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Abstract

In real world information systems, data analysis and processing are usually needed to be done
in an on-line, self-adaptive way. In this respect, neural algorithms of incremental learning and
constructive network models are of increased interest. In this paper we present a new algorithm
of evolving self-organizing map (ESOM), which features fast one-pass learning, dynamic network
structure, and good visualisation ability. Simulations have been carried out on some benchmark
data sets for classification and prediction tasks, as well as on some macroeconomic data for
data analysis. Compared with other methods, ESOM achieved better classification with much
shorter learning time. Its performance for time series modelling is also comparable, requiring
more hidden units but with only one-pass learning. Our results demonstrate that ESOM is an
effective computational model for on-line learning, data analysis and modelling.

1 Introduction

Many real world information systems use data from on-line data streams that are updated frequently.
To extract useful information hidden among these multivariate data, a number of techniques can
be applied, such as scientific visualisation, dynamic clustering, and classification etc. As the data
environment is dynamic, it often demands that the computational models should have incremental
learning ability, and evolve with the changes in data. By incremental learning we refer to Shaal and
Atkeson (1998), addressing a learning scenario in which

• Input and output distributions of data are not known and these distributions may change over
time.

• The parameters of the learning system are updated incrementally.

• Only a limited memory is available so that data have to be discarded after they have been
used.

Such a situation exists in biological systems as well as in engineering applications, such as robotic
systems and process control.

In the context of data clustering and classification, a straightforward approach is the well known
K-means algorithm (MacQueen 1967), which calculates each cluster centre as the mean of data
vectors within the cluster. The performance of this algorithm has been found to be rather stable,
but it has a limitation that the proper number of clusters needs to be specified. This is sometimes
difficult if we have no a priori knowledge of the data distribution. Its on-line version may also suffer
from confinement to local minima (Martinetz et al. 1993). To avoid this a “soft-max” principle is
applied to modify reference vectors (Nowlan 1990), in which not only the “winner” is modified, but
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all reference vectors are adjusted depending on their proximity to the input vector. Kohonen’s self-
organizing feature map (SOM) (Kohonen 1982) is another model incorporating a soft-max adapting
rule, using a Mexican hat neighbourhood function to modify map nodes. It is a good choice for
vector quantisation in applications such as speech and image coding, featuring topology preserving
ability and approximation of data distribution. SOM has found great success with a large amount
of applications in various fields (Kohonen 1997).

The SOM model has a fixed topology on the feature map and the number of map nodes is also
fixed. Once a map is learned it can not change its size to meet the need of new data environment.
The feature map space of low dimensionality is intended to facilitate visualisation, but for data of
high complexity the feature map can be folded and hence generate poor topolgy representation of
the data. During the learning process SOM may also suffer from border effects and special treatment
has to be considered (Kohonen 1997). Training data need to be presented to the model for many
epochs before a good representation is learned on the feature map, especially to compensate for a
potential inappropriate initialisation.

SOM is basically an unsupervised algorithm and it is rarely used for tasks such as time series
prediction and pattern classification. Kohonen (1997) suggests to use LVQ in these cases. Meyering
and Ritter (1992) proposed a Local Linear Mapping (LLM) network for supervised learning in a
computer vision problem. LLM has two layers of weights. The lower layer is trained with the SOM
algorithm, but the upper layer updates its weights by a LMS algorithm. Vesanto (1997) incorporates
a local linear regression model on the top of a SOM network in a time-series prediction problem and
achieved very good results. He constructs local data sets for the prototype vectors and uses linear
regression models on these local data sets. Strictly speaking, this is not an incremental learning
approach and the complexity of the model is larger than the scale of the number of prototype
vectors.

