
DUNEDIN NEW ZEALAND

Fuzzy Logic for Software Metric Models Throughout
the Development Life-Cycle

Andrew Gray
Stephen MacDonell

The Information Science
Discussion Paper Series

Number 99/20
September 1999
ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the Division of Com-
merce at the University of Otago. The department offers courses of study leading to a major in
Information Science within the BCom, BA and BSc degrees. In addition to undergraduate teaching, the
department is also strongly involved in postgraduate research programmes leading to MCom, MA,
MSc and PhD degrees. Research projects in spatial information processing, connectionist-based infor-
mation systems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information systems and in-
formation systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a whole. The accuracy
of the information presented in this paper is the sole responsibility of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching purposes is granted on
the condition that the authors and the Series are given due acknowledgment. Reproduction in any form
for purposes other than research or teaching is forbidden unless prior written permission has been ob-
tained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authorsÕ final conclu-
sions relating to this topic. It is likely, however, that the paper will appear in some form in a journal or
in conference proceedings in the near future. The authors would be pleased to receive correspondence
in connection with any of the issues raised in this paper, or for subsequent publication details. Please
write directly to the authors at the address provided below. (Details of final journal/conference publi-
cation venues for these papers are also provided on the DepartmentÕs publications web pages:
http://divcom.otago.ac.nz:800/COM/INFOSCI/Publctns/home.htm). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://divcom.otago.ac.nz:800/COM/INFOSCI/

Fuzzy Logic for Software Metric Models throughout the Development Life-Cycle

Andrew R. Gray and Stephen G. MacDonell
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
fagraygfstevemacg@infoscience.otago.ac.nz

Abstract

One problem faced by managers who are using project
management models is the elicitation of numerical inputs.
Obtaining these with any degree of confidence early in a
project is not always feasible. Related to this difficulty is
the risk of precisely specified outputs from models leading
to overcommitment. These problems can be seen as the col-
lective failure of software measurements to represent the in-
herent uncertainties in managers’ knowledge of the devel-
opment products, resources, and processes. It is proposed
that fuzzy logic techniques can help to overcome some of
these difficulties by representing the imprecision in inputs
and outputs, as well as providing a more expert-knowledge
based approach to model building. The use of fuzzy logic
for project management however should not be the same
throughout the development life cycle. Different levels of
available information and desired precision suggest that it
can be used differently depending on the current phase, al-
though a single model can be used for consistency.

1. Introduction

Fuzzy logic modeling techniques have been shown to be
a useful addition to the existing statistical and machine-
learning techniques used for modeling software develop-
ment [3]. Aside from theoretical reasons preferring fuzzy
logic in some circumstances, several papers have shown fa-
vorable empirical comparisons supporting its usefulness by
using software metric data sets to compare the predictive
accuracy of various techniques [2, 5, 7]. In addition, fuzzy
logic modeling software has been especially developed for
supporting the project estimation process [6, 7].

A recent survey of New Zealand project managers found
them to have considerable interest in using fuzzy logic tech-
niques [7]. This survey found that 31 out of the 44 respond-
ing information system managers had heard of fuzzy logic
(70.5%). For the 36 managers who were actively involved
in managing development projects, 11 (31%) were inter-

ested in using fuzzy logic techniques, 23 (64%) stated that
they would need to know more about the technique before
making a decision, and only two (6%) did not think that
fuzzy logic techniques would be useful to them as part of
their management activities.

In addition to assessing the managers’ perceptions of the
worth of fuzzy logic, the survey also investigated which
advantages of fuzzy logic were felt to be important. The
three choices of being able to use expert knowledge, hav-
ing linguistic inputs, and producing linguistic outputs were
all rated roughly the same (with 19, 19, and 21 respondents
citing each as important respectively).

As the level of commercial interest in using this tech-
nique “in anger” grows it becomes necessary to provide
well-documented and replicable standards for its implemen-
tation. The most successful software metric model for effort
estimation is Function Point Analysis [1], and a hallmark of
this has been its carefully documented procedures (in both
standards and many publications), certification, and work-
shops. While it would be premature to impose such restric-
tions on the use of fuzzy logic techniques at this early stage
of its adoption in this field, it does seem prudent to outline
some general skeleton guidelines to encourage the, some-
what inconsistent, goals of experimentation and rigor. In
this paper, the selection of input and output precision lev-
els based on the stage of the development life cycle is dis-
cussed.

2. The software development life-cycle

Many alternative representations have been proposed for
how software is, and ought to be, developed [9]. Different
models exist for different types of system, such as object-
oriented systems, where the idealized development process
is considered by some to be fundamentally different to other
types of development. Similarly, the use of prototypes (both
low- and high-fidelity), customer reviews, and other activi-
ties may differ from one organization to the next.

