
HTN Planning for Information Processing Tasks

Stephen Cranefield
Department of Information Science, University of Otago,

PO Box 56, Dunedin, New Zealand
Fax: 64 3 479 8311

scranefield@infoscience.otago.ac.nz

Abstract

This paper discusses the problem of integrated planning and execution for
tasks that involve the consumption, production and alteration of relational infor-
mation. Unlike information retrieval problems, the information processing do-
main requires explicit modelling of the changing information state of the domain
and how the validity of resources changes as actions are performed. A solution
to this problem is presented in the form of a specialised hierarchical task network
planning model. A distinction is made between the information processing effects
of an action (modelled in terms of constraints relating the domain information
before and after the action) and the actions’ preconditions and effects which are
expressed in terms of required, produced and invalidated resources. The informa-
tion flow between tasks is explicitly represented in methods and plans, including
any required information-combining operations such as selection and union.

The paper presents the semantics of this model and discusses implementation
issues arising from the extension of an existing HTN planner (SHOP) to support
this model of planning.

Keywords: HTN planning, information processing, integrated planning and
execution

HTN Planning for Information Processing Tasks

Stephen Cranefield

Department of Information Science, University of Otago,

PO Box 56, Dunedin, New Zealand

Abstract

This paper discusses the problem of integrated planning and execution for tasks that
involve the consumption, production and alteration of relational information. Unlike infor-
mation retrieval problems, the information processing domain requires explicit modelling of
the changing information state of the domain and how the validity of resources changes as
actions are performed. A solution to this problem is presented in the form of a specialised hi-
erarchical task network planning model. A distinction is made between the information pro-
cessing effects of an action (modelled in terms of constraints relating the domain information
before and after the action) and the actions’ preconditions and effects which are expressed
in terms of required, produced and invalidated resources. The information flow between
tasks is explicitly represented in methods and plans, including any required information-
combining operations such as selection and union. The paper presents the semantics of this
model and discusses implementation issues arising from the extension of an existing HTN
planner (SHOP) to support this model of planning.

1 Introduction

This paper discusses the problem of integrated planning and execution for tasks that involve
the consumption, production and alteration of relational information by a collection of disparate
information processing tools and resources. Distributed object technologies such as CORBA [1]
and agent-based software interoperability techniques [2] have made it easier to build information
systems from distributed components, but with the additional complexity such distribution brings
there is a need to support the user by automating much of the interactions between components.

Other researchers have investigated the use of planners in software agent frameworks [3–
6], but this work has primarily focused on planning purely for informationgatheringactions
(which do not change the world state except to increase the agent’s knowledge of an external
but static body of information). The work presented in this paper is concerned not only with
planning for information gathering tasks, but also with planning for informationprocessingtasks,
where information can be created or altered by the actions of agents. This paper discusses the
planning component of an architecture designed to address this issue [7] (see Fig. 1). This

1

Top-level tasks

via various protocols

Current state

Current plan

read or create

Agent

new

resource

plan

via various protocols
create, read or modify

Planning

plan

expected

Agents

refine

Tool
Computation

Agents

Resource
Metadata

Agent

User
Agent

run-time vars

metadata

register resource for state

get resource metadata

do action in state combine resources

invalidated
resource

reg
ist

er
res

ou
rce

 fo
r s

tat
e

Resources

Resource

Figure 1: The agent architecture. All requests are sent via a facilitator agent (not shown).

architecture extends previous work on agent-based software interoperability [2] by the addition of
a specialised planning agent and a user agent that controls the automation of common sequences
of actions of behalf of the user. In addition, a resource metadata agent records information
about the available resources, the information they contain and the (possibly past) state of the
system that this information corresponds to. Plans can involve using resource computation agents
to combine existing resources using operations such as selection, union and join to produce
new resources. The operators in the planner correspond to the invocation of agent-encapsulated
software tools. The execution of these actions can feed information back into the plan through
the instantiation of run-time variables [8]. Planning and execution is interleaved so that after
the instantiation of a run-time variable the plan can be sent back to the planner to be expanded
further.

2 Planning for Information Processing Tasks

2.1 A Relational Domain Information Model

In order to model information processing actions we must first choose a representation for the
information structure of our problem domains. This architecture assumes that the user has de-

2

fined the domain information structure as a relational data model, consisting of a set ofbase
relations. Operators may have resource pre- and postconditions described by these base relations
or more complex relational algebra expressions. It is assumed that the relational data model is
well-designed so that the base relations represent the most important clusters of information that
are affected by actions. Operators declare which base relations in the domain they affect and this
allows the frame problem to be addressed in a novel way (see Sect. 5).

