
Extending Agent Messaging to Enable OO Information Exchange

Stephen Cranefield and Martin Purvis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

E-mail: fscranefield, mpurvisg@infoscience.otago.ac.nz

Abstract

It is canonical practice in agent-based systems
to use a declarative format for the exchange of
information. The increasing usage and facil-
ity of object-oriented tools and techniques, how-
ever, suggests there may be benefits in com-
bining the use of object-oriented modelling ap-
proaches with agent-based messaging. In this
paper we outline our efforts in connection with
the New Zealand Distributed Information Sys-
tems project to use object-oriented knowledge
representation in an agent-based architecture. Is-
sues and tradeoffs are discussed, as well as the
possible extensions to current agent-based mes-
sage protocols that may be necessary in order to
support object-oriented information exchange.

1 Introduction
For the representation of knowledge within agent-based
systems, the general tendency has been to favour declar-
ative representations, such as the Knowledge Interchange
Format (KIF), the Foundation for Intelligent Physical
Agents (FIPA) Semantic Language (SL), or other logic-
based representations [NCITS, 1998; FIPA, 1999b]. In fact
the agent-based community has adopted de facto standard
protocols that are based on the declarative approach. It
is our contention, however, that existing declarative ap-
proaches are not the only possibility and that with some
suitable adjustments, object-oriented knowledge represen-
tation can be incorporated into agent-based information
systems.

In order to examine how object-oriented notions might
relate to the existing, preferred declarative representation
of knowledge, we first consider the perceived benefits of
the declarative approach. Declarative knowledge is rep-
resented as a static collection of assertions or facts, such
as might be collected in a database, and it does not con-
tain details about the use to which the knowledge might be
put [Shapiro, 1987]. More generally, Genesereth and Nils-
son have defined declarative knowledge representations to
be any “explicit representations of knowledge . . . that can
be interpreted as making declarative statements. We call
knowledge represented in this way declarative knowledge,
because it is contained in declarations about the world.”
[Genesereth and Nilsson, 1987]. This has been contrasted

with the procedural representation of knowledge, in which
“facts are represented in terms of programs and data struc-
tures” [Shapiro, 1987, p. 884]. Without going into the
details of the “declarative vs. procedural controversy”
[Hayes, 1977; Moore, 1982; Winograd, 1980], we may
summarise the relative advantages of the declarative per-
spective [Genesereth and Nilsson, 1987]:

1. It is straightforward to access declarative knowledge
by means of introspective programs or by means of
direct visual inspection.

2. Declarative knowledge may be changed more easily,
since a change is likely to be local to a specific record
of the data store.

3. Declarative knowledge can be used for purposes that
were not necessarily anticipated when the knowledge
was assembled.

4. Declarative knowledge can be extended by employing
reasoning processes that derive additional knowledge.

These generally accepted advantages have led the agent-
based software engineering community to set up stan-
dards, such as KQML and the FIPA ACL that presume
a declarative knowledge representation for agent mes-
sage communication content. In association with declar-
ative agent communication content has been the adop-
tion of declarative knowledge-based formalisms, such as
KIF and the KL-ONE style knowledge representation lan-
guages [Brachman and Schmolze, 1985], for representing
ontologies. Although this approach has been able to ex-
ploit the recognised advantages of declarative knowledge
listed above, the representations have entailed the adop-
tion of large and relatively complex systems, e.g. LOOM
[ISI, 1999] and description logics [Donini et al., 1996;
Owsnicki-Klewe, 1990], for encoding and reasoning about
the information. For applications such as distributed infor-
mation retrieval that do not necessarily require the deduc-
tive reasoning capabilities of systems such as LOOM, we
believe that there can be significant advantages for adopt-
ing an overall object-oriented modelling approach. In this
paper we examine some of the object-oriented knowledge
representation schemes that we are using in connection
with the New Zealand Distributed Information Systems
project [Purvis et al., 2000], and we discuss some of the re-
sulting implications in the context of existing agent-based
communication protocols that have been based on a declar-
ative approach.

