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Abstract. Most applications of Genetic Programming to time series
modeling use a fitness measure for comparing potential solutions that
treat each point in the time series independently. This non-temporal
approach can lead to some potential solutions being given a relatively
high fitness measure even though they do not correspond to the training
data when the overall shape of the series is taken into account. This paper
develops two fitness measures which emphasize the concept of shape
when measuring the similarity between a training and evolved time series.
One approach extends the root mean square error to higher dimensional
derivatives of the series. The second approach uses a simplified derivative
concept that describes shape in terms of positive, negative and zero slope.

1 Introduction

Multivariate time series data exists in many domains, including business, en-
vironmental, medical and engineering. Machine learning techniques have often
been applied to these forms of data, either to explore the underlying proper-
ties of the described system or to produce models for forecasting. Population-
based search methods, such as genetic algorithms (GAs), genetic programming
(GP) and evolving neural networks have been successfully applied to a variety
of time series tasks due to their ability to handle complex, non-linear problems
[Zhang et al., 1997,Lee, 1999,Whigham and Crapper, 1999].

Evolutionary learning systems are fundamentally driven by the use of a fitness
measure that biases the selection of individuals for reproduction. The metaphor
of a fitness landscape [Eldredge, 1989,Jones, 1995], originally defined by evolu-
tionary biologists, has been used to describe how the fitness function changes the
shape and difficulty for searching through this landscape[Manderick et al., 1991].
Although it is clear that the appropriate selection of a fitness function is essential
for the successful application of evolutionary learning techniques, little research
has been done on determining the appropriate measures to be used for time
series applications.

This paper is organised as follows. Section 2 presents the motivation for
considering a revised form of fitness for time series analysis. Section 3 commences
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by reviewing several standard measures of error used when evolving time series
predictions. Two fitness measures that account for shape are then developed.
Section 4 briefly gives some discussion and future work based on this preliminary
study. Section 5 summarises the basic conclusions regarding these measures.

2 Motivation

In relation to time series, the fitness measure is intended to reflect how similar
each member of the population is to the training data. The fitness measure al-
lows a probabilistic selection of the population members for reproduction such
that the fitter individuals are more likely to propagate into future generations.
The field of data mining also uses the concept of similarity in relation to the
mining of large temporal databases (see [Tansel et al., 1993] for examples). One
goal of data mining is to extract objects from a database which have similar
or dissimilar properties from some defined object. In relation to time series this
translates into finding sequences that exhibit similar behaviour for a large sub-
set of their length. Additional problems are often encountered in temporal data
mining due to scaling, translation and outliers that make the problem of mea-
suring similarity more difficult. This problem has been addressed by Keogh and
Pazzani [Keogh and Pazzani, 1999] where they argue that similarity is a subjec-
tive measure not easily captured by a simple metric based on treating each point
in a time series independently.

0

50

100

150

200

250

1 361 721

Actual
Predicted
Average

Fig. 1. The Straight Line (Average) has a lower RMSE than the Predicted curve.

2



This paper will argue that point-based metrics are not always the appro-
priate fitness measure when using evolutionary methods for developing models
of time series behaviour because they ignore global information in terms of the
form or structure of the complete time series. This lack of global information
may bias the population evolution in such a way that intermediate structures
that do capture the underlying patterns in the data have low fitness and there-
fore do not propagate. For example, Fig. 1 shows a time series (labeled Actual)
and two other time series; one which appears quite similar in shape (Predicted)
and the other (Average) which is a straight line representing the average of the
Actual series. The Average series has a lower root mean square error (RMSE)
than the Predicted sequence, whereas it seems clear from observation that this
is not the correct ordering of similarity between the sequences. Further exam-
ples showing the unintuitive measure of similarity based on RMSE are given in
[Keogh and Pazzani, 1999].

Consider the consequences of this mismatch when a population is evolving; a
predicted sequence that has the correct shape but some outliers or scaling mis-
match will not be selected even though it clearly has many of the features of the
sequence being modeled. Given that the driving force behind evolutionary learn-
ing systems is selection presure based on the fitness measure, an inappropriate
metric will bias the search away from useful partial solutions.

3 What makes a time series temporal?

By its very nature a time series has an explicit ordering. This ordering extends
the possible relationships between elements that do not exist with other (non-
temporal) tables of data. It is this ordering which seems to be overlooked when
measures of fitness(similarity) are considered with evolutionary systems. This
can lead to population members being given inappropriate comparative fitness
measures which in turn influence the future population dynamics and, ultimately,
the resulting solution.

3.1 Non-Temporal Fitness Measures

This section describes several time series fitness measures often used in assessing
forecasting techniques [Makridakis et al., 1983] and with GP approaches to time
series prediction. The measures defined all have the property that they equal
zero when there is a perfect fit between the predicted and actual series. The
main disadvantage with each measure is that no account is taken of the inherent
temporal nature of the series. Essentially the temporal ordering is discarded
and the series is treated as a table of unrelated data items. There are many
standard measures of time series error, however they are all basic variations of
the following. Let Pt be the predicted value at time t. Let At be the actual value
at time t. Let n be the number of data points in the time series. Let Ā be the
mean of the actual values.
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RMSE(A,P ) =

√∑n
t=1(Pt −At)

2

n
(1)

MAPE(A,P ) =

∑n
t=1 | (Pt −At)÷At |

n
(2)

COE(A,P ) =

∑n
t=1(Pt −At)

2∑n
t=1(At − Ā)2

(3)

The root mean square error (RMSE) is commonly used as a fitness measure
when evolving time series models. RMSE tends to be used because large errors
between points in the predicted and actual series are accentuated (due to squar-
ing). This tends to produce partial solutions that model the larger values in the
time series.

