435 6.79e-6 0.114
Median Error -0.0000539 104.121 -0.00467
Average Relative Error -0.0174 0.113 -0.179
Median Relative Error -1.21e-07 0.0170 -0.0193
Average Accuracy 0.983 1.049 1.050
Median Accuracy 1.000 1.017 0.995
MMRE 1.410 1.436 1.463
EMMRE 0.331 0.459 0.473
Pred (25) -% estimates 45% 52% 52%
Pred (25)- % actuals 45% 45% 52%
Median MRE 0.220 0.222 0.241
Median EMRE 0.254 0.264 0.250
Balanced MMRE 1.459 1.569 1.613
MSE 2.03e07 2.03e07 2.03e07
RRMS 0.418 0.418 0.418
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Table 8 Dataset D
Prediction Quality
Indicator

Technique

T1 T2 T3
Total Error 35718.43 0.0000932 5013.392
Total Relative Error 0.0757 1.84e-10 0.0098
Average Error 1152.2 3.01e-06 161.722
Median Error 0.000148 -621.445 -415.347
Average Relative Error 0.110 0.0134 0.0367
Median Relative Error 2.70e-08 -0.056 -0.057
Average Accuracy 1.110 1.013 1.037
Median Accuracy 1.000 0.947 0.943
MMRE 27.804 31.001 29.923
EMMRE 0.473 0.431 0.443
Pred (25) -% estimates 42% 42 42
Pred (25)- % actuals 48% 42 42
Median MRE 0.333 0.275 0.300
Median EMRE 0.251 0.326 0.303
Balanced MMRE 27.945 31.102 30.035
MSE 2.25e07 2.04e07 2.04e07
RRMS 0.290 0.276 0.276

Kitchenham was able to identify correctly the techniques and correctly identified the
Gamma with outliers dataset and Normal without outliers dataset. She misidentified
the Normal with outliers dataset and the Gamma without outliers dataset. The key to
Tables 5 to 8 is as follows:

•  Technique 1 is median regression.
•  Technique 2 is ordinary least squares regression.
•  Technique 3 is robust regression.
•  Dataset A is Gamma with outliers.
•  Dataset B is Normal with outliers.
•  Dataset C is Normal without outliers
•  Dataset D is Gamma without outliers.

The techniques are easy to distinguish because ordinary least squares always results in
a total error very close to zero, and median regression always results in a median
average accuracy of 1. It is more difficult to distinguish the type of dataset from the
prediction indicators. However, the gamma distribution can be detected by order of
magnitude differences between the MMRE and the EMMRE. The effect of outliers
can be detected by a relatively poor median accuracy and Pred(25) values for
prediction systems derived using ordinary least squares.

Through this simple experiment we have shown that the by use of the entire set of
indicators it is possible to differentiate between prediction systems even when done
on a blind basis.  The relationship between the underlying nature of the dataset and
the indicators is, however, more complex.
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4. Choosing Prediction Quality Indicators

Conte et al. (1986) provide a useful but less comprehensive comparison of predictive
model evaluation criteria, examining the R2 value along with variations of the MMRE
and RRMS measures over a set of four predictive models. While certainly of some
general value, the responsibility for making use of the comparison is then effectively
passed to the reader. Conte et al. make following comments: ÒIt is unfortunate that
these criteria... are often not in agreement... in the sense that we cannot say which
model is best without making a subjective judgement on the relative importance of the
evaluation criteria.Ó (p. 175); ÒIt is still the researcherÕs responsibility to decide which
model is best by weighing the objective scores subjectively when they do not provide
consistent results.Ó (p. 166). They go on to suggest that the pair of measures MMRE
and Pred (25) seems the most suitable, in the absence of any generally accepted
standard.

In this paper we have shown that the MMRE and Pred(25) statistics measure
different attributes of the distribution of the prediction accuracy variable
z=estimate/actual, so it is not surprising that they are not always in agreement. In
addition, since the are respectively measures of spread and kurtosis, it is also
necessary to consider a measure of the central tendency, and a measure of the
skewness, of the distribution of z. We have also suggested that it is preferable to use
the variable q=actual/estimate rather than z with appropriate adjustments to the mean
magnitude relative error and the Pred(25) statistics.

Theoretically, we could base a comparison of different models on the statistic that
best fitted our prediction objectives. If we wanted unbiased estimates we might prefer
the prediction system for which the mean accuracy was closest to 1. If we wanted a
prediction system that produced the most stable estimates, we would select the
prediction system with the smallest MMRE. If we wanted a prediction system that
produced that largest number of very close estimates, we would choose the prediction
system with the largest Pred(25) value. However, we have shown that the analysis
technique and the characteristics used to generate a prediction system will affect the
value of prediction quality statistics. Thus, if we have a defined prediction objective
we may need to select the method of generating the prediction system rather than the
quality statistic.

Other issues affect our choice of central tendency and spread statistics. If we wanted a
prediction system that was unbiased or stable for the most typical estimating
situations we might prefer the median accuracy and the median MRE respectively.
Basing quality indicators on means corresponds to a risk averse strategy, since it
would select the prediction system that did best under worst conditions. Basing
quality indicators on medians corresponds to a risk seeking strategy, since it selects
prediction system that copes best under normal circumstances.

