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Predictive Modelling of Plankton Dynamics in
Freshwater Lakes using Genetic Programming
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Abstract  Building predictive time series models for freshwater systems is important both for understanding
the dynamics of these natural systems and in the development of decision support and management software.
This work describes the application of a machine learning technique, namely genetic programming (GP), to
the prediction of chlorophyll-a.  The system endeavoured to evolve several mathematical time series
equations, based on limnological and climate variables, which could predict the dynamics of chlorophyll-a on
unseen data.   The predictive accuracy of the genetic programming approach was compared with an artificial
neural network and a deterministic algal growth model.  The GP system evolved some solutions which were
improvements over the neural network and showed that the transparent nature of the solutions may allow
inferences about underlying processes to be made. This work demonstrates that non-linear processes in
natural systems may be successfully modelled through the use of machine learning techniques.  Further, it
shows that genetic programming may be used as a tool for exploring the driving processes underlying
freshwater system dynamics.

1. INTRODUCTION

This paper describes the application of a genetic
programming (GP) system to predict the timing
and magnitudes of algal blooms for Lake
Kasumigaura, in the South-Eastern part of Japan.
This data has previously been studied using an
artificial neural network (Recknagel, 1997;
Recknagel et al., 1998; Recknagel and Wilson,
1999) which demonstrated the potential for these
tools to predict highly nonlinear phenomena such
as blue-green algal blooms in freshwater lakes.
The purpose of this paper is to compare the
predictions for this system developed by genetic
programming with the previous neural network
approach, and to demonstrate that the GP system
allows the underlying processes for this system to
be studied.

1.1 Data Characteristics of Lake Kasumigaura

Lake Kasumigaura is situated in the South-Eastern
part of Japan.  It is a large, shallow water body
where no thermal stratification occurs.  Water
temperatures vary widely, from 4°C in the winter
to 30°C in summer.  The lake has high external and
internal nutrient loadings and therefore primary
productivity is high.  As algal succession changes
species abundance year by year, it is very difficult
to predict algal blooms or develop causal models
of the lake algal behaviour.  This has become an
important issue due to the need for good
predictions of the growth of harmful blue-green

algae such as Microcystis spp, Oscillatoria and
Anabaena flos aquae.

1.2 The Ecology of Freshwater Phytoplankton

Phytoplankton include representatives of several
groups of algae and bacteria.  They are usually
distinguished by being freely floating and
dependent on water movement for maintenance
and transport (Reynolds, 1984).  Many factors
affect their population dynamics and they vary
depending on the type of phytoplankton under
consideration.  However, all algae species rely on
light as a basic input for photosynthesis and require
nutrients such as nitrogen and phosphorus for
growth and reproduction.  Factors such as water
temperature, turbidity, mixing, competition and
grazing are also relevant to the population
dynamics of algae.  Therefore seasonal patterns are
normally evident in the cycles of population
density, however these signals are often
dramatically shifted due to nutrient loadings, other
species dominance and other less easily identified
factors.  Even though much work has been done on
phytoplankton, there are still difficulties with
developing reliable predictive models for algal
growth.  This is mainly due to the highly nonlinear
behaviour of the population as a whole, which
depends on both variable climatic conditions as
well as the relationship between components of
aquatic food chains.



2.  GENETIC PROGRAMMING

The field of Genetic Programming (Koza, 1992)
developed from the evolutionary population-based
search methods used with Genetic Algorithms
(GA) (Holland, 1992).  GP extended the fixed-
length approach of GA’s to allow basic computer
programs to be evolved in the form of functional
LISP expressions.  This extended the GA concepts
by allowing the size and shape of the evolved
solutions to change, thereby offering the possibility
for the system to discover a program which
generalised a set of training examples.   GP has
been applied successfully to many problems (Koza,
1990; Roston and Sturges, 1995; Gruau, 1996;
McKay, 1997) and has been previously shown to
be useful in developing time series expressions
(Whigham, 1999).   The GP system used with this
study was designed specifically for time series
analysis by allowing the user to select sub-portions
of the training data during the evolution of the
system and to incrementally adjust the parameters
that control the search algorithm.  The system used
a steady-state population which incrementally
added new population members while
probabilistically removing the weakest.

2.1 GP Parameters

GP Starting Parameter Value
Population Size 500
Initial Maximum Depth of Program 5
Crossover Rate 90%
Mutation Rate 5%
Available Functions +,-,*,/

inv(x),
ln(x), xy,
logxy,
sinh(x),
cosh(x),
ℜ

Table 1.  The Initial GP Parameter Specification.