2.2 HTN Planning

From their experience with the manual interoperation of their software tool kit, users will already
have a good understanding of the way in which their information processing tasks can be broken
down into a sequence of actions to be performed by different tools, and the operations needed to
transform data between different formats and machines. Therefore this planning framework is
based on hierarchical task network (HTN) planning [10]. With this type of planning the planner
is provided not only with operators describing the possible agent actions in the domain, but also
with a set of parameterised abstract tasks that can be performed and a list of “methods”, each
describing a possible way to resolve a subtask into an ordered networks of subtasks. In this way
a domain expert (the user in this case) can provide the planner with domain-specific knowledge.

2.3 Modelling Information Processing Tasks

The application of this research is the generation of plans to coordinate the use of information
processing tools to effect an overall information processing goal. This leads to two observations:
(1) the changes made to the domain’s information state made by actions must be modelled by the
corresponding operators; and (2) it is not appropriate to model these effects using the traditional
planning representation of change via operator postconditions that assert and delete facts in the
world model. This is the wrong level of abstraction. A planner can be regarded as simulating
the real world execution of the plan being generated, at least in as much detail as is required to
ensure that the desired goals will be achieved. For a plan involving physical actions, the final
state cannot be confused with the real world goal state that is required — a memory structure
representing the assertionon(a; b) is rather different to the physical reality of one block stacked
on top of another. It is necessary to execute the plan in order to achieve the physical goal.

In information processing problems this is not the case. If the planner exactly modelled the
desired information processing to be performed, there would be nothing left to do once the plan
was generated. Clearly, the role of the planner is not to process the information but to decide
which tools can achieve the required information processing goals (for instance, to model a tool
used to systematically mark student assignments submitted on-line it is enough for the operator to
state in its postconditions that a mark now exists for every student; the actual marks need not be
represented). To support this abstraction away from the details of information processing actions,
the action representation proposed here models the “information state” of a domain in terms of
a relational data model, and allows operators to include constraints that relate the contents of the
information state before and after the action is executed. This abstract information state should
not be confused with the information resources that may be required or produced by an action

3

(these are a separate part of an operator specification). It is possible (but pointless) for an action
to change the information state (e.g. by giving a student a mark for an assignment), but neglect
to record this information anywhere.

A more realistic example of this distinction between information state effects and resource
pre- and postconditions occurs in the assignment marking example discussed in this paper. The
tool for systematically accessing and invoking students’ programming assignments requires an
input resource corresponding to the relationstudent. This contains the details of all students in
the class. Its output is a resource containing the new marks generated in the current marking
session. The operator representing a session using this tool must model the fact that theassess
relation (which represents the marks for all students and all assignments) has been altered by
this action. Any resources that previously were known to be current representations of theassess
relation are now out of date. Only in a later step of the plan, when an oldassessresource is
combined with the output from the marking tool, is there once again a current resource for the
entire relationassess.

3 Example Domain

The example used in this paper is from the domain of university course administration. At
the author’s institution, course information processing and management tasks include extracting
initial class lists from the central database, adding and deleting students from the class roll,
‘publishing’ assignments and making any required data sets available, configuring an electronic
assignment solution system, marking student assignments on-line, changing marks when errors
in marking are detected, producing statistical summaries of the class marks, making exercise
solutions and student marks available on the network, and producing a final end-of-semester
report of the class marks. Information may be created, deleted or modified at each stage of the
process. These tasks are often performed using a tool kit approach: the course administrator uses
a number of different tools to perform the tasks, some being general-purpose tools he or she is
familiar with, and some being specially written for work in this problem domain.

This paper will focus on a particular task from this domain: marking electronically-submitted
student assignments. A simplified version of the relational model for the information structure
of this domain is shown in Figure 2. There are three base relations:student , recording details
about students,component , describing the individual course assessment components (assign-
ments, tests and the final exam), andassess , recording each student’s mark for each component
of the course.

4 Information Processing Operators and Methods

Figure 3 shows an example of an operator specification. This describes the invocation of a
programming assignment marking utility that allows a tutor to systematically access student
programs over a network, compile and run them and record a mark. The parameters are the
assessment component being marked (e.g. Assignment 1), the set of student ID numbers whose

4

Table student

Attribute stu_id stu_name

Domain String String

Key stu_id

Table component

Attribute cmpt_id out_of weight

Domain String Integer Integer

Key cmpt_id

Table assess

Attribute stu_id cmpt_id mark

Domain String String Decimal(1)

Key stu_cmpt = stu_id +cmpt_id

Figure 2: The relational model for the course administration domain

assignments should be marked (the class may be partitioned amongst several tutors), and the set
of IDs for the students whose work actually was marked at the end of a session with the tool (it
is not necessary to do all the marking in one session). This last parameter is represented by a
run-time variable (indicated by the leading ‘!’). It will be instantiated once the action has been
performed.