In addition, our prediction objectives are influenced by our role. For example, an
estimator might be happy to characterise the Òbest estimateÓ in terms of accuracy
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(actual/estimate). A project manager might be more concerned about estimate error
(actual-estimate). Error indicates the extent to which a project is profitable or not and
the extent to which deviations from plans can be accommodated. Thus a project
manager might be more interested in statistics related to the distribution of error rather
than prediction accuracy.

Project managers and more senior managers have different concerns. Senior managers
are concerned about a set of projects i.e. a portfolio. The portfolio approach, as
suggested in Kitchenham and Linkman (1997), requires a prediction system that
optimises characteristics of the portfolio such as minimising overall loss or maximising
overall gain. It would be concerned about statistics relating to total error and also the
extent to which individual project estimates were unbiased.

Table 9 indicates that different prediction quality indicators are geared towards
different estimation objectives associated with the roles of the people involved in
using estimates. It is interesting to note that none of the usual summary statistics
report measures of skewness, although the ratio of (i) the mean and median error or (ii)
ratio of mean to median accuracy are simple indicators of skewness.

Where the objectives are unknown, researchers should choose an indicator from each
category in order to identify for what purposes a prediction system is best suited. In
addition, the R2 and adjusted R2 may be generally useful in indicating whether there is
any empirical basis for the prediction system. Any model where the R2 value is not
significant can automatically be discarded.

Table 9: Estimation Objectives and Prediction Indicators
Role Error Indicators Error Variance

Indicators
Error Skewness Error Kurtosis

Project
Manager (risk
averse)

Average Error Mean Square
Error

Project
manager (risk
seeking)

Median Error Median Absolute
Error2

Senior
Manager
(portfolio)

Total Error

Total Relative
Error

Estimator (risk
averse)

Mean Accuracy MMRE,
EMMRE,
Balanced MMRE

Pred(25)

Estimator (risk
seeking)

Median Accuracy Median MRE Interquartile
accuracy range

Table 9 also indicates that portfolio based measures are somewhat different to error
and accuracy measures. For portfolio analysis you are likely to be interested in
                                                
2 This measure is not discussed in section 2.
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whether or not you have a homogeneous portfolio. So instead of measures of spread
or shape, you might be interested in total error or total relative error for different
segments of the portfolio (e.g. very large projects, average projects and very small
projects).

Problems arise because estimating objectives are seldom one-dimensional. Although
we might have a preference for an unbiased estimate, it is unlikely we would really
want a prediction system that ensured lack of bias at the expense of large estimate
error. Thus, except for portfolio assessment, we recommend selecting at least one
measure of accuracy or error and one measure of error or accuracy variance. In addition
it may be necessary to provide appropriate shape measures. Furthermore, measures of
accuracy and accuracy variance and accuracy shape should be consistent with one
another, for example, if you are using actual/estimate as your accuracy measure, you
should use EMMRE not MMRE as a measure of accuracy variance.

However, a more complete understanding of the distribution can be obtained by
constructing boxplots of the residuals or the accuracy. Boxplots can be regarded as an
improvement upon simple summary statistics because they allow a visual display of
central value, spread and shape which also highlight the extent to which the fitted
model is vulnerable to outliers.

5. Conclusions

Our analysis and results suggest that the two statistics most frequently used to assess
the quality of prediction systems, MMRE and pred(25), are respectively measures of
the spread (variance) and shape (kurtosis) of the accuracy (estimate/actual). We
believe that it is necessary to report measures of accuracy (i.e. actual/estimate) as well
as measures of the spread and shape of the accuracy distribution. Furthermore, we
suggest that boxplots of the residuals (actual error) and accuracy give a better
assessment of prediction quality than one or two summary statistics.

We have presented evidence that prediction quality indicators are affected both by the
analysis technique and the characteristics of the dataset from which the prediction
system was derived. This relationship suggests another good reason for presenting
results in the form of boxplots. Boxplots make it relatively easy to compare estimates
derived from different prediction systems while at the same time making clear the
nature of the dataset in terms of estimate bias and the impact of outliers.

In addition, the concept of errors and accuracy values being represented as a
distribution of values supports improved methods of comparing prediction systems.
For example, Stensrud and Myrveit (1998) suggest using a paired t test to test whether
the absolute relative error obtained using one prediction system is significantly different
from the absolute relative error obtained using another system. Pickard et al. (1999) used
a non-parametric sign test on the residual values obtained from different prediction
systems. Both these approaches allow two prediction systems to be compared using a
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formal statistical test of significance rather than compared subjectively by means of
simple descriptive statistics.

Thus to summarise, whilst many of the arguments in this paper may appear arcane to
the non-statistician, it is essential that we understand how to make comparisons
between competing prediction systems.  Researchers have employed a wide range of
different accuracy indicators, some of which appear to give contradictory results.
Without understanding what the various indicators are describing, meaningful
comparison is not possible.  And if we cannot make meaningful comparisons we
cannot make progress.  We have argued that the indicators are statistics describing
residual values and that a number of different properties of the residuals need to be
described.  Moreover, different properties will be of interest in different
circumstances.  For this reason we urge researchers to provide a range of indicators
such as offered by descriptive techniques such as boxplots.
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