Person

name : String
employeeID : int
title : String

ContactInformation

address : String

1..1

1..1contact 1..1

1..1

1..1

manager

1..1

1..1

managed_dept

1..1

Department

name : String

department0..*0..*

1..1 company1..1

Company

Figure 1: A simple ontology expressed as a UML class
diagram

2 Object-Oriented Knowledge
For the purposes of representing various aspects of
the world in information systems, the general benefits
of object-oriented (OO) modelling have been discussed
widely [Booch, 1994]. In particular, object-oriented mod-
elling is perceived to have the following benefits:

� the representation of physically-situated objects that
encompass state and behaviour corresponds to the
common way in which the physical world is organ-
ised by human perception and is expressed in every-
day language;

� the notions of class inheritance and object instantia-
tion also correspond to natural cognitive classification
schemes that have been traditionally used to manage
the representation of complexity in the real world;

� the existence of object-oriented programming lan-
guage compilers and software development tools fa-
cilitates the direct mapping of object-oriented mod-
elling into operational computer representations of
these models.

We view these benefits to be sufficiently compelling to jus-
tify the adoption of

� the Unified Modelling Language (UML) [Booch
et al., 1999] from the Object Management Group
(OMG) [OMG, 1999b], together with its associ-
ated Object Constraint Language (OCL) [Warmer and
Kleppe, 1998] for the representation of ontologies
[Cranefield and Purvis, 1999] (see Figure 1 for a sim-
ple example),

� the OMG’s Meta-Object Facility (MOF) [OMG,
1999a] as a repository for the storage of metainfor-
mation, including ontologies, and

� the use of object-oriented knowledge encodings
within the content of agent messages.

For the specific case of UML for ontology representation,
we can identify the following benefits:

� UML has a large and expanding community of users.
Users of distributed information systems will be in-
creasingly familiar with UML notation, as opposed to
that of KIF or description logics.

� Unlike traditional declarative formalisms, there is
a standard graphical representation for models ex-
pressed in UML. The OMG is also in the process

p: Person

name = "Erin"
employeeID = 4362
title = "VP of Sales"

:ContactInformation

address = "1472 Miller St."

d1: Department

name = "Sales"
d2: Department

name = "R&D"

c: Company

Figure 2: A UML object diagram (adapted from [Booch et
al., 1999, p. 196])

of adopting XMI (XML Model Interchange) as a
standard for stream-based model interchange [DSTC,
1999].

Moreover, the adoption of an OO knowledge represen-
tation approach does not necessarily involve the loss of the
benefits associated with declarative knowledge representa-
tion. Consider again the four benefits listed in Section 1:

1. The existence of standard graphical representations
for OO models means that this information is also ac-
cessible for direct visual inspection. In fact for com-
plex structures, the standard graphical representation
may be more illuminating than a declarative one.

2. The modular aspect of object-oriented modelling
means that such models are also easily modified.
Changes to such models are likely to be local, and the
visual representation of the model facilitates changes
to the model.

3. OO models can also be used and extended for pur-
poses that were not anticipated at the time of model
creation.

4. The emergence of object-oriented deduc-
tive databases [Kifer et al., 1995] offers the promise
of reasoning mechanisms that can be directly used to
extend object-oriented knowledge.

From this perspective we suggest that object-oriented
knowledge representation has the fundamental beneficial
features of declarative knowledge.

3 Object Diagrams as Declarative
Knowledge

Object-oriented data structures can be viewed as encod-
ings of UML object diagrams, which can be considered to
be to declarative representations of knowledge. For exam-
ple, consider the object diagram in Figure 2. This encodes
knowledge about the objects c, d1, d2 and p, such as the
information that object p has the value “Erin” for its name
attribute and p is the manager of object d1.

