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Abstract

This article outlines similarity applied to the general environment and geographical infor-
mation domains. The hypothesis is if physical and social sciences manifest similar amenities,
then similarity would be a generative technique to analyse the cached information inherent in
the data retrieved. Similarity is examined concerning the spatial grouping of natural kinds in
a complex environment.

1 Introduction

Increasingly, scientific research is biasing towards computational approaches with the ad-
vances in technology. Supercomputing is now an accepted technique that stands as an equal
partner to observation and experimentation. In practice, developing these new computation-
ally dependent tools for analysis and modelling induce many new areas of computation. En-
vironmental scientists are increasingly utilising information systems to help them make
decisions in their very complex domain(s). Swayne suggests that a new applied discipline in
Computer Science that started in the mid-1980’s has since evolved dramatically into what he
calls Environmental Informatics or Environmental Information Systems. An online air pollu-
tion monitoring system, for example, incorporates both informatics and environmental issues.
Some fruitful informatics techniques that are being utilised for environmental management
include; distributed database concepts, analysis techniques (artificial and computational in-
telligence), exploratory analysis (knowledge discovery and data mining) and visualisation
techniques for modelling and simulation. GeoComputation, for example, is the word used to
represent these changes of the past 5 years in the geographic information (GI) sciences
(changes in the processing speed and the cost of high performance computing). The tools re-
flect the conglomerate technologies of high performance computing, artificial intelligence
(AI) and GI science. If physical and social sciences manifest similar amenities, then this arti-
cle suggests it would be a generative exploratory technique to analyse the cached information
inherent in the similarity of the data retrieved. Especially taking note of the spatial grouping
of natural kinds in a complex environment. This article outlines similarity applied to the gen-
eral environment and geographical information domains.

Similarity, is fundamental for learning, knowledge and thought, for only our sense of similarity
allows us to order things into kinds so that these can function as stimulus meanings reasonable
expectation depends on the similarity of circumstances and on our tendency to expect that similar
causes will have similar effects (Quine 1969:114).

Similarity is important for people to understand objects, structures and actions existent in re-
ality. Interpreting objects is a fundamental process of most human pursuits, and the idea that



people classify together those things that they identify as being similar is both intuitive and
utilised across a wide range of disciplines. Scientific theories can not be reduced to logical
constructions of simple statements about the similarity between sense data, as many logical
positivists thought, not even the similarity between physical objects outside the observer.
Quine would rather say that our sense of similarity is basic insofar as it is the starting point
for the individual's development of language skills and for the contribution of hypothesis in a
new field of study. Our naive perceptions of similarity are likely to be refined and in some
cases contradicted by the scientific theories that eventually evolve.

This article aims to emphasise that similarity could be used to search and solve patterns in the
complexities of the natural world. This approach of modelling aims to analyse the environ-
ment in a holistic view rather than using the reductionist view (of using small components to
explain a large ecosystem). In effect, by understanding the similarities (spatial or otherwise)
between subjects, people can learn more about each subject than if we only studied the sub-
ject in isolation. Also this article aims to indicate the use of similarity in GI systems as the
basis of a retrieval technique. A retrieval technique that can be used to sort things into groups
whilst operating in an information science domain. The grouping and matching, for example,
of topo-climates or indigenous flora and fauna in to their positions in the landscape.

2 Similarity

Our concept of similarity is a property that is both innate and accumulative. This property is
crucial to a person's ability to form expectations and make predictions. The ability to make
similarity judgements is considered to be a valuable tool in the study of human perception
and cognition and play a central role in theories of human knowledge representation, behav-
iour and problem solving. Tversky (1977:327) describes the similarity concept as "an organ-
izing principle by which individuals classify objects, form concepts, and make
generalizations".