Here we consider only the fundamental phases of devel-
opment that are ubiquitous to almost all such models found

in practice and the literature. Namely, the analysis, design,
coding, testing, and maintenance phases. Each phase is
briefly defined below (in deliberately vague terms to encom-
pass common usage as widely as possible). These phases
can also be shown graphically as in Figure 1, which also
indicates the common notion of iteration and feedback be-
tween consecutive phases.

2.1. Analysis

This is the first stage of the development process and
starts with the problem being defined and initial user re-
quirements being collected. This phase can include the
construction of simple prototypes used to determine or fine-
tune the requirements, but should not involve any detailed
design or real coding.

Very little information beyond the high-level functions
required of the system is available this early in the project’s
life-cycle. Unfortunately, this is also the phase where plan-
ning is most crucial in terms of both time-to-delivery and
financial cost estimation. Such information is necessary for
contract negotiation (both inter- and intra-organizational)
and strategic planning.

In this and the next two stages (design and coding) the
main emphasis of software metric models is the prediction
of development effort, and from this some estimates of cost
and duration. While other dependent variables can be of in-
terest, the focus in this paper is with this primary application
of effort estimation. Similar ideas can be easily generalized
for other metric applications.

2.2. Design

The requirements must then be translated closer to the
actual implementation. This is when the system specifica-
tions are developed (for example, Entity-Relationship Dia-
grams, Data Flow Diagrams, Structure Charts, and pseudo
code routines). Ideally, the system should be understood to
a high degree at this stage, with the coding stage involving
the implementation of the necessary functions.

2.3. Coding

Actual source code is written during the coding phase
(including visually generated code and automatic template
code). This may also include ever more sophisticated pro-
totypes that evolve (at least partially) into the final system.

2.4. Testing

Testing can be performed concurrently with develop-
ment, or may occur after most code has been written. When

Analysis

Design

Coding

Testing

Maintenance

Figure 1. Stages in a generic life-cycle model

the system is tested metric models may be used for esti-
mating testing effort or for predicting the number of defects
remaining. This phase includes functionality and usability
testing and in many cases this is the first time the user sees
the actual system properly executing. At this stage the sys-
tem should be complete in terms of functionality so a large
amount of information about it is available for modeling.

2.5. Maintenance

When the system is modified to add new functionality
or correct defects after it has been released to the customer
some estimate of maintenance effort may be made. Un-
like the effort estimates for the previous four phases, which
can all be combined to give the total for the system, effort
on maintenance is often treated separately. Estimates can
be made for the entire maintenance process if this is suffi-
ciently trivial, or this phase can be treated as a new devel-
opment process itself.

3. Advantages of fuzzy logic for software met-
ric models

Fuzzy logic modeling techniques offer several potential
advantages over more traditional techniques for software
metric models. These have already been discussed at con-
siderable length in the literature and so are only briefly men-
tioned here for reference purposes. The interested reader is
referred to [2, 3, 5] for more detailed discussion.

3.1. Data requirements

Fuzzy logic allows model development with little or even
no data. This is a considerable boon given the problems
with data gathering in software metrics research and prac-
tice. The collection of homogeneous data sets is compli-
cated by rapidly changing technologies and a reluctance for
inter-organizational sharing of metrics data. Even within a
single organization there can be considerable pressure from
programmers and managers against measurement collec-
tion.

3.2. Robustness

Software metric data sets are likely to contain unusual
systems that result from a variety of causes and may re-
duce the generalisability of any empirically derived model
[8]. Some of these problems include different development
practices, developer learning, and unmeasured (and perhaps
unmeasurable) influences. By developing models with con-
siderable expert involvement, where the model can be inter-
preted and checked for reasonableness, some of the prob-
lems with non-representative data corrupting empirically
tuned models can be reduced or perhaps even avoided.

3.3. Organizational process learning and communi-
cation

The use of fuzzy logic models provides an opportunity
to learn from the resulting models that is less evident with
regression and (even more so) neural network models. A
linguistically-based model can also be seen as a useful com-
munication tool. For example, a programmer pointing out
that complexity for a particular module isvery highand
may need rework may be considerably more meaningful to
a manager than them stating that the module’s cyclomatic
complexity is 55. In addition, since the models are rela-
tively easily understood by management there is a grater
chance of management support, which is essential for the
success of any metrics program.

4. Fuzzy logic models throughout the develop-
ment life-cycle

One of the important benefits of fuzzy logic for software
engineering project management is the flexibility available
in terms of the types of input and output variables. Input
variables can be expressed as simple fuzzy labels (alarge
number of entities in the data model), fuzzy numbers (about
250 entities), or using precise values (265 entities). Sim-
ilarly, the output can be expressed in the same way, as a
label (ashortdevelopment time), fuzzy number (about 400
developer-hours), or precise values (378developer-hours).