If two agents represent domain knowledge as object di-
agrams, it would be most convenient for them to commu-
nicate information to each other in this form as well. Note
that we do not propose that arbitrary object-oriented data
structures should appear within agent messages. On the
contrary, an agent coded in Java (for example) should not
be able to send an arbitrary Java object to another agent
within an ACL message. A fundamental principle of agent
communication languages is that a message should be able
to be understood without knowledge of the agent that sent
it. This is where ontologies are crucial: the content of a
message must be expressed according to an ontology that
defines the semantics of that content. This remains true
for object-oriented message content—only object data en-
coded according to some advertised ontology should be
sent within messages.

How should object-oriented information be sent to an-
other agent, and in particular, how could this be done
within a FIPA agent system? In this section we discuss
possible avenues towards a solution.

3.1 An Ontology for Object Diagrams
Content languages to be used with the FIPA ACL are re-
quired to be able to express propositions, objects and ac-
tions, where the notion of an object is not necessarily re-
quired to be equivalent to an object in object-oriented pro-
gramming, rather it can be any type of construct that repre-
sents an “identifiable thing” in the domain of discourse. A
FIPA inform message must have a content field that rep-
resents a proposition, thus an agent cannot be simply “in-
formed” of information in the form of an object diagram.
One solution to this problem is to define a (propositional)
ontology for object diagrams that contains a unary predi-
cate true_object_diagram. If an agent sends a proposi-
tion true_object_diagram(o) to another agent (where
o is an encoding of an object diagram), this would indi-
cate that the information represented within the diagram is
asserted to hold.

3.2 Propositional Encoding of Object Diagrams
Defining an ontology for object diagrams will require a
theoretical account of how an object diagram can be inter-
preted as a conjunction of propositions. Deductive object-
oriented languages such as F-logic [Kifer et al., 1995]
should provide a sound basis for this endeavour. These
logics typically include atomic formulae to express that an
object is a member of a class and that a given attribute of an
object attribute has a certain value. There are also formu-
lae that express schema information (such as the fact that a
class has a given attribute—we will not require these, as it
is assumed that agents will have this information available
already via ontologies). Liu [1999] includes a discussion
of the features of a number of such languages. To represent
UML object diagrams adequately, however, it may be nec-
essary to select (or design) a language that reflects UML’s
explicit distinction between attribute values and links (in-
stances of class associations). In particular, this may be
necessary to account for instances of n-ary associations.

3.3 Defining a New Content Language
In the true_object_diagram proposition above, an ob-
ject diagram appeared as an argument. This situation will

arise not only when an object diagram represents a set of
propositions about object attribute values and the relation-
ships between objects, but also when an object diagram is
used to represent an object in the domain. For example, an
agent a that represents its plans as object-oriented struc-
tures may communicate its current plan p to another agent
using a proposition of the form: current_plan(a, p).
Representing message content such as this will require a
new content language that supports both propositions and
the full notion of an object from object-oriented program-
ming. The abstract syntax of this content language will
need to be able to encode object diagrams (including ref-
erences to the ontologies for these diagrams). To define a
string-based encoding for this language, some structured
format such as XML will be required.

An agent platform that supports the use of such a con-
tent language may also offer the ability via its Agent Com-
munication Channel (ACC) to translate to and from this
language. An agent local to the platform, that only knows
this “object-enhanced” content language, could still offer
its services to external agents if they were able to express
an object diagram using a conjunction of propositions as
discussed in Section 3.2. The ACC could then translate the
incoming message into a form in which the object diagram
is explicitly represented.

3.4 Extending FIPA Semantics for inform
The previous section presented an example of an agent
communicating its current plan to another agent, with
the object-oriented plan appearing as the argument to
the current_plan predicate. However, this solution is
rather unsatisfactory as there is no fundamental need to
mix propositional and object-oriented representations here.
The solution suggested above requires the current_plan
predicate to be declared in some (propositional) ontology
that must also include the concept of an agent (which ap-
pears as the first argument of the predicate). On the other
hand, this ontology could be represented in an object-
oriented manner with a class Agent having an association
with a class Plan. Information about an agent a’s current
plan can now be fully encoded as an object diagram de-
picting an agent named a linked to a plan object. It seems
a natural extension of the FIPA ACL to allow such an ob-
ject diagram to be sent to another agent as the content of
an inform message, particularly if there were a standard
account of how the object diagram corresponds to a con-
junction of propositions as discussed in Section 3.2.