Quine construes a primitive form of comparative similarity that is an evolutionary product of
natural selection. With respect to how similarity fits in with regularities of nature, to afford us
reasonable success in our primitive induction's and expectation. Quine acknowledges, how-
ever, that through development people form a more objective sense of a similarity away from
the immediate, subjective and animal sense of similarity. Quine suggests that our sense of
similarity, our grouping of kinds, is both innate and accumulative. Innate in that our sense of
similarity is our foundation block of reasoning and induction, our internal check system. The
concept of similarity according to Quine is embedded in our innate senses. It is accumulative
in that it develops and changes and even becomes multiple as one develops and matures,
making perhaps for increasingly dependable prediction. Interestingly, our senses compliment
new and novel grouping of kinds, they are not superseded. Quine suggests that, our experi-
ences from earliest infancy are bound to have overlaid our innate spacing of qualities by
modifying and supplementing our grouping habits little by little, inclining us more and more
to an appreciation of theoretical kinds and similarities. However, we retain different similar-
ity standards, different systems of kinds, for use in different contexts. We all still say that a
marsupial mouse is more like an ordinary mouse than a kangaroo, except when we are con-



cerned with genetic matters. Something like our innate quality space continues to function
alongside the more sophisticated regroupings that have been found by scientific experience to
facilitate induction. Quine encapsulates our historical drive to understand the concept of
similarity when he states that,

philosophical or broadly scientific motives can impel us to seek still a basic and absolute concept
of similarity, along with such fragmentary similarity concepts as suit special branches of science.
This drive for a cosmic similarity concept is perhaps identifiable with the age-old drive to reduce
things to their elements (Quine 1969:136).

However, currently reductionism has fallen, and Green (1997) suggests complexity holds
some answers to the functioning of the environment. This article proposes that the "drive for
a cosmic similarity concept" can also identify with the complexity paradigm.

Hume (Mossner, 1969) was a pioneer of the philosophical study of the concept of similarity.
His work "A Treatise of Human Nature" written in 1740, foresaw that if objects are similar in
appearance then they will be attended with similar effects. Thus, from causes that appear
similar, people expect similar effects. Hume considered surface similarity to be the only form
of existing similarity. He believed that when assessing similarity, it is sufficient to consider
only simple sensory attributes of objects and he did not consider different perceptions of
these attributes by different subjects or by the same subjects but in different contexts. Hume's
views are limited because his approach equates surface similarity with psychological similar-
ity and thus neglects perceptual capacities of the organisms and assumes common environ-
mental properties. He stated that the degree of similarity of two composite ideas depends on
the number of simple ideas they have in common. However, Hume assumed that the similar-
ity between simple ideas are the immediate commonalties. He also observed, that arguments
from experience are founded on the similarity which humans discover among natural objects
(Mossner, 1969).

Wittgenstein used commonalties to indicate similarity, in saying that, "something runs
through the whole thread - namely the continuous overlapping of those fibres" (Wittgenstein
1958:31-32). He argued that the attributes that situations and objects have in common should
be called family resemblances. Family resemblances are, "a complicated network of overlap-
ping and criss-crossing: sometimes overall similarities, sometimes similarities of detail"
(Wittgenstein 1958:355). According to Wittgenstein, the knowledge required to possess a
concept or use a linguistic item is an implicit knowledge of the family resemblances between
situations and objects.

Popper identifies the significance of point of view to similarity,

if similarity and repetition presuppose the adoption of a point of view, or an interest, or an ex-
pectation, it is logically necessary that points of view, or interests, or expectations, are logically
prior, as well as temporally (or causally or psychologically) prior, to repetition (Popper,
1972:422).

What Popper stresses is that similarity between two things is always relative to a certain re-
spect in which they are compared, a certain perspective or interest. They may be similar in
one respect but dissimilar in another. For Popper this is an argument for his idea that the



repetition of similar events is not the basis for empirical theories, not even in the weak psy-
chological sense that expectations fulfilled induce a belief in a general theory. The repeated
observation, for example, of white swans is what makes people believe in the general theory
that all swans are white. According to Popper, "two things which are similar are always
similar in certain respect and generally, similarity, and with it repetition, always presupposes
the adoption of a point of view" (Popper, 1972:420-421). Point of view in information sys-
tems can be construed as context. Context has a major influence on the type of information
that can be retrieved using the similarity concept. With context, scale, 'techniques for re-
trieval' and 'similarity measures' have important roles in similarity.

Throughout history, people have discerned different natural kinds, or species, among animals

and plants. This was simply based on how similar or dissimilar different living creatures

seem to a person who has some level of personal experience of animals or plants. Gradually

these natural kinds have evolved into a (for the time being) much more objective and theo-

retically well founded taxonomy of life in biology.