Other variations of the SOM models try to introduce improvements into the computation process
and the effectiveness of the feature mapping. The constraints of a low dimensional mapping topology
is removed in (Martinetz 1993), where a neural-gas model is proposed with a learning rule similar to
SOM, but the reference vectors are organized in the original manifold of the input space. Blackmore
and Miikkulainen (1993) proposed an incremental grid growing algorithm, where nodes and connec-
tions can be added to, or deleted from, the feature map, which is of fixed low dimensionality. Fritzke
(1991,1994) proposed a growing cell structure (GCS), which uses a fixed topology dimension for
reference vector space, but there is no pre-defined layout order for network nodes and the topology
is much more flexible. The network creates new nodes whenever input data is not closely matched
to existing reference vectors, and sets up connections between nodes. In (Fritzke 1995) the fixed
graph topology of GCS is removed, giving a new growing neural gas (GNG) model, which has its
origin also from the neural gas model. Bruske and Sommer (1995) presented another similar model,
dynamic cell structure (DCS-GCS), differing from GNG slightly in the location of node insertion.
GCS, GNG and DCS-GCS can be applied to supervised learning by adding an additional output
weight layer which adopts a delta learning rule. A comparison on the performance of GNG, GCS
and fuzzy ARTMAP is made in (Heinke and Hamker 1998).

Apart from the connection to SOM, there are other approaches which tackle on the problem of
incremental learning and automatic resource allocation. Platt (1991) proposed a resource-allocating
network (RAN) model, which allows for allocation of new computational units whenever unusual
patterns are presented. Network paramters are updated using standard LMS gradient descent. Fur-
ther improvement on the RAN algorithm is reported by replacing the LMS rules with other learning
rules, for example, in (Kadirkamanathan 1993; Rosipal 1998). Schaal and Atkeson (1998) addressed
the importance of local receptive field system for robust incremental learning, and proposed a recep-
tive field-weighted regression (RFWR) model. An ECOS paradigm is proposed in (Kasabov 1998a),
setting out principles for on-line construction of intelligent information systems using connectionist-
based models. The ECOS principles include: fast incremental on-line learning, evolvable network
structure, and knowledge interpretation and manipulation. As an instance of ECOS prototypes,
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Kasabov (1998b) proposed an evolving fuzzy neural network (EFuNN) model, which is found to be
very competitive for time series prediction and pattern classification.

In this paper we introduce another computational model from the ECOS family, called Evolving
Self-Organizing Map (ESOM). ESOM is proposed as an evolving neural algorithm for unsupervised
tasks such as clustering and visualisation. It has close relation with the Kohonen SOM, GCS/GNG
and EFuNN. The main features of ESOM include fast incremental learning, self-adaptive network
structure, and good topology preserving for data visualisation.

During learning, an ESOM network creates new nodes and sets up connections dynamically.
Insertion of nodes are straightforward rather than using mid-point interpolation as in GCS/GNG.
This is close to the approach of EFuNN and RFWR, suggesting that data of novelty are first
memorised and then adapted with the changing data.

In our model, prototype nodes have a limited number of connections to other nodes, which
confine the neighbourhood relationship among them. During learning the updating of learning
weight vectors occurs only on the node which wins the competition and on its neighbour nodes.
Comparing to algorithms which have rigid neighbourhood definition (such as SOM), or those who
are free of neighbourhood definition and undergo a global updating (such as the neural gas), this
approach is faster and more effective owing to its localised nature of learning.

ESOM uses the same dimensionality as that of the input space, and it does not pre-assume any
topological order and connectivities among network nodes. On the contrary, the network connec-
tions are created when necessary and the neighbourhood relationship is built as-it-is. This gives
ESOM great flexibility and efficiency to learn a good representation of the input data, especially
for data from a complex and high dimensional manifold. SOM-like algorithms typically need to
start with large neighbourhood so as to unfold maps of ill initialisation and it is time-consuming.
With less geometrical constraints on the mapping space, ESOM is more likely to generate a compact
representation of input data with better efficiency.

The rest of the paper is organised as follows. In Section 2, we first give a brief introduction of the
ESOM computational model. In section 3, simulations on benchmark data sets for classification and
prediction are described and results are compared with other methods. A case study on international
macroeconomic data is also used and a world macroeconomic map is generated. Finally, conclusions
are given in Section 4.

2 The ESOM Computational Model

2.1 Network structure

The network structure of ESOM is different from that of SOM. No topological constraint is given
for the feature map a priori and prototype nodes are not organised onto one- or two-dimensional
lattices.

