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Abstract

Software metric-based estimation of project development
effort is most often performed by expert judgment rather
than by using an empirically derived model (although such
may be used by the expert to assist their decision). One
question that can be asked about these estimates is how sta-
ble are they with respect to characteristics of the develop-
ment process and product? This stability can be assessed
in relation to the degree to which the project has advanced
over time, the type of module for which the estimate is be-
ing made, and the characteristics of that module. In this
paper we examine a set of expert-derived estimates for the
effort required to develop a collection of modules from a
large health-care system. Statistical tests are used to iden-
tify relationships between the type (screen or report) and
characteristics of modules and the likelihood of the asso-
ciated development effort being under-estimated, approx-
imately correct, or over-estimated. Distinct relationships
are found that suggest that the estimation process being ex-
amined was not unbiased to such characteristics.

1 Introduction

The ability to accurately predict the development effort
required for software systems and their constituent mod-
ules, as early as possible in the development process, is of
considerable importance to any organization carrying out
software development. Accuracy for software metric mod-
els may of course be defined in many different ways de-
pending on the cost function for errors. Commonly used
measurements of software metric model goodness include
absolute and relative errors as well as threshold measures
such aspred(). The optimal measurement of model good-
ness depends on both project and organizational character-
istics which can vary widely.

In this analysis a simplification of the widely usedpred()
measure is used, where a successful estimation is within
35% of the actual, and under- and over-estimates are defined
accordingly. This allows for the use of classification mod-
els to predict types of estimate errors. Development effort
predictions play an important role in both project manage-
ment and higher-level management decisions. These deci-
sions include acceptance/rejection of projects, resource al-
location, and planning, monitoring, and controlling devel-
opment.

Predictions of development effort can be made in terms
of person-hours (or days, months, or years depending on
the scope of the project) using system/module characteris-
tics commonly referred to as software metrics. These may
include assessments of module size and complexity, each
of which can be measured using many different software
metrics, including those available from the design phase.
The lower the level of detail of the required information for
a predictive model (i.e. the earlier the model can be used
with an acceptable degree of accuracy), the more valuable
the model will be since it is in the early stages of develop-
ment that such estimates are most crucial.

When estimates of effort are made, using whatever tech-
nique (such as expert opinion, regression models, case-
based reasoning, neural network models, fuzzy logic mod-
els, and so on), some subjectivity is usually involved – either
in making the estimates themselves (since many estimates
are in fact simplyguestimatesbased on subjective opinion)
or in calibrating some inputs into the model such as com-
plexity factors in function point analysis (FPA) [1].

FPA can be subjective in two main ways. First, a count
must be made of the various functions, which are external
inputs, external outputs, internal logical files, external logi-
cal files, and external inquiries. These functions are classi-
fied as either simple, average, or complex. These counts are
then used to construct a weighted count, with the weightings
obviously dependent on complexity (the weights depend on



the function type and range from 3 to 15). Second, the total
count for a system is then multiplied by a subjective pro-
cessing complexity score constructed from rating 14 factors
on a 0 to 5 scale (from 0 being not present or no influence,
through to 5 being strong influence throughout).

Given the scarcity of data for calibrating such models
some subjectivity is inevitable, and probably desirable. If
the estimation process was limited to only empirical models
then the small data sets, coupled with a high proportion of
outliers, would be unlikely to result in generalisable mod-
els. The inclusion of subjective elements in such models
allows for a great reduction in the number of variables, as
well as the accounting for factors that are difficult to mea-
sure. Expert opinion is often difficult to quantify but can be
an effective estimating tool, in its own right or as an adjust-
ing factor for algorithmic models [13].

This realization has recently prompted researchers to re-
visit their approach to the issue of estimation. Since the
1970s work has largely been concentrated on developing
algorithmic estimation models, under the assumption that
this would (by its very nature) result in improvements in es-
timation accuracy. Whilst some models have indeed proved
to be useful in specific cases, their general applicability re-
mains uncertain. In a study of the causes of estimation er-
ror [9] found that, whilst subjective guesses indeed tended
to result in inaccurate estimates, accuracy was not improved
with the use of algorithmic models. There are other rea-
sons why some practitioners choose not to use algorithmic
models, as illustrated by the following quote taken from the
estimation methodology of a major software house:

The current [estimation] methodology is far too
complex and difficult to use. This is demon-
strated by the fact that it is not used. In fact,
each person undertaking estimation tends to
utilize their own heuristic approach.