Some milestones in this development of the taxonomy of life in biology have been;

¢ the binomial nomenclature of Linneus,

* the systematic use of the wider groupings of genera, families, orders and classes,

* the coarse rule that those individuals form a species which in principle could produce fer-
tile offspring,

» the insights into how a species may split into two different species from evolutionary bi-
ology,

* the explanation from molecular genetics of why individuals of the same species are very
similar to each other but also show small variations,

» the quantitative measurement of the degree of relatedness between individuals, living or
fossilized, by means of a chemical analysis of DNA samples.

The grouping of animals in to their natural kinds is the example shown in the next section of
this article. Where a set of animals in a zoo are used to test if CBR classify them correctly?
The set of animals include 101 animals and range from an aardvark to a worm. Features such
as hair, feathers, eggs, backbone, breathes and fins are used to classify the animals. A Wren,
for example, is identified as a bird and is considered more similar to a Lark than to a Fla-
mingo.

3 Mechanics of the similarity matching process

The similarity matching process in this article incorporates CBR techniques. CBR is a gen-
eral paradigm for reasoning from experience. It assumes a memory model for representing,
indexing, organising past cases and a process model for retrieving and modifying old cases
and assimilating new ones (Klein et al. 1988; Schank 1982). More specifically, CBR is de-
fined as:

adapting old solutions to meet new demands, using old cases to explain new situations, using old
cases to critique new solutions, or reasoning from precedents to interpret a new situation or create
an equitable solution to a new problem. (Kolodner 1993:4).



3.1 Cases

Cases are the fundamental units of CBR. They are the essence of CBR and their structure in
effect determines how CBR operates. Cases are unique chunks of information. A case is de-
fined as "a contextualised piece of knowledge representing an experience that teaches a les-
son fundamental to achieving the goals of a reasoner." (Kolodner 1993:13).

3.2 The CBR cycle

Aamodt & Plaza (1994) suggest that a CBR cycle may be described by the following four
processes:
1. retrieve the most similar case(s),
2. reuse the information and knowledge in that case to solve the problem,
3. revise the proposed solution,
4. retain the parts of this solved problem (experience) which are likely to be useful for
future problem solving.

33 The similarity matching process

The case definition defines the field types, the formalism for the input values and the weights
of the fields. The information in the case definition is used for type checking for the input
cases, while the weights are used to aid the case-matching process. An example of the for-
malism of the case definition for the AIAI case file is shown in Figure 1. Indicating the im-

portance of the field name breathes with lungs which has a weight of 4 in comparison to the
field has fins which has a weight of 1.

Optionz  Keys/FilessStats | Leamingl

—CBR Template...
Figld Mame... Set Field Az 1D | Operatar... weighting... Goals... Curent Record... Current CER Caze...
Animal Mame || String Exact - IFU _________________ ia||Falze  a||aardvark a || wren -
Has Hair || String Exact -2 False 7 |[es —|[No —
Has Feathers String Exact 1 Falze Ma Wes
Layz Egge String Exact 1 Falze Mo ez
Gives ik String Exact 3 Falze Yez Mo
Can Fly String Exact 1 Falze Mo Yes
Lives inwater String Exact 1 Falze Mo Mo
Predator String Exact 1 Falzse Yes Mo
Has Teeth String Exact 1 Falze fes Mo
Hasz & Backbone String Exact 2 Falze es es
Breathes With Lungs String Exact 4 Falze es Wes
|2 Wenomous String Exact 1 Falze Mo Mo
Has Finz String Exact 1 Falze Mo Mo
Mumber of Legs Mumber E xact 1 Falze 4 2
Hasz Tail | String Exact 1 Falze __|[Ma _lves |
|z Domestic String Exact 1 Falze Mo Mo
|z Cat-zized LI String Exact LI 1 LI Falze ;I es LI Mo LI
Unique ID: Animal Hame Clear I Clear I [~ UseEnd of Case Tag: [[Mone]
—File Manags L Statigtics...
ﬂl ul [ | TEMPLATE: D:\Complexity\Complexity-Similarity_key Cases in Caze Baze: 101 Marimum CBR Score: 23
Biytes in Case Base: 6876 Comparisons [per rec): 1717
d‘l ﬂ| [ |E.-’-‘«SE BASE: D:\ComplexitykComplexity-Similarity.cbr Current Pozition: 0 Complesity [processes]: 9443
Recard: Loaded: 101 Omizzions [%): L1}
ﬁl nl 5 |HECDHDS: D:\ComplexitysComplexity-Similarity_tst Current Record: 1 Goal Margin [%): 100
Average Fithess: 21 System Accuracy [%] Unknown
Import/Export DDBELE | Import/Export dBase | Parsing Algorithm & Peak Fitness: 23

Figure 1. An example of the formalism of the case definition for AIAI



The index definition defines the fields used as goals (indexes) when searching for a matching
case. A case base must have at least one field used as a goal.