The GP system was initially defined by the set of
parameters shown in Table 1.  The values of Table 1
are used for each of the experiments described in
this paper.  The mathematical functions available as
part of the evolved expression were the standard
arithmetic operators, plus the inverse function,
natural logarithm, power function, logarithm to an
arbitrary base and the hyperbolic functions.  The
random real-number function ℜ was used to add
random numbers to the equations.  These numbers
could then be adjusted during the evolution by a hill
climbing algorithm. The problem specific arguments
used in the experiments are described in Section 4.
The Initial Maximum Depth parameter specifies the

maximum tree depth that is allowed when randomly
constructing the initial programs.

2.2  Crossover

Figure 1.  Crossover swaps subtrees between two
programs.

Crossover with GP is performed by randomly
swapping components from two programs, as shown
in Figure 1.  Here, the programs exp(2*3)+x  and
y*ln(4 + 8)-z  are crossed to give the new programs
y*(2*3)-z and exp(ln(4+8))+x.  Crossover is
designed to allow useful components of a fit partial
solution to propagate throughout the population.

2.3  Mutation

Mutation with GP is performed by randomly
deleting a subtree within a selected program, and
generating a new, random, subtree based on the set
of functions and arguments that have been defined
for the problem.  The new subtree is limited by the
current maximum tree depth.

 2.4  Hill Climbing Mutation for ℜ

Random real numbers, represented as the variable
ℜ, are used as constants to allow the evolving
mathematical expresions to adjust their scale and
magnitude.  These numbers are generated at
random at the commencement of the evolution and
are not tuned in any way with the final solution.
To allow a fine tuning of an evolved expression, a
hill climbing mutation for the random numbers
contained in an expression is used.  This operation
can be applied to the current fittest solution during
the evolution for a solution at any time by user
control.  It is typically used to tune the constant
values when the evolution is complete.



3 PLANKTON DYNAMICS USING
ARTIFICIAL NEURAL  NETWORKS

The ANN setup and procedures have been
previously described (Recknagel et al. 1998).  A
feed-forward architecture with back propagation
for training was used for the plankton dynamics.
The hyperbolic function was chosen as the transfer
function to calculate the activation levels.  The
number of hidden layers, nodes and neurons as
well as the learning rates and momenta were used
as control parameters to find optimum training
results.

4  TRAINING AND TEST DATA SETUP

Measured Factor Av ± Std. Dev. Units

Ortho phosphate 14.14 ± 25.71 mg/l

Nitrate 520.56 ± 503.4 µg/l

Secchi Depth 85.43 ± 44.57 cm

Dissolved Oxygen 11.2 ± 2.14 mg/l

pH 8.74 ± 0.59 -

Solar Radiation 1281 ± 671 MJ/m2

Water Temperature 16.36 ± 7.79 °C

Chlorophyll-a 74.43 ± 42.51 µg/l

Table 2.  Factors measured with the daily time
series data.

Table 2 shows the measured variables used for
developing the models.  For all experiments, 8
years of daily data ( ’84, ’85, ’87, ’88, ’89, ’90,
’91, ’92) were used for training and 2 years of
daily data (’86 and ’93) for testing the GP system
and the neural network.  The root mean square
error (RMSE) was used as the fitness function for
the training data and as a measure of accuracy for
the test data.  A lower RMSE was taken to indicate
a better prediction of the test data.  When
comparing 2 different learning techniques a lower
RMSE for the unseen (test) data implied that the
learning system had better generalised the patterns
found in the training data.

4.1 Data Preparation

The NN approach normalised each input and
output variable to the range {0…1}, where 0 →
minimum value and 1 → maximum value.   Since
this normalisation incorporates the additional
information of the range for each variable this
encoding would be expected to allow a better
model to be developed.  In the case of the GP
system, the exponential, power and hyperbolic
functions will overflow with typical values for

many of the variables if normalisation does not
occur.  Issues of scaling are considered in Section
5.
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Figure 2.  Daily Time Series data for Chlorophyll-a
for all years.

5.  PREDICTING CHLOROPHYLL-A

Chlorophyll-a is used as a sampling technique for
estimating the total biomass of the phytoplankton
community in a waterbody.  Hence the driving
factors for chlorophyll-a tend to represent the
overall behaviour of the plankton community.  The
daily time series data for chloroplyll-a is shown in
Figure 2.  Note that the validation (test) year 1986
has a far larger concentration measure than any of
the training years.   The other validation year
(1993) is more typical of the training years.