Such sentiments are also partly behind the demand for sim-
plified versions of techniques such as function point analy-
sis, as these are seen by some to be unnecessarily complex
and/or detailed (e.g. see [10]). For instance, another major
software house states:

Because we can write programs and develop
systems very quickly: : : it is important that
any estimating techniques we use are quick and
easy to apply, otherwise we could end up tak-
ing as long to estimate as we take to write the
programs.

Sometimes the choice of method is imposed – [5] de-
scribe the situation where an organization makes a signif-
icant change to its software process, rendering algorithmic
models developed and calibrated from historical data virtu-
ally worthless. Under these circumstances expert estimation
may be the only alternative.

As a result we have begun to see a resurgence in the use
of informed subjective estimation as a realistic alternative.
In a comparative study of case-based reasoning, function
point analysis COCOMO [2], and expert estimation, [11]
found that the expert out-performed all the other techniques
in terms of accuracy and consistency. Moreover, the case-
based reasoning method, which attempts to mimic the ex-
pert estimation process, was the next best performed. Their
study also reported prior evidence of the extensive use of
expert estimation in industry. The results of a recent survey
of software houses has provided further verification of the
widespread use of expert judgment as either the only esti-
mation method used or as a back-up to other models [3].
[5] provide further evidence of the effectiveness of expert
judgment as an estimation method in a small experiment
based on the personal software process [7]. [6] also re-
ports the results of a case study of estimation practices, ulti-
mately suggesting that research should be directed towards
supportingexpert judgment rather than abandoning it as a
viable technique.

This rather pragmatic approach may be even more fea-
sible if more formally combined with the “estimation by
analogy” method. Experts provide their estimates based on
what they recall of previous similar (or analogous) mod-
ules or projects, perhaps with adjustments to cope with any
differences between the previously built objects and the ob-
ject to be developed. [4] found that these two approaches
were far more widely employed in industry than algorith-
mic models, a finding also supported by [8]. As a result, the
analogy approach has also seen a greater degree of exposure
recently (e.g. see [12]).

2 Misestimation of effort

Despite the importance of accurate effort estimates, ac-
ceptable levels of accuracy for effort estimation are surpris-
ingly low with a common measure for agoodmodel being
the attainment of estimates that are within 25% of the ac-
tual figure at least 75% of the time (this can be written as
pred(0:25) � 0:75). Whilst this level of accuracy may not
appear ambitious it is seldom met in practice, or even in
post-hoc academic studies. Thus it can be seen that mises-
timation is more the norm for software metric models than
an occasional and unfortunate occurrence.

It might be supposed that the misestimation of develop-
ment effort required for modules within a system (and also
for systems themselves within an organization) is not en-
tirely random when these estimates include subjective hu-
man input. Some associations, such as between the proba-
bility of significant misestimation and the sizes or types of
the modules/systems, may be found to exist.
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Further evidence of the plausibility of such effects may
be taken from the following comment from one of the soft-
ware houses referred to above: “We still get it wrong.
We under estimate constantly. Not so much on the small
projects, but quite significantly on the larger ones.”

These associations between characteristics of projects
and the likelihood of misestimation may exist due to a large
number of causes including:

1. changes in technology that are not fully understood
in terms of their effect on effort(such as newer tools
that makes some types of module easier to develop),

2. levels of personnel experience and skills (such factors
are often difficult to assess, not to mention personal
biases that project managers may have),

3. a lack of understanding of the module/system charac-
teristics (for example, some features may be seen as
simple by a particular project manager when in fact
they require substantial development effort),

4. other influences due to the estimator’s background, or

5. any number of other related reasons (including polit-
ical and motivational goals – the “price-to-win” ap-
proach, whereby a low estimate is provided simply
in order to win a contract in a competitive tendering
situation, is an example of how these goals may cir-
cumvent the estimation process).

In short, the existence of such consistent biases in subjec-
tive (or partially subjective) estimates seems plausible and
could even be argued as being inevitable with any estima-
tion procedure involving such subjectivity.

The question would seem to be less that of whether or
not such biases exist and more concerned with thesignifi-
canceof these biases. The question of significance is harder
to answer since it depends on organizational characteristics
(such as available excess capability, project cost margins,
project portfolio construction, and so on), and here only the
issue of identifying statistically significant associations be-
tween module characteristics and estimation performance
will be pursued.