Similarity matching follows the process below:

1) The user enters the criteria (CBR Template) to build the case structure. This is used by the
case matching process, using goals and weights, to find a previous, similar case.

2) The system then performs a search (based on criteria provided by the user) and may find a
subset of cases that match the index constraints. AIAI uses animal type as a goal, therefore
grouping all cases with the same animal type. Then the system searches the subset of cases
for the final case(s) that match all the criteria. The final case(s) are then matched and ranked.

3) If no case(s) match all the criteria (for instances when there are only a few cases in the
case base) then the system prompts the user to change the goal in order to initiate another
search. Goal constraints can be designed to be more general by specifying abstract values or
fewer constraints this will increase the probability of the system finding matching cases.

4) The case instance with the highest weight score is selected as the highest ranked answer.

The following stages are used in the case matching and ranking process.

*  Weight rules are triggered and added to the case match score.

* The goal values help retrieve a subset of cases from the case base which match all the
goal values exactly (except when abstraction symbols are specified as goal values in the
modification rules).

* Thresholds can be set (see Figure 2.).

* Different retrieval techniques are available.

Options | Keps/Files/Stats I Leamingl

— Thresholding/K Neighbourhood —— — Diagnosis Type — Adaptive Modifiers
CBR Threshold [%]: 88 j ¥ Probabilistic: Curve ™ Density Shift
oy U S j " Best Match I Force Default Goal
) = £ One Caze One Yoke ™ Omission Matching
Adaptive Threshalding ™  Identify Outliers ¥ | Support Multiple Goals

) Adaptive Diagnosis ™ High/Low Algorithm
= Plot All Goals
£ Megative Selection

Testing Method — Metaweights/Fuzzy Spstem...
’7 " Parallel & Serial — Mumerical Metatweights ~ Sting Metaiw'eights — Date Metaiw'eights —\ariant Metaiweights
—System Options ———————— All Nurmbers 1 Al Skings 1 Al Dates 1 Al ariants ]
Full Errar Handling Iv! Exact Humbers 1 Exact Strings 1 Exact Dates 1 Exact % ariants 1
ZoomHelp OnAOf I Fuzzy Mumbers 1 Fuzzy Strings 1 Fuzzy D ates 1 Fuzzy ¥ ariants ]
Show Debugging [ Fuzzy Lattice Flat | Fuzey Lattice Flat | Fuzzy Lattice Flat | Fuzzylattice [g5, 7one
Fetum Syztem Control r Fuzzy Scope (%] 90 Fuzzy Scope (Chr) [Si | Fuzzy Scope [days) a0 Fuzzy Scope By Type
Might Learning Cycle |
Load Defaults on Startp SmoothFuzzy oot | SmoothFuzzy dlgoithm [ | Cross-Map Variants 7

-
[Earmpress Base Base ] Skew Negatives o
Abge SRE Magnify Exact Matches [T

Flatten fetattieights I

Clear Logs | System Reset|

Figure 2. An example of the weights, goals and retrieval techniques available



e Once this list of cases has been retrieved the user can,
(a) allow the program automatically (in batch-mode) to select a case based on weight-
matching. For each case in the subset the case-matcher finds a weight which is obtained
by totalling the weights of all the fields that matched. Fields which do not match exactly,
but are defined to be similar by the modification rules, return a value which is less than
the field's normal weight. The case matcher selects the case with the highest total weight.
Alternatively the user can,
(b) browse through the selected cases and select a case manually (compare case by case ba-
sis).

Methods for case retrieval include nearest neighbour matching, induction, knowledge guided
induction, structuring using the interquartile distance, the k-d tree, similarity measuring in the
k-d tree, exemplary 2-d tree, fuzzy algorithms and template retrieval. These methods can be
used alone or combined into hybrid retrieval strategies. The retrieval method used in this arti-
cle is the nearest neighbour matching technique. Nearest neighbour algorithms are executed
in a common fashion and is represented in equation 1. (Watson 1997)

. . . 7

Similarip(7.8)='S " S(7.5) * W,

Where: T is the target case,
S is the source case,
n is the number of attributes in each case,
i 1s an individual attribute from 1 to n,
fis a similarity function for attribute 7 in cases 7 and S,
W is the importance weighting of attribute 7.