The ESOM network starts without any nodes. During learning, the network updates itself
to capture the on-line incoming data, creating new nodes and setting out new connections when
necessary. Connections between map nodes are used to maintain the neighbourhood relationships
between close nodes. The strength of the neighbourhood relation is determined by the distance
between connected nodes. If the distance is too big, it results in a weak connection and the connection
can be pruned. In this way the feature map can be split apart and data structures such as clusters
and outliers can emerge.

Fig.1 shows an ESOM network with five nodes, each of them labelled with a number in the
order of its creation. The newest one, node 5, is created and connections with node 2 and 1 are set
up. Node 2 and 1 are the winner and second winner respectively at the current time. The weakest
connection between node 2 and 3 is then clipped.
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(a) (b) (c)

Fig. 1: An ESOM network grown to five nodes. (a) The first three nodes are created; (b) Two more
nodes (node 4 and 5) are added; (c) The weakest connection is removed.

2.2 The algorithm

We denote the ESOM network at time t as a triplet of a prototype node set Ω ⊂ Ed, an intercon-
nection set C, and a parameter set P:

Et = (Ωt, Ct,P) (1)

with each node wi ∈ Ωt as a vector of dimension d, i = 1...N , and N is the current number of nodes
in Ωt.

The learning process can be summarised as follows:

1. Input a new data vector x;

2. If there is node generated (N = 0), or none of the existing nodes matches the input vector
within a distance threshold ε, i.e., for all i = 1, ..., N ,

d(wi,x) = ‖wi − x‖ > ε,

create a new node in the network which represents exactly the input x:

wN+1 = x
Ωt+1 = Ωt ∪wN+1

N ← N + 1
(2)

Connect the new node with its two nearest neighbours wn1 and wn2, and connect wn1 and
wn2 if they are not connected yet:

Ct+1 = Ct ∪ c(x,wn1) ∪ c(x,wn2) ∪ c(wn1,wn2) (3)

Here c(·, ·) denotes a connection between two nodes.

3. Otherwise update the matching node and each of its neighbours, denoted as w, according to
their distances to the input vector x, a relation represented by a function f :

Ωt+1 = f(Ωt,x), (4)

with each node being modified as

∆w = γ e−d
2(w,x)/2σ2

(x−w) (5)

where γ is a small constant learning rate, and σ controls the spread of neighbourhood. Usually
we set σ = ε.

4. Reset the strength of connections between the winner (or the newly created node) and its
neighbours. The connection strength s(i, j), for the connection c(wi,wj), is defined as

s(i, j) = ε/d(wi,wj) (6)
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5. After every Tp steps of learning time, prune the weakest connection. If isolated nodes appear,
prune them as well;

6. Repeat all steps above.

The parameter set is defined as P = {ε, σ, γ, Tp}.
With a relatively small learning rate and a data sequence which is long enough, it can be expected

that after the presentation of a certain number of data examples an optimum set of prototypes
representing the data stream will be evolved. A similar case on competive learning is analysed in
(Heskes and Kappen 1991) using Gaussian approximation. As ESOM is aimed at achieving “life-
long” learning, strict convergence of the algorithm is not a critical issue.

The weight vector update rule in Eq.(5) is similar to that of SOM, except that for the neigh-
bourhood function the vector distance between nodes is used, rather than the grid distance as in
SOM. SOM needs to start with a large neighbourhood so as to unfold ill initialised maps, which
may result in a longer learning time and the final map may have a border effect. To deal with these
problems special treatment is needed, such as using local-linear smoothing (Mulier and Cherkassky
1995), or introducing a heuristic weighting rule (Kohonen 1997, p.138). On the other hand, ESOM
with straightforward node allocation and localised learning, does not manifest these problems.