3 Uses of models of systematic biases in effort
estimation

Knowing the direction and magnitude of any systematic
biasing effect could be seen as significant to project man-
agement for at least three reasons. First, since much ef-
fort estimation is performed using expert opinion or subjec-
tively calibrated models then any information that enables
bias correction in these estimates would be invaluable for

project management purposes. Errors that are systemati-
cally made may be preventable by educating project man-
agers that they are making such errors or by automatically
correcting estimates in such circumstances. A manager who
consistentlyunderestimates the effort required for database
modules, and underestimates the effort for larger modules
is just as valuable in project management as an equally con-
sistent correct estimator providing that the necessary adjust-
ments are known. In some sense such adjustments may also
be technology independent, or at least more so than algo-
rithmic estimating models themselves. This would possibly
enable their use for corrections on new forms of develop-
ment where less empirical data is available.

Second, any such associations would indicate that mod-
els that treat the difference between estimates and actual ef-
fort as independent and identically distributed random vari-
ables would be flawed.

The third reason for such models being useful is that
knowing which types of modules or systems are more likely
to be misestimated allows project managers to assess the
risk of estimates. For example, for modules that are high
risk for underestimating it may be necessary to allow for
more slack in the process. There has been little work on the
risk of software metric models and this could be seen as a
useful foundation for such work to be built on.

4 Health project data

In order to examine the possibility and nature of such
misestimation patterns a data set of 77 observations was
formed from a large health system data set. The original
data set contained 85 modules for which all module data
was available, less three without effort estimates and an-
other five which included both reports and screens (without
providing separate effort measures or estimates). The vari-
ables and their associated codings shown in Table 1 were
used.

As can be seen theModifies, Type, Entry, andLinksvari-
ables are all binary, and there are three levels forEstimate
andSize. If Estimateis treated as the response variable then
there are 48 levels in the independent variables.

This data can be analyzed in terms of counts for each
level of each variable. Since there are six variables it is dif-
ficult to meaningfully illustrate the frequencies so that rela-
tionships can be noted for further investigation, and also to
check that the cells have a reasonable count.

Tables of counts for each variable can be constructed in-
dividually. All variables show a reasonable split between
classes, with onlyEntry class 0 having a proportion less
than 25%, in this case 13%. All other classes for all vari-
ables contain at least 25% of the observations for that vari-
able, which seems adequate for the purposes of this analy-
sis.
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Variable Code Description
Modifies 0 The sum of create, modify, and delete transactions is zero.

1 The sum of data-altering transactions is non-zero.
Type 0 The module is made up entirely of screens.

1 The module is made up entirely of reports.
Entry 0 Data cannot be entered from this module (for example, report parame-

ters or search criteria as well as standard data entry and editing).
1 Data can be entered by the user.

Links 0 Only one table was used (all modules accessed at least one table).
1 More than one table was accessed.

Estimate -1 The effort was at least 35% underestimated.
0 The estimated effort was within 35% of the actual.
1 The effort was at least 35% overestimated.

Size 1 The bottom one-third of the modules as sized by actual size.
2 The middle one-third of the modules as sized by actual size.
3 The top one-third of the modules as sized by actual size.

Table 1. The variables in the model

Entry Links Modifies Size
Entry - - - -
Links 3.765 (0.052) - - -

Modifies 0.011 (0.915) 6.715 (0.10) - -
Size 1.495 (0.473) 49.479 (0.000) 4.412 (0.110) -
Type 0.135 (0.713) 8.263 (0.004) 54.110 (0.000) 7.852 (0.020)

Table 2. Associations between the predictor variables

The data was then analyzed using contingency table
analysis, logistic regression, and log-linear modeling. Con-
tingency analysis is used to initially determine the associ-
ations between theEstimatetype and the other five vari-
ables. Logistic regression is used to determine the ability of
the independent variables to predict underestimates, errors
in estimation, and overestimates (using the 35% threshold
in each case). Log-linear modeling is then used to examine
the main predictor variables in terms of associations with
the three levels ofEstimate.

5 Contingency table analysis

5.1 Introduction

Contingency table analysis is suited to analyzing the in-
dependence or otherwise of the relationships between the
variables in terms of the counts in each cell. If the counts
follow the marginal expectations then independence can be
concluded. Otherwise, an association exists and will need
to be further investigated.

5.2 Analysis

There are associations among the predictor variables as
shown in Table 2 where the�2 statistics and their signifi-
cance levels are reported. The significant associations are
betweenSizeandLinks, TypeandLinks, TypeandModifies,
andTypeandSize.