Phase Inputs Outputs
Analysis fuzzy label fuzzy label
Design fuzzy number fuzzy number

Coding
crisp value or

fuzzy number
fuzzy number

Testing crisp value fuzzy number
Maintenance

crisp value fuzzy number
(small project)

Table 1. Suggested levels of precision across
the life-cycle when estimating development
effort

Perhaps the greatest benefit from this approach is that the
same model (the membership functions and rules) can be
used throughout the development process, simply changing
the levels of precision as required. This has several advan-
tages over multiple model methods including the improved
consistency of predictions, centralized model building and
implementation, model building effort minimization, and
knowledge gathering over the entire development process.

The following subsections discuss the representation of
independent and dependent metric variables using fuzzy
logic. Table 1 and Figure 2 show a summary of these sug-
gestions.

Where a context is necessary in the discussion below, the
most common task for metric models is used. That is de-
velopment effort prediction based on system characteristics
(including the product, process, and associated resources).
The standardinputs into such a model are generally onee
or more size and complexity measures, with perhaps some
developer productivity adjustment. Developer effort may be
estimated on the basis of the entire system, a specified com-
ponent of the system, for a particular phase, or for both a
component and phase together.

It should also be noted, that as the development process
is enacted, more is known about theactualeffort which is
generally a component of the effort being estimated. As
such the expectation is that model performance will im-
prove roughly monotonically irrespective of the modeling
technique used.

4.1. Analysis

The analysis phase is one of the most difficult times to
make predictions. This is because almost all existing soft-
ware metric models assume that precise values relating to
the system specification are available as independent vari-
ables. For example, Function Point Analysis assumes that
the numbers of external inputs, external outputs, external in-
quiries, external files, and internal files are all known. It also
requires each to be individually rated as simple, average, or

Size

Complexity

. . .

IF sizeis small
AND complexityis low

AND . . .
THEN effort is low

IF sizeis small
AND complexityis medium

AND . . .
THEN effort is low-medium

IF . . .

Effort

Analysis
size= small
. . .

Design
size= about 100
. . .

Coding
size= 115
. . .

Testing
size= 113
. . .

Maintenance
size= 132
. . .

Analysis
effort = very low
. . .

Design
effort = about 275
. . .

Coding
effort = about 263
. . .

Testing
effort = about 272
. . .

Maintenance
effort = about 119
. . .

Figure 2. Different levels of input and output precision with the same set of membership functions
and rules

complex. Optionally, some subjective technical complex-
ity factors can be used to further refine the estimated size
(which is usually translated into an effort estimate using a
developer hour per function point approach) [1].

However, in many cases the numbers of these system
components, and even more so their specific complexities,
are not known with any degree of certainty until the design
phase is almost finished, let alone during the analysis phase
itself. This is one area where the natural uncertainty of
fuzzy logic provides a useful means of representing the ap-
proximate numbers of components and their average com-
plexity (or whatever other metrics are used). While man-
agers can try to provide precise values for standard models,
such results are unlikely to be taken seriously given the ob-
vious guesswork and there is a natural reluctance to provide
values to a level of precision beyond the estimator’s capa-
bilities.

Of course, different models could be used at each phase
of development with regression or neural network tech-
niques. Earlier models could use categorical labels for the
number of functions, for example. However, this then leads
to the problems with multiple models that have already been
discussed above inx4.

Similarly, the outputs from software metric models are
usually numerical values, such as5251 developer hours.
This can introduce problems with over-commitment where
the estimate becomes asacred number. When the estimate
is later revised, perhaps due to more knowledge becoming
available, changes can be seen as reflecting instability in the

estimation process or the project itself. Increasing the esti-
mated cost and duration is often associated with problem-
atic projects, which could lead to a politically-motivated re-
luctance to update estimates as frequently as may be benefi-
cial to the organization. If estimates were instead expressed
as fuzzy labels, such as this is ahigh effort project, then
commitment to precise values can be delayed until these
values can be estimates with enough accuracy to be mean-
ingful.

Of course, predictions from standard models can be
rounded if this is desired. However, rounding a value to
the nearest thousand hours does not guarantee that it will be
seen as an estimate plus or minus 500 hours.

It is this stage, and the following design phase, that seem
most suited to fuzzy logic modeling since actual numeri-
cal values are generally not available and exact estimates of
effort can potentially even be harmful.