4 Object-Oriented Encodings of ACL
Message Content

The minimal message transport mechanism specified for
the FIPA ACL is a sequence of ASCII characters delivered
over a byte stream. The syntax of the ACL is defined in
terms of this character representation (although the FIPA
99 Seventh Call for Proposals [FIPA, 1999a] called for an
abstract syntax for the ACL to be included in the FIPA
’99 specification, due to be finalised in October 1999).
The FIPA Agent Message Transport Specification [FIPA,
1999b] states that agents within an agent platform are free
to use a proprietary transport mechanism to transport mes-
sages, provided that the Agent Communication Channel

(ACC) can communicate with external agents using the
standard ASCII message encoding and the IIOP message
transport protocol. The ACC within a given agent platform
provides a Message Transport Service (MTS) that can be
used by agents within that platform to communicate with
other agents, both internal and external to the platform.

Sending and receiving string-based messages either re-
quires individual agents to contain string-processing code
to analyse the structure of a message and extract the re-
quired information from the surrounding syntax, or (more
generally) the ACC must provide parsers for ACL and all
supported content languages, as well as (ideally) support
for pattern-matching on the resulting structures to conve-
niently extract information from incoming messages. In
order to interoperate with other agent platforms, there is
no escaping the need to support the string-based message
encoding. However, the parsing problem can be allevi-
ated by using a more structured textual representation of
object-oriented information, in particular the Extensible
Markup Language (XML). Also, within an agent platform
a higher-level interface to the MTS can be used that cor-
responds more directly to the abstract syntax of the ACL
and content languages than string encodings. This section
discusses these issues, and the techniques considered are
summarised in Figure 4.

4.1 From UML Ontologies to XML Schemas
The benefits of using XML for encoding structured infor-
mation have been widely touted. With the inclusion of the
XLink and XPointer languages [Cover, 1999], XML docu-
ments are capable of representing arbitrary networks of ob-
jects connected by references. The use of an XML schema
declaration language such as the Document Type Defini-
tion (DTD) grammar allows an XML document to be rep-
resented and parsed in terms of domain-specific structures.
Once an XML document has been received by an applica-
tion, there are two main approaches to parsing it: event-
based application programmer interfaces (APIs) such as
SAX (Simple API for XML) and APIs based on complete
in-memory parse trees, such as W3C’s Document Object
Model (DOM). These are relatively low-level APIs and in
an attempt to allow programs to “manipulate XML con-
tent . . . at the same conceptual level as the content it-
self” [Reinhold, 1999a], Sun have issued a Java Specifi-
cation Request for an XML data-binding facility for Java
[Reinhold, 1999b]. Given the schema for an XML doc-
ument (the choice of schema language has not yet been
made), a command-line tool would produce a set of classes
representing the elements of the XML schema. A mar-
shalling framework would support the marshalling and un-
marshalling of XML documents into graphs of interrelated
objects. The following discussion focuses on the encod-
ing of object-oriented information within the content of a
FIPA ACL message as an XML string. However, work is
also underway within FIPA to define an XML representa-
tion for FIPA ACL itself.

The likely future existence of technologies such as the
XML data-binding facility for Java will provide a conve-
nient method for agent systems developed using object-
oriented languages such as Java to process XML content
within ACL messages. However, we must also find a tech-
nique for encoding object-oriented information, modelled

MOF Model

UML
Meta-model Meta-model

IDL

UML Models IDL Interfaces

M3 layer

M2 layer

M0 layer

M1 layer

meta-models

meta-meta-model

models

...