5.1 Results using Non-Normalised Data

Figure 3.  Prediction of Chlorophyll-a Part I
(RMSE = 41.83)

Equation (1) shows the evolved expression for chl-
a prediction, and Figure 3 gives the response for
the two test years.

(4600.42/S) + T                             (1)
where

S = secci-depth and T = water temperature.

The RMSE for (1) based on the 2 years of test data
was 41.83 versus the NN error of 41.78.  For our
purposes these results are comparable.
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A different run using GP produced Equation (2),
which had a lower RMSE (40.67) for the test data.
However the equation was more complex.

Figure 4.  Prediction of Chlorophyll-a Part II
(RMSE = 40.67)
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and L = solar radiation, N=nitrate, T = water-
temperature and P = phosphorus.

The results against the test data are shown in
Figure 4.  Note that Equations (1) or (2) do not use
exponential or power functions and rely on
constants to scale the data.

Figure 5.  Prediction of Chlorophyll-a Using
Normalised Data (RMSE = 37.08).

5.2 Results using Normalised Data

To demonstrate that different solution forms were
created based on the scaling of the data, a series of
runs were performed using normalised data.  When
attempting to produced a small, generalised model,
equation (3) was discovered, which had a low

RMSE (37.08).  Note however it did not predict
the peak measure of Chl-a.  The resulting
prediction is shown in Figure 5.

)250836.226(

cosh

++ NS

T
                  (3)

where

S = secci-depth, N = nitrate, T = water
temperature.

The simplicity of this equation resulted from
forcing the GP system to only allow equations to
be produced to a depth of 6.  Additionally, at
certain times the maximum allowed depth was
decreased to break apart the basic partial solutions
and then the system was allowed to reconstruct
them.  This forced building blocks to be gradually
created resulting in (3).  Note that the lower RMSE
for (3) shows that this strategy has helped to
produced a more general, yet more accurate,
solution.

Figure 6.  Prediction of Peak Chlorophyll-a using
Normalised Data  (RMSE = 37.08)

5.4 Modelling the Peak Chlorophyll Response

The GP system allowed the user to alter the range
of training data during the evolution.  By selecting
a subset of the training data from 1984 to build the
initial equation elements the final equation (based
on all of the training data) modelled the peak
chlorophyll response, as shown in Figure 6.  The
RMSE was 37.08 which compared favourably with
the other evolved solutions. The peak prediction is
modelled by Equation (4).
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6.    PROCESS-BASED MODELLING

A difference equation model for algal growth
(Equation (5)) was used to compare the previous
data-driven techniques that have been described.
This equation was developed based on current
process understanding (Recknagel and Benndorf,
1982).  The constants in (5) were set based on
values that had been discovered from laboratory
tests and fieldwork.  Using this original equation
the prediction for the test period is shown in Figure
7.  The RMSE was 91.46 which is significantly
worse than either GP or NN.
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Figure 7.  Prediction of Chlorophyll-a using a
difference equation (RMSE = 91.46).

 In an attempt to improve the performance of (5)
the constants were tuned based on the training data.
Each constant could vary within a range of ±20%
based on the 8 years of training data.  The
constants were varied using a hillclimbing
mutation. The RMSE was used as the fitness
measure, however only values of chl-a that were
above 75 mg/l contributed to the error measure in
an attempt to force the equation to better model the
peak events. The prediction for the test period is
shown in Figure 8 and the modified equation is
shown as Equation (6). This equation had a
dramatically improved RMSE of 46.75 which
approached the GP and NN model accuracies.
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Figure 8.  Prediction of Chlorophyll-a using a
difference equation with constants calibrated using

the training data (RMSE = 46.75).

The success of this equation demonstrates that the
constants of process-based models may be
successfully calibrated for new freshwater
conditions using simple machine-learning
techniques.

7.  DISCUSSION

 The previous studies have demonstrated that
models can be developed for the non-linear
dynamics of phytoplankton.  However a number of
basic issues have arisen due to this work.

This work has demonstrated that scaling data
affects the form and accuracy of evolved solutions.
Developing a general understanding of how scaling
affects machine learning techniques seems a valid
and relevant research topic that is currently not
well understood.