Equation 1. A typical nearest neighbour algorithm (Watson 1997:28).

The nearest neighbour approach involves the assessment of similarity between stored cases
and the new input case, based on matching and ranking each field and the respective weights.
The user decides if certain features need weighting and if they do what must be the various
ratios between the weights of various features. A limitation of this approach is that retrieval
times increase with the number of cases. Therefore, this approach is more effective when the
case base is relatively small.

5) Repairs are carried out on the selected case. On occasions, additional information can be
requested by the system to clarify a complex situation.

6) If the user is dissatisfied with the previous matching case(s) further cases may be exam-
ined. This is continued until they are satisfied or until the user exhausts all matched cases (see
Figure 3.).



EER Maritor | Summaryl CBR Monitor  Summary |
Comparing wren with wren.. - Record Actual Goal  Diagnosis b4
FOCHS: b :
Comparing wien with warm... T FEANASP ;I Anthropod ;I Goal Anthropod by 1007 ;I 4 a
.- skimmer Bird Goal Bird by 100% 12
B W skua Bird Goal Bird by 100% 12
Comparizon Score Diagnostic Goal slownaonm Shake Goal Snake by 67 1
ith lark all23  |[Bird - zlug Anthropod Goal Ingect by 73% 2
m:: x:th ;f[]eagan[ —|23 B::d — sole Fish Goal Fish by 100% 10
wren with sparrow 23 Eiird sparmow Bird Goal Bird by 100% 16
wren with chicken 22 Bird zquinel 4 ammal Goal Mammal by 100% 14
wiren with crowe 22 Bird starfizh Anthropod Goal Anthropod by 1005 5
ith d 22 Bird stingray Fizh Goal Fish by 100% 7
i with duck 2 Bird swan Bird Goal Bird by 100z (Sstem Resul] 149
wren with flamingo 22 Eiird termite: Ingect Goal Ingect by B0% 2
wren with hawk 22 Bird toad Amphibian Goal Amphibian by 100% 2
wren with parakest 22 Eird tortoize Shake Goal Bird by 100% 1
wren with gull bl | Bird tuatara Snake Goal Amphibian by 50% 1
wren with kiwi 21 Bird tuna Fish Goal Fish by 100% 10
wren with oztrich e Bird wampire 4 ammal Goal Mammal by 100% 4
wren with skimmer bl | Bird vole Mammal Goal Mammal by 100% 28
wren with skua | Eird i wulture Bird Goal Bird by 100% 14
wien with swan LI 21 LI Eiird j wallaby 4 ammal Goal Mammal by 100% 25
wasp Insect Goal Insect by 100% 2
— Decisi waolf Mammal Goal Mammal by 100% 27
DIAGNOSIS:  Goal Bird by 100% “% Xex —2_—
BEST MATCH: wren with lark - [23723)
COMFIDEMCE: 50% 100% Time Started: 02:27 PM Estimated Finish: 02:29 PM  Finished: 02:29 PM
] SYSTEM ACCURACY: 94%

Figure 3. Examples of the similarity matching results

7) If the user is satisfied with the case selected and the solution offered then the new case is
entered into the case-base (system learning).

With the advent of Environmental Informatics there are a variety of "things" that can be
matched, for example, text, pixels, images, GI coverages, themes, layers, relationships, spa-
tial attributes, processes. These can be matched for a measure of similarity at various dimen-
sions and contexts. This article briefly outlines similarity for general environmental
modelling and for GI science.

4 Allowing the environment to model itself

In trying to understand the complexities in the environment, every new piece of the puzzle
discovered helps the subsequent pieces to be found and new domains to be explored, and
confirms to or challenges existing theories. One complexity helps us understand another, for
example, searching for volcanic action, and other geomorphologic earth traits on distant
planets helps us understand other planets. This approach enables us to compare the unknown
to what we already understand.