The box at the top of the figure has three compartments containing (respectively) the opera-
tor’s name and parameters, the list of information state base relations affected by this operator,
and a list of resource pre- and postconditions. The operator requires two resources. The first
precondition resource corresponds to a selection on the domain’sstudentrelation and this re-
source is declared to still be valid after this action has been performed. A second precondition
resource corresponds to the relationassess. This resource is declared to be invalidated by the
action (because it changes the assess relation). A third resource is produced (but not required):
this corresponds to a selection on the domain’sassessrelation. Sect. 5 gives the semantics of this
notation in terms of the situation calculus [11].

The information state constraints describe how any relations affected by the action are mod-
ified. The new content of a relation may be only partially specified by an operator. For example,
the marking action involves interaction with a tutor who decides the marks for the marked stu-
dent assignments. Therefore, all that is known about this operator is that afterwards a resource
exists that contains marks for all programs that were marked. The actual marks are not (and can
not) be specified by the operator.

In themark_some operator, the first two constraints specify how the operator changes the
relationassess (shown in diagrammatic form in Figure 4). This operator is declared to create
new information in the relationassess : marks for the assessment componentCmpt for all
students inMarkedIDs . The first constraint declares that the contents of theassess relation
after the operator executes is the union of the contents ofassess beforehand and a set of new
tuples represented by the variableNewData . The actual value ofNewData is unknown until
runtime, but the second constraint states that this relation will consist of a tuple for each student

5

marksome(Cmpt, ToMarkIDs, !MarkedIDs)

fassessg

�student(stuid 2 ToMarkIDs)!

assess��

�assess(stuid 2 !MarkedIDs^ cmpt= Cmpt)

Information state constraints

var NewData: relation([stuid: string, cmptid: string, mark: decimal(1)])

assess0 = assess
�

[NewData

keyvalues(NewData; stucmpt) = !MarkedIDs� fCmptg

!MarkedIDs� ToMarkIDs

Figure 3: An example operator specification

in MarkedIDs , with each tuple having itscmpt_id attribute equal toCmpt. More precisely,
the constraint states that the set of values inNewData for the keystu_cmpt — consisting of
the pair of attributes(stu_id, cmpt_id) — is equal to the cross product ofMarkedIDs
and the singleton set{Cmpt} .

Information state constraints are not intended to be used for reasoning within the planner.
However, they should be taken into account when designing task-expansion methods for the
planner as the knowledge in these constraints can be used to designresource computation links
that describe how resources required in one state can be computed by combining existing re-
sources from previous states.

stu_id cmpt_id mark

...

...

...

...

...

...

...

......

... ...

...

...

......

Cmpt

Cmpt

=

stu_id cmpt_id mark

...

...

...= MarkedIDs

Before After

Figure 4: The effects of marksome(Cmpt, ToMarkIDs, !MarkedIDs) on the relation assess

6

An example plan is shown in Figure 5. The representation extends that used in standard HTN
planning by the addition of constraints on variables and the explicit representation of resources
and the computations required to generate new resources from old. However, unlike standard
HTN planning, our plans are currently restricted to be linearly ordered. To help show the flow of
information in the figure, run-time variables are annotated with ‘!’ in the task or constraint that
instantiates them; the ‘!’ is omitted in later references to that variable.

The first and second levels of this plan show how the taskmark(ass1) has been expanded
by its associated method into arel_tuples action followed by amark_all task. The
rel_tuples action instantiates the run-time variable!AllIDs to a term representing the
set of tuples in the relation�student(fstu idg) (i.e. the set of all student IDs). Themark_all
task requires a resource containing a subset of thestudentrelation, with one tuple for each ID
number in its argumentAllIDs . The designer of this method knew that when this task follows
the previousrel_tuples action, the value ofAllIDs will ensure that the required informa-
tion is in fact the entirestudentrelation. This knowledge has been encoded in the method by
the use of the ‘=’ resource computation link (which in fact requires no computation — just the
assertion in the execution environment of another record for thestudentresource, stating that
it also corresponds in the current state to the relational expressionexp1(with variableAllIDs
instantiated).