The GP model used the same training and test data
setup as the original NN study so that the results
could be validly compared.  However, there are
other approaches to using data sets such as 10-way
cross validation, which allow all of the data to be
used for developing models and estimating error.
Further work is required to determine whether
these approaches would improve the overall
performance of the learning system.



The fitness function used the standard RMSE.
Other error measures for time series, such as the
coefficient of efficiency and the mean absolute
percentage error may improve the developed
models by changing the shape of the fitness
landscape.  In particular, the large bloom events
are being overfitted because of the way RMSE is
calculated.

Phytoplankton dynamics are complex and often
have different phases based on climate and other
population histories.  This study has not considered
any mechanism for detecting these different
phases.  A more suitable approach may be to
evolve a rule-based system as demonstrated by
Bobbin and Recknagel (1999). It allows different
phases of growth and decay to be recognised and
for different equations to be used for each phase.
These phase changes are shown by the inability for
our models to predict well for both test years.  It is
evident that different processes are occuring for
each of these years and the generalised model is
only able to account for one type of behaviour.

The current study did not exploit the time series
nature of the data by allowing past values as input
to the evolved equations.  Additionally, the growth
and decay of phytoplankton are related to the
current population of phytoplankton.  Equations
for population growth which include the current
population as part of the next time step prediction
are likely to produce more understandable
models.  Extensions of the GP approach to allow
generalised forms of Equation (5) would also be of
interest.  This approach is likely to produce
equations that have underlying process explanation
and can be extended to other systems.

8.    CONCLUSION

This study has demonstrated that both GP and NN
are capable of producing predictive models for
ecological time series data. The paper has
highlighted issues with scaling data for machine
learning and the difficulty involved with producing
understandable models.  The calibration of a
determinstic process-based model using machine
learning techniques has been demonstrated.  A
number of areas for future research have been
highlighted.

9. REFERENCES

Bobbin, J. and F. Recknagel, 1999. Mining water
quality time series for predictive rules for
algal blooms by genetic algorithms. Proc.
of the Int. Conference MODSIM 99
(in press).

Gruau, F. 1996. On using Syntactic Constraints
with Genetic Programming. In:P. a. K.

Angeline, Jr., K.E., (Editor) Advances in
Genetic Programming 2. 402-417.

Holland, J. H. 1992. Adaptation in Natural and
Artificial Systems. Cambridge, Mass.:
MIT Press

Koza, J. R. 1990. Concept Formation and Decision
Tree Induction Using the Genetic
Programming   Paradigm. In:H. P. a. M.
Schwefel, R., (Editor) Parallel Problem
Solving from Nature. 124-129.

Koza, J. R. 1992. Genetic Programming:on the
programming of computers by means of
natural selection. Cambridge, Mass.:MIT
Press

McKay, R. I., Pearson, R.A. and Whigham, P.A.
1997. Learning Spatial Relationships:
Some Approaches. In GeoComputation
’97. R. T. Pascoe, (Editor), University of
Otago, Dunedin, New Zealand. 69-79.

Recknagel, F. 1997. ANNA - Artificial Neural
Network model for predicting species
abundance and succession of blue-green
algae. Hydrobiologia. 394:47-57.

Recknagel, F., and J. Benndorf. 1982. Validation
of the ecological simulation model
SALMO. Int. Revue ges .Hydrobiol.
67:113-125.

Recknagel, F., T. Fukushima, T. Hanazato, N.
Takamura, and H. Wilson. 1998.
Modelling and Prediction of Phyto- and
Zooplankton Dynamics in Lake
Kasumigaura by Artificial Neural
Networks. Lakes and Reservoirs:
Research and Management. 3:123-133.

Recknagel, F., and H. Wilson. 1999. Elucidation
and prediction of aquatic ecosystems by
artificial neural networks. Ecological
Modelling. (in press).

Reynolds, C. S. 1984. The ecology of freshwater
phytoplankton. Press Syndicate of the
University of Cambridge, New York

Roston, G., and R. Sturges. 1995. A Genetic
Design Methodology for Stucture
Configuration. ASME Advances in Design
Automation. DE 82:73-90.

Whigham, P. A., Crapper, P.F. 1999. Time series
modelling using genetic programming: An
application to rainfall-runoff models.
In:L. Spector, Langdon, W.B.,  O’Reilly,
U.  and  Angeline, P.J., (Editor) Advances
in Genetic Programming 3. . MIT Press,
Cambridge, MA, USA. 89-104.