...

Figure 3: MOF Metadata Architecture (from [OMG,
1999a])

according to some ontology expressed in UML, as an XML
document together with an appropriate XML schema. One
way to do this is provided by the OMG’s XML Model In-
terchange (XMI) specification. This is associated with the
OMG Meta Object Facility (MOF) which defines a “meta-
meta-model” for defining modelling languages such as
UML. In the MOF terminology (see Figure 3), a modelling
language such as UML is a meta-model, allowing models
(e.g. ontologies) to be defined. XMI specifies how a model
stored in a MOF-based repository can be represented as
an XML document that is encoded in terms of a DTD that
is generated from the MOF meta-meta-model definition of
the modelling language (the meta-model) used. This does
not quite solve our problem, however, because the infor-
mation we wish to exchange between agents is usually not
at the ontological level (the “M1 layer” that XMI deals
with), but actually represents instances of the concepts de-
fined in the ontology (the “M0 layer”). We can get around
this problem by noting that UML includes object diagrams
as well as class diagrams, and therefore information about
objects can be represented at the M1 layer that XMI is de-
signed to encode. However, the resulting XML document
will be very cumbersome to parse as the associated DTD
will describe the structure of UML models in general (at
the M2 layer) instead of being specialised for a particu-
lar ontology (the M1 layer). For example, an object will
be represented not by a single DTD element having the
name of the object’s class, but instead by an Object ele-
ment containing references to other elements in the XML
document: e.g. a Classifier element representing the ob-
ject’s class, and attributeLink elements, each of which in
turn will reference Attribute and Instance elements (repre-
senting the attribute’s identity and value).

One solution to this problem is to encode ontologies di-
rectly using the MOF model, rather than the more expres-
sive UML. Another solution has been presented by Sko-
gan [1999] to support the interchange of geographic infor-
mation, although his work only addresses a limited subset
of UML class diagrams (incorporating packages, classes,
attributes and associations but not generalisation relation-
ships). With this approach, three models are defined: an
abstract schema model (a subset of UML’s metamodel),
an instance model (a “minimal model for structuring and

Ontology
in UML

IDL interface for
UML model repository

UML defined
in MOF

Java classes
or interfaces

Object diagram
in UML

OMG’s
XML/Value

RFP

IDL data types
and value types

XML schema
Skogan’s

approach

XML document

Sun’s
XML Data Binding

JSR

MOF

XMI

IDL to Java

Java objects(via IDL to Java mapping)

XMI

Rational Rose’s mappings
IDL interfaces

IDL to Java

IDL to Java

Figure 4: Possible mappings for including object diagrams within message content

representing data”) and an ouput data structure—a hierar-
chical structure composed of XML elements. Two sets of
conversion rules are then defined: one to map instances of
the schema model to DTDs and another to map instances of
the instance model into instances of the output data struc-
ture, which can then be encoded as an XML file. This
results in an XML file with a structure that directly corre-
sponds to the schema used to encode the data. To apply
this technique to ontologies, the schema model, and pos-
sibly the instance model and output data structure, would
need to be extended to account for a larger subset of UML,
with corresponding extensions to the mapping rule tem-
plates also required. However, this approach is worthy of
further investigation.

4.2 IDL and Java Bindings for UML Ontologies

Although an appropriately structured XML document can
directly encode object-oriented data, there is still overhead
associated with transporting it (due to its verbose format)
and parsing it. It would be more efficient for an agent plat-
form that is built using an object-oriented technology such
as CORBA or Java to provide an object-oriented interface
to its Message Transport Service. Ideally such an MTS
would be extensible so that interfaces corresponding to on-
tologies in UML could be used to construct IDL or Java
representations of object diagrams conforming to those on-
tologies. It would also be useful if the MTS interface in-
cluded options to support the transmission of objects ei-
ther by value or reference. Just as the OMG’s Meta Object
Facility provides a solution to generating XML files (via
XMI), the MOF defines an IDL interface for manipulating
models expressed in UML, which includes operations that
can be used to construct object diagrams. However, this
approach suffers from the same shortcoming as the XMI
approach: this interface is not specialised to any particular
ontology, and would therefore be awkward to use.