When analyzing the data using�2, Phi, Cramer’s V, and
the Contingency Coefficient to test for associations between
each variable (exceptEstimate) andEstimatethe results in
Table 3 were found. The crosstabs are shown in Tables 4
to 8.

From Table 3 it can be seen that the value ofEstimateis
associated withSize, Type, andLinks. There is also a poten-
tial relationship withModifies. Entry does not seem to be
associated with the development effort estimate. However,
it should be remembered that these variables are intercorre-
lated, with, for example, smaller modules being more likely
to contain no table links. The fact that such correlations ex-
ist suggests that not all variables may be needed in a model
for Estimate.
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Variable Statistic Value sig.
Size �2 37.079 0.000

Likelihood Ratio 41.004 0.000
Phi 0.694 0.000
Cramer’s V 0.491 0.000
Contingency coefficient 0.570 0.000

Type �2 8.886 0.012
Likelihood Ratio 10.874 0.004
Phi 0.340 0.012
Cramer’s V 0.340 0.012
Contingency coefficient 0.322 0.012

Entry �2 2.854 0.240
Likelihood Ratio 3.315 0.191
Phi 0.193 0.240
Cramer’s V 0.193 0.240
Contingency coefficient 0.189 0.240

Links �2 38.047 0.000
Likelihood Ratio 41.699 0.000
Phi 0.703 0.000
Cramer’s V 0.703 0.000
Contingency coefficient 0.575 0.000

Modifies �2 5.019 0.081
Likelihood Ratio 5.549 0.062
Phi 0.255 0.081
Cramer’s V 0.255 0.081
Contingency coefficient 0.247 0.081

Table 3. Associations with Estimate

Estimate
Size -1 0 1 Total
1 1 6 19 26
2 12 9 4 25
3 19 5 2 26
Total 32 20 25 77

Table 4. Sizeand Estimate

Estimate
Type -1 0 1 Total
1 20 14 24 58
2 12 6 1 19
Total 32 20 25 77

Table 5. Typeand Estimate

Estimate
Entry -1 0 1 Total
0 5 4 1 10
1 27 16 24 67
Total 32 20 25 77

Table 6. Entry and Estimate

Estimate
Links -1 0 1 Total
0 0 2 17 19
1 32 18 8 58
Total 32 20 25 77

Table 7. Linksand Estimate

Estimate
Modifies -1 0 1 Total
0 12 7 3 22
1 20 13 22 55
Total 32 20 25 77

Table 8. Modifiesand Estimate

Estimate Model 1 Model 2 Model 3
-1 1 1 0
0 0 0 0
1 0 1 1

Table 9. The three models
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5.3 Conclusions from contingency table analysis

For Sizelarger modules are more likely to be underes-
timated in terms of effort, while smaller modules are more
likely to be overestimated. The latter aspect is predictable
since small modules will generally not take less than a min-
imal amount of time that reflects the general overhead asso-
ciated with developing a module irrespective of its size or
other characteristics. However the tendency for large mod-
ules to be underestimated is more pronounced than might
have been expected.

TheTypeof the module seems to affect effort estimates
in the manner that screens are much more likely to be over-
estimated, whereas reports are much more likely to be un-
derestimated. This indicates a definite bias on the part of the
estimator which would be interesting to investigate further
on subsequent projects to see if it is a general bias or one
specific to this project.

Modules without anyLinksare more likely to be overes-
timated, while those withLinksare more likely to be under-
estimated. This is consistent with theSizeeffect mentioned
above since larger modules are more likely to have several
tables involved. While this variable may be interesting, the
correlation betweenSizeand itself may mitigate against its
usefulness in modeling.

6 Logistic regression

6.1 Introduction

Logistic regression is a suitable technique for the prob-
lem of classifying the modules into two classes. The output
of the resulting equation expresses the probability of mem-
bership to the second group (with one minus this probability
being that of the observation belonging to the first group).

The predictions of probabilities can be turned into clas-
sification by using a threshold, usually 0.5 (corresponding
to 50%, i.e. the most likely class) although the actual value
used depends on the cost of incorrect decisions. For exam-
ple, if incorrect classifications to the first group were more
expensive than to the second group the cut-off point may be
lowered to move some of the more marginal decisions into
the second class. In the absence of any guidelines here the
default value of 0.5 is used.