Themark_all task has two methods. The one that has been used in the bottom of Fig. 5 ex-
pands amark_all task into amark_some action followed by a recursive call to themark_all
task. In addition a constraint is posted to ensure that the run-time variable!RemainingIDs
will be instantiated by the execution environment once the run-time variable!MarkedIDs has
been instantiated by themark_some action. Knowledge from the information state constraints
for mark_some ’s operator has been encoded into this method by the two resource computation
links. These state that the input resources for the recursivemark_all task can be computed
from existing resources using a select operation and a (disjoint) union operation respectively.

Future refinements of this plan will involve more expansions ofmark_all tasks until finally
its second parameter will be the empty set. In this case another method formark_all will be
used: one that expands into an empty set of tasks and asserts that its output resource forassessis
the same as its input resource for this relation.

5 Semantics of Resource Pre- and Postconditions

This section presents the semantics of the notation used for operator specifications, as shown in
Fig. 3. We use a variant of the situation calculus [11].

Consider a (possibly parameterised) operatorOp with preconditionsfPre1, . . . ,Premg and
postconditionsfPost1; : : : ;Postng. The effects ofOpare conditional on its preconditions being
satisfied and can be expressed by the following situation calculus implication:

holds(Pre1; S) ^ � � � ^ holds(Prem; S)!

holds(Post1; result(Op; S)) ^ � � � ^ holds(Postn; result(Op; S))

7

=

U
.

AllIDs = MarkedIDs !RemainingIDs

exp2

exp1 ->

assess

mark_some(ass1, AllIDs, !MarkedIDs)

{assess}

U
.

exp2 =

exp3 = select(student, [stu_id in RemainingIDs])

exp1 =

select(assess, [cmpt_id = ass1, stu_id in MarkedIDs])

select(student, [stu_id in AllIDs])

mark_all(ass1, AllIDs)

assess

mark(ass1)

{assess}

student ->

assess

assess

exp1 ->

assess

rel_tuples(student, project(student, [stu_id]), !AllIDs)

{}

student ->

{assess}

mark_all(ass1, RemainingIDs)

{assess}

assess

exp3 ->

assess

student

stu_id in
RemainingIDs

select

Fig. 5. An example plan (the bold node is an unexpanded compound task)

8

whereholds(A; S) denotes that the atomA holds in stateS andresult(Op; S) denotes the state
resulting from performing the action represented byOp in stateS.

The assertions we are particularly interested in as pre- and postconditions are those of the
form:

valid resource(Res;RelExp; State)

and
invalid resource(Res;RelExp; State)

whereRes is a resource locator (e.g. a URL) andRelExp is a relational algebra expression. These
two assertions state that the resource is valid (or, respectively, invalid) in the specified state for the
given relation. Theinvalid resource predicate is used to make assertions about resources that
areknownto be invalidated as the result of an action — there is a distinction between resources
that are known to be invalid and those whose validity is not known. Therefore the postcondition
that an action invalidates a resource is a strictly stronger statement than negating the validity of
the resource, as the following axiom states:

invalid resource(Res;RelExp; State) ! : valid resource(Res;RelExp; State)

Note that expressions denoting states appear within the pre and postconditions, not just as
arguments to theholdsmeta-predicate. This is necessary because the task-expansion methods
used in our planning framework allows resources from different states to be combined to produce
new resources (see Fig. 5 where at the bottom of the figure, an out-of-date resource for theassess
relation is merged with an up-to-date resource containing newassesstuples to produce a new
resource forassess). For this to be possible, the execution environment must provide some
facility for locating resources identified both in terms of their intellectual content (a relation) and
also by a state for which the information is required. It must also support the generation of new
state names as actions are performed, and keep a record of the name of the current state.

In the situation calculus (i.e. at the meta-level) the term denoting a state is constructed from
the term denoting the prior state by using theresult function. It is not necessary for this same
scheme to be used at the object level provided that each state has a unique name. In the following
we use the expressionS 0

Op to represent the state resulting from performingOp in stateS.
The graphical representation of an operator specification (as shown in Fig. 3) contains the

resource pre- and postconditions in the bottom compartment. Each line of this compartment
can have one of the following forms, which have their semantics shown beside them. For a
given operator, all the resource pre- and postconditions must be combined into a single situation
calculus implication describing the operator’s effects. Thus each of the forms shown below
contributes one conjunct to the right hand side of this implication and (possibly) one conjunct to
the left hand side. This is indicated by the use of “� � �” below, which represents the conjuncts
contributed by other resource pre- and postconditions.