In our computational model the way of node insertion is different from that of GNG. In the
GNG, node insertion is basically controlled by a time factor, i.e. when ever learning time reaches
the integer multiple of certain constant, a node is inserted. Thus with GNG it is easy to control
the network size with respect to the learning time. Yet it is time-consuming to find the location for
node insertion. GNG needs to calculate accumulated error for each network node, and insertion is
occurred between the node with the maximum accumulated error and its neighbour node with the
maximum accumulated error. In ESOM, however, the node insertion criterion is similar to EFuNN,
only requiring a distance threshold to be specified. The control on network size is not direct. But
in circumstances such as vector quantisation, we start with an estimation of intended quantisation
accuracy and may not intend to put on constraint on the network size. Then it is straightforward
to use the accuracy value for the node insertion criterion. Nevertheless, the distance threshold will
influence the evolved network size. Like EFuNN, ESOM inserts the new node exactly as the input
datum, by doing so we believe it is natural for a learning system to remember stimuli of novelty,
code them, and have them adapted at later times.

Given the distance threshold in different scales, it is easy to construct hierarchical mappings
with ESOM, with maps generated in multi-resolution. This will fascilate the application of ESOM
in image coding and information retrieval.

2.3 Extension for supervised learning

ESOM is by nature an unsupervised learning algorithm. But just like SOM and other clustering
methods it can be applied to supervised learning tasks such as classification and time series pre-
diction. This can be done by augmenting input vectors with target output values or class labels,
and using the augmented data as input to the network, an approach similar to the self-organizing
semantic map (Ritter and Kohonen 1991, Bezdek and Pal 1995). By doing this, however, the output
components should have comparable variance as to the input components, and sometimes standard-
isation of the data set is needed to meet this requirement. A diagram that represents this idea is
shown in Fig.2. Given a data set with class labels or target output values, a map of the augmented
data vectors can be learned using the ESOM algorithm. When testing, classification or prediction is
done by comparing the input part of the augmented data vectors with the input parts of augmented
prototype vectors. The output value of the best matching unit (BMU) is taken.

For classification tasks, this mechanism can be further extended using a k-Nearest Neighbour
method if we take into account the contribution of the first k best matching prototypes.
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Fig. 2: ESOM extended for supervised learning by using augmented feature mapping.

2.4 Visualisation in ESOM

For data of high dimensionality, visualisation of the ESOM prototype space is in question as it is also
of high dimensionality. This problem can be solved, however, using Sammon’s algorithm (Sammon
1969) which projects high dimensional data into low dimensional space while keeping the distance
ordering as best as possible.

The goal is to project prototype vectors wi, i = 1, 2, ..., N , onto a set of points vi, i = 1, 2, ..., N ,
in a two dimensional plane. Here we assume all identical prototype vectors are removed beforehand.
Sammon projection tries to minimise the mapping error defined as

E =
1

∑N−1
i=1

∑N
j=i+1 d(wi,wj)

N−1∑

i=1

N∑

j=i+1

[d(wi,wj)− d(vi,vj)]
2

d(wi,wj)
(7)

Here d(·, ·) is the distance between two vectors. The mapping vectors are first randomly initialised
and then updated using a gradient descent algorithm:

∆vi = −α δE
δvi

δ2E

δv2
i

(8)

where α is a magic factor empirically set to 0.3 or 0.4. The close form of Eq.(8) can be found in
(Sammon 1969). Typically this iteration process takes about one or two hundred steps to reach
fairly good mapping for small sets of prototypes.

Compared with ESOM, the visualisation of SOM is straightforward as the prototype nodes are
usually laid upon a two-dimensional lattice. The topology preserving property of SOM gurantees
that similar feature vectors are projected onto close positions in the map. But this does not hold
vice-visa. Feature vectors of neighbour nodes can vary significantly. To overcome this drawback,
Mao and Jain (1995) proposed a NP-SOM technique to visualise the distance between map node and
neighbours by using grayscale graphics. Similar approaches are also discussed in (Kaski 1997). By
applying the Sammon projection, ESOM generates a two-dimensional visualisation of the prototype
space with a grid structure displaying distances between network nodes. In our point of view, this
approach gives more accurate and intuitive representation of the structural information in data.
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3 Simulations