When developing the logistic regression models the
method used was to enter all five predictor variables (Links,
Size, Type, Modifies, andEntry) and then pick out the one
or two most significant for further investigation. Assum-
ing that two variables were reasonably related toEstimate,
these variables were then used individually, in combination,
and then in combination with an interaction.

Finally the model with the one or two variables (but with-
out the interaction) was tested against the full model to see

if any of the other variables could be influential. If this test
was not significant, best indicated by the fact that the dif-
ference in deviance would be insignificant even with one
degree of freedom, then the analysis ended there and the
best model was selected. If the effect of the remaining vari-
ables was significant or almost significant then each of the
remaining variables were tested to see if any one could re-
duce the deviance significantly. The process was repeated
as necessary to see which variables were useful.

Thus the process may be summarized as:

1. run the analysis using all five predictor variables with
Estimateas the dependent variable

2. select all variables that have significance levels of less
than 5%

3. add variables that are close to being significant

4. develop models using

(a) each of the significant or nearly significant vari-
ables separately

(b) all of these variables included

(c) all of these variables plus their interaction(s)

5. test the significance of adding the remaining variables

6. if these variables provide a significant or close to sig-
nificant result then

(a) test adding each separately

(b) add the significant variable(s) and repeat the
process

7. repeat until no further variables can be added.

As well as considering the significance of changes in the
deviance statistics, Akaike’s Information Criterion (AIC)
was also used to encourage parsimonious models. How-
ever, where small differences in AIC existed the deviance
statistic was used to select between the simpler and more
complex model.

Since the problem as it stands deals with three classes,
and ordinary logistic regression is only suitable for binary
classification a modification of the goal is required (nomi-
nal and ordinal logistic regression are other options here).
Logistic regression models were used to separately predict
three variables, defined as shown in Table 9.
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Model Deviance df Parameters AIC �2 df p-value
Constant 104.539 76 1 106.539
Size 73.384 74 3 79.384 31.155 2 0.0000
Type 99.734 75 2 103.734 4.806 1 0.0284
Size + Type 69.641 73 4 77.641 34.898 3 0.0000
Size + Type + Interaction(Size, Type) 66.622 71 6 78.622 37.917 5 0.0000
Size + Type + Entry + Links + Modifies 67.399 70 7 81.399 37.140 6 0.0000

Table 10. The logistic regression models for identifying underestimates

Term Deviance Change df p-value
Size 31.155 2 0.0000
Type 4.805 1 0.0284
Sizej Type 30.093 2 0.0000
Typej Size 3.743 1 0.0530
Interaction(Size, Type)jSize and Type 3.019 2 0.2210
Entry, Links, Modifiesj Size and Type 2.242 3 0.5237

Table 11. The analysis of deviance for the logistic regression models for identifying underestimates

Predicted 0 Predicted 1 Percentage Correct
Observed 0 34 11 75.56
Observed 1 6 26 81.25

Table 12. The classification table for the underestimates model

6.2 Model 1 – underestimates

The first model for predicting underestimates produced
the results shown in Table 10. From this table it is possible
to construct Table 11 which shows the change in deviance
for each term.

From Tables 10 and 11 it can be seen that the best model
is SizeandType. Adding Sizeto Type is certainly signif-
icant and adding the variables in the reverse order still re-
sults in a p-value of 0.0530 forType. This is close enough to
use, especially since AIC is also minimized for this model
(77.641). Adding an interaction to this model, or the re-
maining three variables does not improve the model suffi-
ciently. The performance of the model is shown in Table 12
with a cut-off point of 0.5.

logit(Under) = �0:4989+ 1:3093Type � 4:2847Size1

� 1:4696Size2

(1)

The model is therefore as shown in Equation 1. This can
be interpreted as meaning that for a large (Size3) screen-
based module the probability of the estimate being an un-
derestimate is about 69% (note that screens areType=1,
and reports areType=2). For a report the probability in-
creases (to 89%), while for smaller modules the probability

decreases (to 3% and 34% respectively forSize1andSize2
screens, and 10% and 66% forSize1andSize2reports).

Thus it can be seen that the size and type of the mod-
ule do appear to share an association with the quality of
the estimate in terms of project management making under-
estimates. More specifically, reports are more likely to be
underestimated as are larger modules.

6.3 Model 2 – errors

The second logistic regression model for predicting er-
rors in estimates produced the results shown in Table 13.
Using these results Table 14 can be obtained showing the
change in deviance for each term. The lack of data pre-
vented the development of a model including the interaction
betweenLinks andSizeeven if Sizewas considered suffi-
ciently significant to warrant further investigation. There
are zero links to other tables only for small modules.