RelExp! A resource is required and preserved:

valid resource(Res;RelExp; S) ^ � � �
! valid resource(Res;RelExp; S 0

Op) ^ � � �

9

RelExp��
A resource is required and invalidated:

valid resource(Res;RelExp; S) ^ � � �
! invalid resource(Res;RelExp; S 0

Op) ^ � � �

RelExp RelExp
A resource is required and updated/replaced:

valid resource(Res;RelExp; S) ^ � � �
! 9Res0 valid resource(Res0; RelExp; S 0

Op) ^ � � �

RelExp
A new resource is generated:

� � � ! 9Res0 valid resource(Res0; RelExp; S 0

Op)^� � �

In addition, an operator specifies which of the domain information model’s base relations
are affected by the action. This is used as a form of frame axiom: if a resource corresponds
to a relational expression involving base relations that are not affected by the action, then that
resource remains valid in the state following the action:

Operator

AffectedBaseRels
...

valid resource(Res;RelExp; S) ^
base relations in(RelExp;BR) ^
BR \A�ectedBaseRels = ;
! valid resource(Res;RelExp; S 0

Op)

The execution environment is responsible for using the set of affected base relations to update
the list of valid resources when it performs an action. This set can also be used by the execution
environment to automatically deletevalid resource facts when an action is performed that is
known to affect (and therefore possibly invalidate) a resource. However, this should only be done
if the operator doesn’t explicitly declare that the resource remains valid. This can be represented
by the following axioms:

valid resource(Res;RelExp; S) ^

base relations in(RelExp;BR) ^ BR\A�ectedBaseRels 6= ;

! poss invalid resource(Res;RelExp; S 0

Op)

poss invalid resource(Res;RelExp; S) ^ : valid resource(Res;RelExp; S)

! invalid resource(Res;RelExp; S)

10

6 Implementation Issues

This planning scheme has been implemented by extending the Common Lisp HTN planner
SHOP (Simple Hierarchical Order Planner) [12]. SHOP implements a simple form of HTN
planning: plans are linearly ordered and tasks are planned for in the order in which they will be
executed. This simplifies the treatment of task interactions (resulting in a small and easily under-
stood implementation) and also allows methods to have preconditions that involve arbitrary Lisp
computation.

SHOP’s operators do not have preconditions — only add and delete lists of facts. However,
its methods do have preconditions. Therefore, our operators are encoded as methods with pre-
conditions. These methods expand into an associated operator which has all the arguments of
the method as well as arguments for any free variables in the preconditions. The operator then
asserts and retractsvalid resource andinvalid resource constraints. These ‘operator’ methods,
as well as ordinary methods, have arguments representing the resource locators for the input and
output resources. These allow methods to represent the flow of information between subtasks
by using the same variable for an output resource argument of one task and an input resource
argument for another task.

It was necessary to add to each of our operators a precondition to fetch the name of the prior
state and a postcondition to assert the name of the resulting state. This was because the names of
these two states appears in the other pre- and postconditions.

It was also necessary to extend SHOP to support interleaved planning and execution and run-
time variables. This has been done in a simple fashion at present: when the planner evaluates a
method, after the preconditions have been checked, the user is asked to simulate the execution of
this action by providing values for any of its parameters that were declared as run-time variables.
To integrate the planner with the rest of our agent architecture, rather than pausing the planner to
await the values of run-time variables when an action is to be performed, it will be more scalable
for the planner to terminate with the current partial plan and accept a later request to further
refine a more instantiated version of the partial plan.

Resource computation links are implemented by methods and associated operators with a
run-time variable representing the resource locator for the newly created resource. Resources
created by actions are also represented by run-time variables.

One aspect of our framework that was difficult to implement in a general in SHOP was
allowing the posting of constraints in methods — this would be better supported by a planner
based on a constraint logic programming language. For the example in this paper a special ‘set
subtraction’ task was inserted between the two subtasks in themark_all task expansion. The
method for this task uses its preconditions to compute the resulting set — this involved using
SHOP’s facility for providing Horn clauses that are checked when evaluating preconditions.

7 Related work

There are a number of planners designed to plan for gathering information from large dynamic
networks of information sources ([3–6]), but none of these are designed with information pro-

11

cessing tasks specifically in mind.
XII [3] is a general-purpose planner extended to describe actions that sense the world as well

as causal actions. Although its actions can change the world, it makes a distinction between
information goals and causal goals. It could probably be applied to information processing tasks
but its action language is not designed to describe such domains succinctly.