3.1 Data analysis and visualisation

Experiments have been done on a macroeconomic data set used in our case study for risk analysis of
European Monetary Union economy (Kasabov et al. 2000), which employs a number of economic and
financial indicators to predict possible shocks, and develops a computational system for analyzing and
anticipating signals of abrupt changes of volatility in financial markets. Here we focus on the problem
of generating a world macroeconomic map to evaluate performance and development in national and
regional macroeconomy. Macroeconomic data in the period from 1994 to 1998 are collected for fifteen
EMU countries, UK, US, and Asian countries such as Japan (JP) and Thailand(TH). The data are
taken from the Monthly Bulletin of European Central Bank and from the DataStream on-line source.
The data set has four attributes, namely annual change percentage of stock market (PCH), debt
over GDP (DBT/GDP), deficit over GDP (DEF/GDP), and inflation rate. Each data entry carries
a label composed by country code and time numbers, which will be used later for the generation of
a labelled map.

Fig. 3: The annual macroeconomic map for EMU countries etc. obtained with SOM. The debt/GDP
value of each prototype vector is used to paint the corresponding map cell in grayscale.

SOM has been used in economic and financial data analysis in a number of studies, such as
Serrano-Cinca (1996), Kaski (1997), and Deboeck (1999), to name but a few. Here we use the SOM
algorithm to generate an annual map of macroeconomic performance and compare it with the map
generated by using ESOM.

A 12 × 12 two-dimensional map is first trained using SOM. The size of the map is selected
empirically so as to obtain a well-expanded mapping space. The map learned from the annual
macroeconomic data is shown in Fig.3, where map nodes are displayed with hexagons labelled with
best-matching data entries. It can be seen that an EMU cluster is formed in the central part of the
map, including the following countries: OE(Austria), NL(Netherland), DK(Denmark), IR(Ireland),
SD(Sweden), BD(Germany) and FR(France). Non-EMU countries UK and US also fall into this
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Fig. 4: The ESOM visualised with Sammon projection shows the data structure.

cluster. Four EMU countries fall out apparently: IT(Italy), BG(Belgium), GR(Greece) in area of
high inflation rate on the right, and SW(Switzerland) on the left side.

By using colour palette or different gray-scale on nodes of different component values, the two
dimensional map like Fig.3 presents a very useful tool to evaluate macroeconomic performance of
different countries. Tracking down the movement of certain country on the map, it is also helpful
to evaluate its developing trend in different years. But as we mentioned before the map distance
between nodes may not match their distance in the feature space, this can be misleading. With
SOM it is also difficult to find clusters visually.

Another annual map is next evolved with the same data set and shown in Fig.4. The map is first
clustered using ESOM algorithm, and then projected onto a two-dimensional plane for visualisation
using Sammon’s algorithm. Weak connections are then clipped away. The layout of labelled nodes is
quite similar to that of Fig.3, but the ESOM map gives more explicit data structure such as clusters
and outliers. Here we find two major clusters, the EMU cluster with countries like FR, BD, FN,
IR etc. plus UK and US, the fall-out cluster with GR, IT, and BG (from year up to 1997). It can
also be seen that IT98 and GR98 are associated with the main cluster, which implies a tendency for
these two economies towards the EMU cluster. The advantage of applying ESOM in this study is
that it presents better visualisation quality, and it is open for further adaptation by evolving with
online incoming data.

3.2 Classification of benchmark data sets

To test the classification ability of the ESOM model, we tried two data sets from the CMU Learning
Benchmark Archive, so as to make comparison with previous studies such as (Fritzke 1994) and
(Bruske and Sommer 1995).
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Table 1: ESOM Classification Results on the Two Spirals Problem