Another approach to generating IDL interfaces corre-
sponding to an ontology in UML is to use a specialised
XML schema (e.g. generated via an extension of Skogan’s
approach) as an intermediate representation. The OMG
have issued a Request for Proposals for a standard way of
representing XML documents using IDL data types and

value types [OMG, 1999c]. The RFP states that “CORBA
2.3 IDL . . . can encode arbitrary graphs and has essentially
the same expressive power of [sic] XML”. When this tech-
nology turns from ‘proposalware’ into reality, this may be
a useful approach to follow.

Finally, the object-oriented modelling tool Rational
Rose (and possibly other similar tools) provides propri-
etary mappings from UML models to IDL and Java. Al-
though it would be better to use a standard mapping, for the
short term this may be the simplest approach for building
an MTS interface that directly supports the construction
of object-oriented message content (although IDL value-
types, introduced in CORBA 2.3 to support the passing of
objects by value, are not yet supported by Rose).

5 Conclusions

Both object-oriented and agent-based technologies are
recognised to have practical advantages for the implemen-
tation of distributed information systems. There is, how-
ever, a perceived impedance mismatch between the notions
of agents and objects: agents are assumed to represent
and exchange information in terms of declarative proposi-
tions, which are not conventionally thought to be compat-
ible with the structured nature of object-oriented informa-
tion. This paper has discussed the practical issues that must
be addressed in order to incorporate object-oriented con-
tent into agent-based ontologies and message structure. We
first highlighted the fact that object-oriented knowledge
representation technology now offers many of the posi-
tive features that have been associated with the proposi-
tional representations of existing agent-based systems. We
then examined how some of the emerging object-oriented
technical standards, such as XML, XMI, MOF, and map-
pings to IDL and Java, are beginning to provide the missing
pieces that can be used to include object-oriented knowl-
edge in agent message exchange. The New Zealand Dis-
tributed Information Systems Project is building an agent-
based prototype that uses these techniques.

Acknowledgments
The NZDIS software is under ongoing development
by Geoff Bush, Dan Carter, Bryce McKinlay, Mariusz
Nowostawski and Roy Ward, and is funded by the New
Zealand government’s Public Good Science Fund. The
ideas expressed in this paper have benefited, in particular,
from fruitful discussions with Mariusz Nowostawski.

References
[Booch et al., 1999] G. Booch, J. Rumbaugh, and I. Ja-

cobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[Booch, 1994] G. Booch. Object-oriented Analysis and
Design with Applications. Benjamin/Cummings, 2nd
edition, 1994.

[Brachman and Schmolze, 1985] R. J. Brachman and
J. G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science,
9(2):171–216, April 1985.

[Cover, 1999] R. Cover. XML linking and addressing lan-
guages. OASIS Web page at http://www.oasis-open.org/
cover/xll.html, December 1999.

[Cranefield and Purvis, 1999] S. Cranefield and
M. Purvis. UML as an ontology modelling language.
In Proceedings of the Workshop on Intelligent Infor-
mation Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999. http://nzdis.
otago.ac.nz/download/papers/UML Ontology 99.pdf.

[Donini et al., 1996] F. Donini, M. Lenzerini, D. Nardi,
and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor, Principles of Knowledge Represen-
tation and Reasoning, Studies in Logic, Language and
Information, pages 193–238. CLSI Publications, 1996.

[DSTC, 1999] XMI spec recommended. News item on
Distributed Systems Technology Centre Web page at
http://www.dstc.edu.au/Research/Projects/MOF/, Jan-
uary 1999.

[FIPA, 1999a] FIPA 99 seventh call for proposals. http://
www.fipa.org/cfp/cfp7.html, April 1999.