From Tables 13 and 14 it can be seen that the best model
is Links. This does not quite minimize AIC (88.634 versus
88.475 for bothSizeandLinks) but is very close. Adding
other variables toLinks does not improve the model suffi-
ciently. The performance of the model is shown in Table 15
with a cut-off point of 0.5. Since the model only produced
two values (0.6897 and 0.8947) taking any value between
these two results in the performance shown in Table 16
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Model Deviance df Parameters AIC �2 df p-value
Constant 88.209 76 1 90.209
Size 86.218 74 3 92.218 1.991 2 0.3696
Links 84.634 75 2 88.634 3.574 1 0.0587
Size + Links 80.475 73 4 88.475 7.734 3 0.0518
Size + Type + Entry + Links + Modifies 80.118 70 7 94.118 8.091 6 0.2315

Table 13. The logistic regression models for identifying errors in estimates

Term Deviance Change df p-value
Size 1.991 2 0.3695
Links 3.575 1 0.0284
Sizej Links 4.159 2 0.1250
Links j Size 5.743 1 0.0166
Entry, Type, Modifiesj Size and Links 0.357 3 0.949

Table 14. The analysis of deviance for the logistic regression models for identifying errors in estimates

Predicted 0 Predicted 1 Percentage Correct
Observed 0 0 20 0.00
Observed 1 0 57 100.00

Table 15. The classification table for the errors in estimate model

Predicted 0 Predicted 1 Percentage Correct
Observed 0 18 2 90.00
Observed 1 40 17 29.82

Table 16. The classification table for the errors in estimate model (cutoff 0.74)

logit(Error) = 2:1401� 1:3416Links (2)

The model is therefore as shown in Equation 2. For a
module with no links to other tables the probability of an
error in estimation of greater than 35% is 89%, and with
links this drops to 69%. Thus it can be seen that the inci-
dence of links to other tables from the main table is asso-
ciated with more accurate estimation. Thus more complex
and larger modules seem to have been estimated more ac-
curately, which could suggest that more care was taken of
their estimates or that more care was taken with their man-
agement to keep them to schedule.

6.4 Model 3 – overestimates

The third logistic regression model for predicting over-
estimates in effort produced the results shown in Table 17.
From here Table 18 can be obtained showing the change in
deviance for each term.

From Tables 17 and 18 it can be seen that the best model
is Size, Type, andEntry. The addition ofLinks andModi-

fiesdoes not seem to improve estimation. This model also
minimizes AIC (63.687). The performance of the model is
shown in Table 19 with a cut-off point of 0.5.

logit(Over) = �1:7646+ 3:9111Size1 + 1:1522Size2

� 2:9399Type + 2:6532Entry

(3)

The actual model is the one shown in Equation 3. In
this case the smaller modules are more likely to be overesti-
mated, as are modules for data entry. Reports are less likely
to be overestimated than screens.

This model is consistent with that obtained for predicting
underestimates where this was associated with larger mod-
ules that were screen based. Here however a new variable,
Entry, has emerged as useful for classification. This vari-
able was only the third in the entry procedure, and only
seems to be influential after accounting forSizeandType.
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Model Deviance df Parameters AIC �2 df p-value
Constant 97.073 76 1 99.073
Size 66.375 74 3 72.375 30.698 2 0.0000
Type 86.508 75 2 90.508 10.565 1 0.0012
Size + Type 58.763 73 4 66.763 38.310 3 0.0000
Size + Type + Interaction(Size, Type) 57.868 71 6 69.868 39.205 5 0.0000
Size + Type + Links 54.112 72 5 64.112 42.961 4 0.0000
Size + Type + Modifies 58.754 72 5 68.754 38.319 4 0.0000
Size + Type + Entry 53.687 72 5 63.687 43.386 4 0.0000
Size + Type + Entry + Links + Modifies 52.352 70 7 66.352 44.721 6 0.0000

Table 17. The logistic regression models for identifying overestimates

Term Deviance Change df p-value
Size 30.698 2 0.0000
Type 10.565 1 0.0012
Sizej Type 27.745 2 0.0000
Typej Size 7.612 1 0.0058
Interaction(Size, Type)jSize and Type 0.895 2 0.6392
Entry j Size and Type 5.076 1 0.0243
Links j Size and Type 4.651 1 0.0310
Modifiesj Size and Type 0.000 1 1.0000
Links, Modifiesj Size, Entry, and Type 1.335 2 0.5130