Training Testing
emin nmin emean nmean σe σn emin emean σe

0 105 0.16% 107 0.29% 2.07 0 1.5% 0.6%

3.2.1 The Two-spirals problem

This well-known benchmark generates data points from two spirals in given density. We use a
training set of density 1, consisting of 194 data entries, each of which has a pair of X-Y coordinates
and one class label (either 1 or -1). The testing set has a density of 4, consisting of a total of 770 data
entries. Analogous to other approaches, the training and testing processes of ESOM are repeated
for 20 times with the training data samples presented in random order. The performance statistics
are listed in Table 1, where the following characteristics are given for both the training set and
the testing set: the minimum error rate (emin), the minimum number of nodes (nmin), mean error
rate (emean), mean number of nodes (nmin), standard deviation of error rates (σe), and standard
deviation of node numbers (σn). These results are obtained with ε = 0.9, and γ = 0.05. With the
peak performance the ESOM manages to generate a map of 105 nodes, with zero classification error
on the training set and and testing set. This number of units is smaller than GCS (Fritzke 1994)
and DCS-GCS (Bruske and Sommer 1995). The average performance of ESOM is also better than
the DCS-GCS model as reported.

When trained with classification data sets, the goodness of prototype sets is evaluated with its
discrimination ability in the input data space. This is done by categorising each map vector with
a class label using the nearest-neighbour rule, operating on the distances between map vectors and
data entries. Each map vector takes a class label from its best matching data entry. We show in
Fig.5 how the discrimination ability develops as the map learns and converges. The spiral data set
is used in both SOM and ESOM modules. In both cases we classify the data set using map vectors
labeled by the nearest-neighbour rule and calculate the classification error rate during learning. Here
we plot representative results from the following modules:

• Two ESOM modules. ESOM I with ε = 1.0, γ = 0.01. After around 200 steps the network
grows to 78 nodes with stable performance of an error rate around 15.46%; ESOM II with
ε = 0.9, γ = 0.01, which stabilises with 114 nodes with zero classification error rate.

• Two SOM modules. SOM I is of 12 × 12 size, with an initial learning rate of 0.05, and an
initial neighbourhood width N = 8; SOM II is of 9 × 9 size, initial learning rate 0.05, initial
neighbourhood width N = 4. For both modules a number of experiments are carried out with
different random initial weights. Final error rates are around 22%. In this case the map size
has not significant impact on the discrimination ability of the feature map.

We also tried the same data set with the LVQ PAK package (Kohonen et al. 1996) and found
that even after fine-tuning with LVQ2.1 and LVQ3, the error rates of LVQ networks of equivalent
size are bigger than their ESOM counterparts, having in mind that LVQ is a supervised learning
algorithm but ESOM is basically unsupervised.

The performance of compared algorithms is summerised in Table 2. Data in the upper part are
taken from (Fritzke 1994) and (Bruske and Sommer 1995).

The spiral data of two dimensional space is visualised using map vectors obtained by SOM and
ESOM, as shown in Fig.6. Obviously the ESOM result gives a more accurate representation of the
spiral shape. The decision regions of the ESOM are displayed in Fig.7.
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Fig. 5: Discrimination ability develops as SOM and ESOM learn the spiral data. ESOM modules
learn much faster, and are more accurate.

Table 2: Comparison of Classification Performance on Two Spirals Problem

Network model Number of units Error rate Number of epochs
GCS(supervised) 145 0% 180
DCS-GCS 135 0% 135
LVQ 114 11.9% 50
SOM 144 22.2% 50
ESOM 105 0% 1

3.2.2 Speaker independent vowel recognition

The vowel data set is another benchmark from the CMU collection. It consists of 990 frames of
speech signals from four male and four female speakers, with 528 frames for training and the other
462 for testing. Details about speech processing procedures to construct these data vectos are given
in (Robinson 1989).

Here again we present the training set in random order for 20 times and apply the trained ESOM
networks on the test set. Results for offline testing are collected and the statistics is given in Table
3. For all the cases we set ε = 0.5 and γ = 0.05 with one-pass learning. When on-line learning is
applied, the ESOM is first evolved with the training data and then with the test data. The on-line
classification performance of ESOM network is given in Table 4, with an overall error rate of 3.4%
tested with the two data sets. Similar result is obtained when the data sets are presented in reversed
order. This suggests that ESOM adapts quickly to the on-line incoming data and meanwhile gains
good generalisation ability.