[FIPA, 1999b] FIPA specification. On Foundation for In-
telligent Physical Agents Web site at http://www.fipa.
org/spec/index.html, 1999.

[Genesereth and Nilsson, 1987] M. R. Genesereth and
N. J. Nilsson. Logical Foundations of Artificial Intel-
ligence. Morgan Kaufmann, 1987.

[Hayes, 1977] P. J. Hayes. In defence of logic. In Pro-
ceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI-77), pages 559–565. Mor-
gan Kaufmann, 1977.

[ISI, 1999] Loom project home page, Information Sci-
ences Institute. http://www.isi.edu/isd/LOOM/LOOM-
HOME.html, 1999.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu. Logi-
cal foundations of object-oriented and frame-based lan-
guages. Journal of the Association for Computing Ma-
chinery, 42(4):741–843, July 1995.

[Liu, 1999] M. Liu. Deductive database languages:
Problems and solutions. ACM Computing Surveys,
31(1):27–62, March 1999.

[Moore, 1982] R. C. Moore. The role of logic in knowl-
edge representation and commonsense reasoning. In
Proceedings of the 2nd National Conference on Arti-
ficial Intelligence (AAAI-82), pages 428–433, 1982.

[NCITS, 1998] Draft proposed American national stan-
dard for Knowledge Interchange Format. National
Committee for Information Technology Standards. http:
//logic.stanford.edu/kif/dpans.html, 1998.

[OMG, 1999a] MOF specification. Object Manage-
ment Group. http://www.omg.org/cgi-bin/doc?ad/99-
09-04, 1999.

[OMG, 1999b] OMG homepage. Object Management
Group. http://www.omg.org/, 1999.

[OMG, 1999c] XML/Value request for proposals. Object
Management Group docu-
ment orbos/99-08-20, http://www.omg.org/techprocess/
meetings/schedule/XML Value RFP.html, 1999.

[Owsnicki-Klewe, 1990] B. Owsnicki-Klewe. A general
characterisation of term description languages. In K.-H.
Blasius, U. Hedtstuck, and C. Rollinger, editors, Sorts
and Types in Artificial Intelligence, Lecture Notes in Ar-
tificial Intelligence 418, pages 183–189. Springer, 1990.

[Purvis et al., 2000] M. Purvis, S. Cranefield, G. Bush,
D. Carter, B. McKinlay, M. Nowostawski, and R. Ward.
The NZDIS project: an agent-based distributed infor-
mation systems architecture. In R.H. Sprague Jr., ed-
itor, Proceedings of the Hawaii International Confer-
ence on System Sciences (HICSS-33). IEEE Computer
Society Press (CDROM), 2000. http://nzdis.otago.ac.
nz/download/papers/nzdis-project 1-00.pdf.

[Reinhold, 1999a] M. Reinhold. An XML data-binding
facility for the Java platform. http://java.sun.com/xml/
docs/bind.pdf, July 1999.

[Reinhold, 1999b] M. Reinhold. XML data binding spec-
ification. Java Specification Request JSR-000031, Sun
Microsystems. http://java.sun.com/aboutJava/
communityprocess/jsr/jsr 031 xmld.html, 1999.

[Shapiro, 1987] S. Shapiro, editor. Encyclopedia of Artifi-
cial Intelligence, volume 2. Wiley, 1987.

[Skogan, 1999] D. Skogan. UML as a schema language
for XML based data interchange. In Proceedings of
the 2nd International Conference on The Unified Mod-
eling Language (UML’99), 1999. http://www.ifi.uio.no/
~davids/papers/Uml2Xml.pdf.

[Warmer and Kleppe, 1998] J. B. Warmer and A. G.
Kleppe. The Object Constraint Language: Precise
Modeling With UML. Addison-Wesley, 1998.

[Winograd, 1980] T. Winograd. Extended inference
modes in reasonong by computer systems. Artificial In-
telligence, 13(1,2):5–26, 1980.