Table 18. The analysis of deviance for the logistic regression models for identifying overestimates

Predicted 0 Predicted 1 Percentage Correct
Observed 0 38 14 73.08
Observed 1 3 22 88.00

Table 19. The classification table for the overestimates model

6.5 Conclusions from logistic regression

From the above three analyses it appears that the two
main factors that are associated with errors in estimation are
the size and type of the module. The existence of links and
data entry capability also influence the estimate accuracy.
The analysis for errors is less significant than for under-
and overestimates since the point of the analysis is to be
able to make such directional predictions. However, it is in-
teresting that onlyLinks was required for modeling errors
in prediction. This, along with the emergence of theEntry
variable for overestimates, suggests the models for under-
and overestimation are not entirely symmetrical.

There is definite evidence that the type of the module af-
fects the probability, which is an interesting finding. The
other conclusion that size affects estimate accuracy is more
predictable since small modules will generally be correct
or overestimated, while large modules will more often be
underestimated.

7 Log-linear analysis

7.1 Introduction

After the contingency table analysis and logistic regres-
sion models, three variables were selected for further analy-
sis. These areSize, Type, andEstimate. The purpose of this
analysis using log-linear modeling is to investigate associ-
ations betweenEstimateand levels of the other variables.
The advantage of log-linear modeling over logistic regres-
sion is that here any number of output categories can be
used.

While Entry andLinkswere also found to be significant
in the logistic regression section, they have been discarded
here for three reasons each. First, common to both vari-
ables, there is a desire for simplicity in this analysis that
is greatly aided by restricting the analysis to just these two
variables. Parsimony is a useful goal to keep in mind when
developing models that must be interpreted and relied upon
by managers who are not qualified statisticians.
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Size
1 2 3

Type Type Type
1 2 1 2 1 2 Total

Estimate
-1 0.00 1.00 5.00 7.00 15.00 4.00 32
0 5.00 1.00 5.00 4.00 4.00 1.00 20
1 18.00 1.00 4.00 0.00 2.00 0.00 25

Total 23.00 3.00 14.00 11.00 21.00 5.00 77.00

Table 20. Overall frequency of Size, Type, Estimatevariables

Size
1 2 3

Type Type Type
1 2 1 2 1 2 Percentage

Estimate
-1 0.0% 33.3% 35.7% 63.6% 71.4% 80.0% 41.6%
0 21.7% 33.3% 35.7% 36.4% 19.0% 20.0% 26.0%
1 78.3% 33.3% 28.6% 0.0% 9.5% 0.0% 32.5%

Total 29.9% 3.9% 18.2% 14.3% 27.3% 6.5% 100.0%

Table 21. Proportions of Sizeand Typefor Estimate

Second, again common to both variables, the associa-
tions usingSizeandTypeare more useful from both research
and practice perspectives in that they are more generically
applicable and acceptable when compared to the more ob-
scureEntryandLinksmeasures.

Third, Linkswas only significant for predicting errors –
not errors of any direction, andEntry was only added to
the model for overestimates as the third variable, suggest-
ing that the majority of the association is contained inSize
andType.

The overall frequency for the reduced set ofSize, Type,
and Estimateis shown in Tables 20 and 21. The full ta-
ble showing all combinations of all variables is less useful
since there are 144 levels of the six variables, with only 77
observations. In addition many of the observations fall in
the same cells, leading to large numbers of empty cells.

However, even from this simple presentation it again ap-
pears that there is some relationship betweenSizeandEs-
timateand betweenTypeandEstimateeven when the two
variables are included (as compared to the pairwise compar-
isons in Section 5 on contingency table analysis). Overesti-
mates are more common for small modules and reports.

7.2 Analysis

Table 22 shows the results of the various models devel-
oped. From Table 23 the significance of the interactions
betweenTypeandEstimateas well as betweenSizeandEs-

timatecan be seen. However the full model with the three
way interactions shows that the interaction betweenSize,
Type, andEstimateis not significant.

All parameters are significant except for interactions be-
tweenType=1 andSize=1, Estimate=-1 andSize=2, andEs-
timate=0 andSize=2. The other 11 parameters are all sig-
nificant. Residuals are normally distributed and appear to
be independent.