Sage [4], the planner used in the SIMS project [13], is a general-purpose planner adapted to
the problem of efficiently accessing multiple information sources in order to satisfy information
gathering queries. It does not include a mechanism to model actions that change the information
state.

Occam [5] is an special-purpose algorithm designed for the same task as Sage. It models
the available information as a relational database schema, but as Occam plans for information
gathering from an unchanging world, this information model is regarded as static. The available
information resources are modelled by associating information retrieval actions with the relations
of the world model that are returned when these actions are executed.

Williamson et al. [6] extend the HTN planning paradigm by explicitly modelling a task’s
provisions(these are named interface ‘slots’ with an attached queue for storing incoming values),
its outcome(indicating the result status of the task) and itsresult(a value produced by executing
the task). Task networks are extended to include links between the results and provisions of tasks,
indicating a flow of information. This mechanism is claimed to unify and generalise the methods
by which operators can obtain information in traditional planning frameworks: by parameter
binding, the passing of information from other operators via the world state, and through the use
of run-time variables. Provisions also have a role to play in controlling the execution of plans,
with primitive tasks being (re)activated whenever all their required inputs are available.

Our framework takes a different approach to representing and reasoning about information
flow between actions. Resources are described in terms of their intellectual content described as
a relational expression. This allows information processing agents to use any available resource
that contains the required information — the provider of the information does not need to be
hard-wired into the plan. We generalise the representation of links between different actions’
output and input resources by allowing specified functions to transform and/or combine existing
resources to produce new ones. Finally, there is no aspect of plan execution intertwined with
our representation of resources. Instead, iterative behaviour can be achieved through the use of
run-time variables and recursive task-expansion methods.

8 Conclusion

This paper has presented a variant of HTN planning designed for supporting the interoperation of
information processing tools. Novel features include the explicit distinction between the infor-
mation state effects of an action and its resource pre- and postconditions, a solution to the frame
problem based on a declaration of the set of base relations affected by each operator, and the use
of resource computation links in methods to show how existing resources can be combined to
form new resources required by tasks. The model has been tested by encoding it in an extended
version of an existing HTN planner.

12

References

[1] Object Management Group. OMG homepage. http://www.omg.org/.

[2] M. R. Genesereth and S. P. Ketchpel. Software agents.Communications of the ACM,
37(7):48–53, July 1994.

[3] K. Golden, O. Etzioni, and D. Weld. Omnipotence without omniscience: Efficient sensor
management for planning. InProceedings of the 12th National Conference on Artificial
Intelligence (AAAI-94), pages 1048–1054, 1994.

[4] C. A. Knoblock. Planning, executing, sensing, and replanning for information gathering. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence, volume 2,
pages 1686–1693, 1995.

[5] C. Kwok and D. Weld. Planning to gather information. InProceedings of the 13th National
Conference on Artificial Intelligence (AAAI-96), 1996.

[6] M. Williamson, K. Decker, and K. Sycara. Unified information and control flow in hierar-
chical task networks. InProceedings of the AAAI-96 Workshop on Theories of Planning,
Action, and Control, 1996.

[7] S. Cranefield, E. Moreale, B. McKinlay, and M. Purvis. Automating the interoperation of
information processing tools. InProceedings of the 32nd Hawaii International Conference
on System Sciences (HICSS-32). IEEE, 1999. (CDROM, 10 pages).

[8] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring. InPro-
ceedings of the 7th National Conference on Artificial Intelligence (AAAI-88), pages 735–
740, 1988.

[9] Knowledge Interchange Format specification. Working Draft, ANSI X3T2 Ad Hoc Group
on KIF, March 1995. http://logic.stanford.edu/kif/specification.html.

[10] S. Kambhampati. A comparative analysis of partial order planning and task reduction
planning.SIGART Bulletin, 6(1):16–25, 1995.

[11] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence, volume 4. Edin-
burgh University Press, 1969. Reprinted in J. Allen, J. Hendler and A. Tate, Readings in
Planning, Morgan Kaufmann, 1990.

[12] D. Nau, Y. Cao, A. Lotem, and H. Mun˜oz-Avila. SHOP: Simple hierarchical or-
dered planner. InProceedings of the 16th International Joint Conference on Artificial
Intelligence(IJCAI-99), 1999. To appear.

[13] C. A. Knoblock and J. L. Ambite. Agents for information gathering. In J. Bradshaw, editor,
Software Agents. AAAI/MIT Press, 1997.

13