4.2. Design

During design the system specifications should be
drafted and reviewed. This may include Entity-Relationship
Diagrams showing the numbers of entities, relationships,
and elements; Data Flow Diagrams showing the data
sources, sinks, and flows; Functional Decomposition Charts
showing the breakdown of the system into actual functions;
and pseudo-code showing the algorithms and program logic
from a higher level perspective [9]. All of these are com-
monly used as part of software metric models [1].

Since the specifications, and thus the measurements, are
not available in their final form until the end of this phase,
and are subject to subsequent changes due to the dynamism
of customer requirements or for technical reasons, it makes
sense to represent the measures as approximate values. It
is suggested that fuzzy numbers are useful for this purpose,
allowing both the center (best estimate) and the degree of
confidence (spread) to be represented. For example, the
data model complexity may be assessed asabout 501-m
relationships orvery close to 551-m relationships depend-
ing on the manager’s confidence in the estimate.

In the same way, estimates of development effort can
be made using fuzzy numbers, with any desired level of
linguistic precision. For example,approximately 5000
developer-hours oralmost exactly 5125developer hours.

4.3. Coding

By the coding stage most common metric models can be
used with actual values from the system specification and
the use of fuzzy logic seems less useful. At this point, us-
ing exact values as inputs into the model seems far more
sensible if they are indeed available.

However, some use of fuzzy logic estimates for subjec-
tive concepts, such as program complexity, can still be used
[4]. Such concepts are often captured by a series of arbi-
trary measurements that can be difficult to obtain, whereas
human experts may be able to quickly and accurately as-
cribe a fuzzy value to them.

Fortunately, as noted earlier the same fuzzy logic model
can still be used here irrespective of the actual precisions
used. Fuzzy numbers may still be preferred for outputs even
though exact inputs are being used in order to maintain the
appearance of uncertainty.

4.4. Testing

Testing effort metric models can depend on either spec-
ification or code-based measurements, so such predictions
may be performed using either fuzzy logic or crisp values
depending on availability. As with coding, fuzzy logic es-
timates may be superior to numerical estimates for some
concepts, such as complexity. Again, fuzzy numbers for
outputs may be a useful way to keep the uncertainty in the
estimate clear.

4.5. Maintenance

As was mentioned above, maintenance projects can be
either run as single entities, or may be treated as new de-
velopment projects (with the other phases included within
them). The choice of precision will obviously depend on
the scale of the project.

5. Conclusions

Give its ability to represent differing levels of uncertainty
for inputs and outputs whilst still basing inference on the
same model, fuzzy logic is well suited to a life-cycle ap-
proach to software metric modeling. This is a unique op-
portunity not previously available from standard software
metric models that are primarily developed using measure-
ments from a single phase in a project’s life. The ensuing
consistency, communicatability, and economy make this an
attractive modeling technique for such applications as effort
estimation.

The other advantages of data-free (or data-poor) model
building, more robust models, and improved communica-
tion further enhance the opportunities from using fuzzy
logic for software metrics. We are currently entering a
phase of industrial collaboration with several large New
Zealand commercial organizations where the ideas dis-
cussed in this paper will be trialed and refined.

References

[1] N. E. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous
& Practical Approach. PWS, 1997.

[2] A. Gray and S. MacDonell. Applications of fuzzy logic to
software metric models for development effort estimation. In
Proceedings of the 1997 Annual meeting of the North Amer-
ican Fuzzy Information Processing Society - NAFIPS’97,
pages 394–399. IEEE, 1997.

[3] A. Gray and S. MacDonell. A comparison of model build-
ing techniques to develop predictive equations for software
metrics. Information and Software Technology, 39:425–437,
1997.

[4] R. Kilgour, A. Gray, P. Sallis, and S. MacDonell. A fuzzy
logic approach to computer software source code authorship
analysis. InProceedings of the 1997 International Conference
on Neural Information Processing and Intelligent Information
Systems, pages 865–868. Springer-Verlag, 1997.

[5] S. MacDonell and A. Gray. A comparison of modeling tech-
niques for software development effort prediction. InPro-
ceedings of the 1997 International Conference on Neural
Information Processing and Intelligent Information Systems,
pages 869–872. Springer-Verlag, 1997.

[6] S. G. MacDonell and A. R. Gray. Fulsome: a fuzzy logic
modeling tool for software metricians. In this volume.

[7] S. G. MacDonell, A. R. Gray, and J. Calvert. Fulsome: A
fuzzy logic toolbox for software metric practitioners and re-
searchers. Submitted to ICONIP’99.

[8] Y. Miyazaki, M. Terakado, K. Ozaki, and N. Nozaki. Robust
regresison for developing software estimation models.Jour-
nal of System and Software, 27:35–16, 1994.

[9] R. S. Pressman.Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill, fourth edition, 1997.