The expected counts are shown in Table 24. From here
the odds of a correct estimate for a small screen are 0.22:1,
for a small report they are 1.47:1 giving a log-odds ratio of
6.7 in favor of the reports. For medium modules the cor-
responding odds are 0.62:1 and 0.49:1 respectively and the
ratio is 1.27 in favor of screens. For large modules the odds
are 0.27:1 and 0.13:1 respectively with a ratio of 2.08 in fa-
vor of screens. For allTypeandSizecombinations the mis-
estimates outnumber the correct estimates except for small
reports. As the modules get larger the ratio becomes more
favorable to screens, suggesting that effort for large screens
is easier to estimate than for large reports.

7.3 Conclusions from log-linear analysis

From this basic analysis it can be seen that bothTypeand
Sizeoffer considerable potential in being able to predict the
probability of misestimation. Modules are more likely to be
underestimated if they are screens rather than reports, and
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Model Deviance df Significance
Type + Size + Estimate 60.5808 12 0.0000
Type + Size + Estimate + Type*Size 52.8846 10 0.0000
Type + Size + Estimate + Type*Size + Type*Estimate 42.0105 8 0.0000
Type + Size + Estimate + Type*Size + Size*Estimate 11.8810 6 0.0647
Type + Size + Estimate + Type*Size + Type*Estimate + Size*Estimate 3.032 4 0.5539
Full model 0 0 -

Table 22. The results of the log-linear analysis using Sizeand Typeas predictors of Estimate

Terms Change in Deviance df Significance
All interactions 60.5808 12 0.0000
All 2-way interactions 57.548 8 0.0000
Type*Estimate 8.849 2 0.0117
Size*Estimate 38.9785 2 0.0000
Type*Estimate*Size 3.032 4 0.5539

Table 23. The analysis of deviance of the log-linear analysis using Sizeand Typeas predictors of
Estimate

Size
1 2 3

Type Type Type
1 2 1 2 1 2 Total

Estimate
-1 0.52 0.48 4.86 7.14 14.63 4.37 32
0 4.22 1.78 5.38 3.62 4.40 0.60 20
1 18.27 0.73 3.76 0.24 1.97 0.03 25

Total 23 3 14 11 21 5 77

Table 24. Expected frequency of Size, Type, Estimatevariables

are larger rather than smaller. The opposite relationships
apply for overestimates.

8 Estimate accuracy as a function of time

One final analysis procedure was undertaken in order to
determine whether estimate accuracy might change over the
period of the project. In terms of this particular system,
reasonable accuracy was achieved at the beginning and end
of the project, whilst the most important errors (underesti-
mates) occurred in the middle of the project.

This suggests that either effort for the beginning and
end tasks was simply easier to predict correctly, or perhaps
the estimates were revisited towards the end of the project,
meaning that tasks occurring at or after that point were no
longer subject to significant effort error.

9 Conclusions

After the analysis of the dataset using contingency ta-
ble analysis, logistic regression and log-linear modeling it
appears that for this particular dataset there are indeed sys-
tematic biases in the estimates of effort. These biases exist,
at least, for the size and type of the modules and also for the
existence of links to multiple tables and data entry capabil-
ity. These latter two characteristics are however also related
to the size and type of module.

It is of course possible to produce models that adjust their
estimates for these types of modules while using the full
set of available numerical data for effort estimates. Simply
by including binary variables in such models the intercept
would be changed to reflect differences. Alternatively, for
variables such as size modification to the slope parameter
may be made.

Also, the results could be used in educating project es-
timators as to where their estimates are going wrong. This
would provide a useful feedback mechanism, possibly ac-
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celerating the learning process for project managers.
Similarly, models of risk could be constructed for those

modules that are more likely to be misestimated, includ-
ing some accounting for the likely magnitude (more than
the three levels used here could allow for this) and direc-
tion (which has been shown here to be associated with some
module characteristics).

A number of limitations on this analysis need to be con-
sidered when examining the results. First, the obvious lim-
itation of having only the one dataset is that there is no way
of knowing if the biases were due to some special char-
acteristics of the project or if the manager makes similar
misjudgements on their other projects. Second, there are
several other variables that could also have been related to
estimate accuracy that were not able to be considered.

Despite these objections, the analysis does at least show
that for this particular project manager and system combi-
nation there were systematic biases on the effort prediction
involving size and type of the constituent modules. These
two factors are perhaps the most intuitive and reasonable,
providing a foundation for further analysis into other asso-
ciations for the purposes of developing corrective models,
educating and assessing project managers, and making risk
estimates.
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