One of the important processes to the modelling of the environment is the way in which data
is represented, structured and stored. One component of representing and structuring data is
abstraction. Abstraction comes from the software-engineering school of thought to the mod-
elling of a business (a closed, well known, created and simple system). Is it correct to use the
same philosophy to an unknown and complex system like the biosphere or (which is more
often the situation) a subset of the biosphere? Holt (1996) proposed an alternative approach
by allowing environmental indicators to be used directly to model the environment. Rather
than modelling the environment by abstracting, weighting and biasing information for the
model, Holt (1996) allowed the environment to dictate its own software engineering, its own
model. Holt used the environment as a search space for finding similarities. Within a com-
plex community there are similarities, features are similar and features exhibit similar rela-



tionships. It is like hypothesising, have I seen this pattern before (using the brute force of a
computer to search for a pattern), if so where and what was it, what was the context, what
was the scale?

Bossomaier and Green (1998) suggest that the environment has a major influence on shaping
natural communities. In particular they suggest that landscapes influence the ecology of an
area. The simple examples they give are that temperature decreases the higher up a mountain
we climb or rainfall runs off hilltops into gullies. Bossomaier and Green (1998) mention cli-
mate envelopes

If we know the climate 'preferred’ by a given species then we can predict its potential distribution
by looking on a map for all sites in the landscape that fall within that envelope. By 'climatic en-
velope' we mean the range of values that the species tolerates for rainfall, temperature and so on.
(Bossomaier and Green 1998:73)

It is suggested using climate envelopes various environmental habitats can be predicted. Holt
and Benwell (1999) predicted the habitats of various soil types. Chunks (as a snapshot of the
environment in a dynamic state) of the real-thing were used to formulate the cases in the
case-base. Kolodner (1993) suggests CBR should be considered when it is difficult to for-
mulate domain rules but cases are available. Holt and Benwells (1999) research involved
CBR to retrieve, reuse, revise and retain previous similar cases. With CBR techniques soil
scientists could refer to records of previous zones with similar input requirements and adjust
the parameters for a similar zone to reflect the different requirements of the new zone being
classified. The records of previous zones are good examples of working compromises be-
tween the different operating requirements. Attributes of the following features were meas-
ured, land element, slope, aspect, A horizon texture, B _horizon texture, soil depth,
A _thickness, dung, % gravel volume, % gravel weight, % carbon weight and % carbon vol-
ume. These features are important to soil forming processes and are controlled, to some de-
gree, by landforms (Hewitt 1995). Consequently, it is suggested that soil classes should nest
within specific landforms (due to the influence of the environment and landscape on the
ecology). Holt and Benwell (1999) used the attributes of the features as fields and goals to
define the case instances. These case instances store the fields that are used to match unclas-
sified soil sites with previously similar fields which have a known classification. Holt and
Benwell (1999) used this technique with a 88% accuracy success rate to classify soil types
nested in various landscapes. The main characteristics of the soil classification problem are a
large volume of observed historical data, the complex nature of the environment, the soil
classification modelling rules for the decision making procedure, and the use of analogical
reasoning by experts during problem solving. CBR offered advantages for all the features
above: the historical data represents a repository of past experience that can be transformed
into cases, and the abstract rules for modelling soil classification formed the structure of the
cases by defining their structure and which fields could be used. More advantages of using
CBR included the explanation and learning abilities provided by the system. Explanation fa-
cilities are simple to implement in a CBR system. These explanation features make the users
more comfortable with reasoning by analogy because the justifications utilise data observa-
tions of past soil series incidents to support proposals instead of chain rules that are triggered
by abstracted threshold values. This explanation gives a system more chance of being ac-
cepted, where ultimate responsibility for the decisions remains with the users. CBR systems



can continuously incorporate new data as cases and, in this way, adapt to long-term trends
such as soil degradation/soil loss or to other load systems.

Characteristics that make CBR a good option to solve environmental problems include;

CBR enables the ability to use explicit experiences to aid in soil classification. These experi-
ences (cases) will enable the CBR to provide solutions (classification) to similar cases. CBR
differs from algorithms in the way that no one solution is offered (as with an algorithm) and
the user can then choose a similar case from the solution set. Also, algorithms need all crite-
ria to be fulfilled before it is run (likewise a formula needs all its parameters to produce a re-
sult), in comparison CBR allows some fields to be left blank, without jeopardising the result.
Another advantage of CBR is that its results are improved after each iteration of a new case
being added to the case-base (as experience improves so will the ability of the system to pro-
vide the best solution), in comparison an algorithm will predict the same answers and the as-
sociated error level each time it is used. Environmental problems are inherently complex and
Holt (1996) proposed a novel method (a GI-CBR hybrid), that will aid in the modelling and
solving of such problems. Taking a snapshot and instance of a complex system to model
similar complex systems. This is modelling approach not intended to be the complete answer
but it does further our understanding of managing and modelling the complexities of the en-
vironment.