In Table 5 the results of different algorithms tested with the vowel recognition problem are listed.
Results from algorithms other than ESOM are taken from (Bruske and Sommer 1995), referencing
works such as (Robinson 1989) and (Fritzke 1993). ESOM performance is comparable to GCS and
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(a) (b)

Fig. 6: Visualisation of the spiral data. (a) The SOM grids after training; (b) The ESOM nodes
with trimmed connections.

(a) (b)

Fig. 7: (a) Data points of the two spirals; (b) decision regions for ESOM.

Table 3: ESOM Offline Classification Performance on Vowel Recognition Problem.

emin nmin emean nmean σe σn
35.5 264 38.2 275.9 1.3% 3.9%

Table 4: On-line classification performance

Learning set I (training set) (testing set)
Number of samples 582 462
Number of nodes 286 242
Classification errors 31(5.3%) 24(5.2%)
Learning set II (testing set) (training set)
Number of samples 462 582
Number of nodes 525 526
Classification errors 4(0.9%) 9(1.5%)
Overall on-line
classification error rate 3.4% 3.2%
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Table 5: Performance Comparison on Vowel Recognition Problem.

Classifier Hidden units Recognition rate
Single layer perceptron 33
Multilayer perceptron 88 51
Modified Kanerva model 528 50
Radial basis function 528 53
Gaussian node network 528 55
Square node network 88 55
Nearest-neighbor 56
5D GCS 135 66
DCS-GCS 108 65
ESOM 279 65

Table 6: Prediction Performance on the Mackay-Glass Data.

Method Units On-line NRMSE
Neural gas 1000 0.062
RAN (Rosipal) 113 0.373
RAN-GQRD 24 0.170
SOM + linear regression 1225 0.022
ESOM 114 0.320
ESOM 1000 0.044

DCS-GCS with a larger number of nodes. The learning time, however, is much shorter. Here ESOM
does a one-pass learning, while GCS needs 80 epochs (Fritzke 1994). The learning time of DCS-GCS
is not given, but since of the similarity between GCS and DCS-GCS, the numbers of epochs for
training may not differ too much.

3.3 Time series modelling

Following previous studies on time series modelling with the use of neural network models, here
we apply ESOM to predict the Mackay-Glass time series, also from the CMU Machine Learning
Benchmark. The data sets are generated from the benchmark using embedded data vectors consisting
of four values of the time series:

x(n) = [x(n), x(n− 6), x(n− 12), x(n− 18)]T

Each input vector relates to an output value of x(n+85), i.e., we train the network to predict the
value at time n+85. A training set of 3000 samples (from n = 200 to 3200) and a testing set of 500
samples (from n = 5000 to 5500)are used.

After training, the prediction results of ESOM networks are comparable to the results of other
constructive models, such as neural gas (Martinetz 1993) and RAN (Rosipal 1997). The SOM plus
linear regression model (Vesanto 1995) gives the best result, but since it stores local data sets, the
complexity scale of the model is much larger than the number of units. An ESOM network of
1000 nodes is obtained by setting the sensitivity threshold of ε = 0.03. The normalised RMS error
(NRMSE) is 0.044, after on-line testing on the 500 test samples. We believe this is a good result for
a one-pass on-line learning process.
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4 Conclusion

This paper introduces an evolving self-organizing map (ESOM) as an evolving variation of the Koho-
nen SOM, featuring its one-pass on-line learning ability, a feature map of less geometric constraint,
good topology representation, and good prototyping accuracy.

Results from benchmark study have shown that ESOM is an effective computational model for
on-line data clustering, dynamic data analysis, and scientific visualisation. The supervised extension
of ESOM also works well for classification problems, achieving good classification results in one-
pass learning. For challenging problems such as chaotic time series prediction, ESOM surprisingly
achieved comparable accuracy using a relatively simple algorithm, but it needs a network size bigger
than that of supervised incremental learning algorithms such as RAN. Further improvement of the
ESOM computational model can be achieved, by applying an additional aggregation procedure to
tune system parameters and local receptive fields and to reduce network size. Applications for
information retrieval and on-line web computing (Lawrence and Giles 1998) are also anticipated.
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