Holt and Benwell (1999) define spatial similarity as those regions which, at a particular
granularity (scale) and context (thematic properties) are considered similar. Spatial similarity
is broadly defined as spatial matching and ranking according to a specific context and scale.
More specifically, similarity is governed by

* context (function, use, reason, goal, users frame-of mind),

* scale (coarse or fine level),

* repository (the application, local domain, site and data specifics),

* techniques (the available technology for searching, retrieving and recognising data) and

* measure and ranking systems.

Holt & Benwell (1999) proposed a spatial similarity system which allows GI systems to rec-
ognise, retrieve, re-use, revise and retain from the past for the present and future. This con-
cept is useful for spatial problem solving, data retrieval, classification and
exploratory/interpretation. It is suggested that spatial similarity could be utilised both as a de-
scriptive and exploratory concept in an attempt to satiate the geocomputational need. The
spatial similarity system has arisen from the belief that current GI systems are limited in their
reasoning ability and CBR can be integrated to support this deficiency. The primary use of
such a system is to develop reasoning techniques for discovering knowledge about areas that
are considered spatially similar. The degree of match to a set of criteria (parameters) and cir-
cumstances (application) also influence the degree of similarity. The user also governs simi-
larity as they select a set of criteria, defines circumstances and biases the appropriate criteria
to achieve the desired result. Consequently, based on a set of criteria selected by the user
similar instances can be found. It is not just the attributes that determine similarity, spatial
relationships between situations also affect similarity. Proximity analysis, available in GI
systems, allows a relation to be formed between spatial data. This can be used as a similarity
measure. The degree of match is the score between a source and a target. In spatial matching
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a source and a target could be a pixel, region or coverage. The principles that govern spatial
similarity are not just the attributes but also the relationships between two phenomena. This is
one reason why CBR coupled with a GI system is fortuitous. A GI system is used symbioti-
cally to extract spatial variables that can be used by CBR to determine similar spatial rela-
tions between phenomena. These spatial relations are used to assess the similarity between
two phenomena (for example proximity and neighbourhood analysis).

5 Discussion

The author considers similarity assessment generative for retrieving and analysing complex
environmental and spatial information. It may help researchers describe and explore certain
phenomena, its immediate environment and its relationships to other phenomena. This article
identified that phenomena are similar to each other depending on the type and number of
commonalties they share and that the spatial properties of entities have an impact on similar-
ity. The types of applications of similarity for the general environment and spatial domains
are indicated in table 1 below. Similarity queries may be utilised in future applications to an-
swer questions such as;

* Are there phenomena similar to the searched example?
*  Which spatial phenomena have the following properties?

Environmental applications Spatial applications

Matching the known geological features on earth
with those observed on distant planets, and also
using observations on distant planets for the better
understanding of similar happenings on earth.

We can forecast the landscape of the future and
re-create the landscape of the past through pock-
ets of vegetation by modelling similar areas with
similar landscapes.

Genetically similarity, traits, may help in the iso-
lation of various diseases

Similar farms, in products and size can be
matched to allow management procedures to be
shared.

Areas of similar community relationships and
ecological character

From digital terrain models, points, lines, poly-
gons and pixels can be clustered into groups with
similar spatial kinds and then displayed with GI
systems.

Matching chemical and molecular structures

The spatial organisations and groupings at a mo-
lecular and chromosome level can be explored
and understood based on similar shapes and
structures.

Genetics and pharmacology relationships

Weather patterns can be predicted based on simi-
lar historical meteorological data in similar land-
scapes.

Matching chromosomes , the human genome and
human behavioural and health traits

River coverages and flooded areas can be used to
locate similar areas prone to flooding.

Matching the delivery action and the position on
the pitch with the bounce of a cricket ball

Table 1. Types of applications of similarity for the general environment and spatial domains

Note: Conversely dissimilar, divergent areas or patterns of outlying areas can be explored in

the equivalent manner as searching for similar landscapes.
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For a list of researchers interested in this topic see http://divcom.otago.ac.nz/sirc/similarity/
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