The mean absolute percentage error (MAPE) is a relative measure and is
often used for comparison between different time series. MAPE gives more em-
phasis towards smaller values in the sequence since the absolute error between
the predicted and actual values in the time series is divided by the actual value.

The coefficient of equation (COE) is similar to the RMSE however it is scaled
based on the deviation of each value about the mean. COE also emphasises large
values in the time sequence due to the squared error term between the actual
and predicted points in the series.

3.2 Temporal Fitness Measures

The previous measures treat the time series as a table of unrelated data items.
They do not consider the importance of neighboring values in the sequence. To
explicitly take advantage of the temporal nature of time series the error metric
must include information that is represented by the ’shape’ of the time sequence.
Differencing, a type of filter often used for removing trends in a time series, is
an appropriate starting point for incorporating temporal relationships into an
error (fitness) metric. For a time series {x1, . . . , xn} a new series {y1, . . . , yn−1}
is formed using the difference operator [Chatfield, 1989]:

yt = xt+1 − xt = ∇xt+1 (4)

Equation 4 represents the absolute change in consecutive time steps; in other
words, it is the first derivative of the time series curve for consecutive time steps.
The second difference is defined as:

∇2xt+2 = ∇xt+2 −∇xt+1 = xt+2 − 2xt+1 + xt (5)

The concept of differencing can now be extended to develop a similarity measure
F (A,P ) between two time series A and P . So that the measure is appropriate
for use with a GP system two properties are required; firstly, F (A,P ) ≥ 0
and, secondly, F (A,P ) = 0 when the sequences A and P are identical. The
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fitness measure, F (A,P ), will be based on the non-temporal RMSE (Eqn. 1)
and extended using k-th order differencing. Measures based on MAPE or COE
could also be developed in a similar manner.

Let the predicted and actual sequences be represented as {P1, P2, . . . , Pn}
and {A1, A2, . . . , An}. Let Pt and At be the predicted and actual values at time
t. Define the zeroth order difference between sequences P and A at time t as:

∇0(A,P )t = At − Pt (6)

The first order difference between P and A between the points t and t + 1 can
now be defined as:

∇1(A,P )t = ∇0(A,P )t+1 −∇
0(A,P )t (7)

Eqn. 7 represents the difference between the slopes of the actual and predicted
curves at t and t+ 1, shown by expanding Eqn. 7 as follows:

∇1(A,P )t = (At+1 − Pt+1)− (At − Pt) = (At+1 −At)− (Pt+1 − Pt) (8)

In general, the kth order difference between A and P at time t may be stated
as:

∇k(A,P )t = ∇k−1(A,P )t+k −∇
k−1(A,P )t+k−1 1 ≤ k ≤ n− 1 (9)

The previous difference equations can now be extended to incorporate the RMSE
format. The RMSE for k = 0 is defined as:

RMSE0(A,P ) =

√∑n
t=1∇

0(A,P )2
t

n
(10)

The RMSE for the kth difference is defined as:

RMSEk(A,P ) =

√∑n−k
t=1 ∇

k(A,P )2
t

n− k
(11)

A fitness function Fw(A,P ), which measures the similarity between the time se-
ries {A1, A2, . . . , An} and {P1, P2, . . . , Pn} using a differencing window of length
w, can now be defined as:

Fw(A,P ) =

√√√√ w∑
k=0

n−k∑
t=1

∇k(A,P )2
t

n− k
0 ≤ w ≤ n− 1 (12)

Note that F 0(A,P ) is equal to the original RMSE definition of Eqn. 1. Allowing
w to increase produces a measure that incorporates more information about
the shape of each sequence and therefore gives a more unique and informative
measure of similarity between A and P .
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Fig. 2. Fw(A,P ) for predicted and straight line (average) series

3.3 Problems associated with Fw(A, P )

The original motivation for this work came about by recognising the inappro-
priate ordering of ”fit” time series when using RMSE. This is clearly shown in
Fig. 1. To explore whether Fw(A,P ) can offer a more appropriate similarity
measure the fitness measure was calculated for the sequences shown in Fig. 1 for
0 ≤ w < 20. The resulting error for increasing w is shown in Fig. 2. There are
several concerns with these results. One is the computational cost when calculat-
ing Fw(A,P ). The second point is that Fw(A,P ) rapidly rises for increasing w.
Finally, Fig. 2 shows that the straight line continues to have a lower overall error
then the predicted curve. Hence, although the notion of shape has been explic-
itly captured by Fw(A,P ), the squaring of the difference for each ∇k(A,P ) is
rapidly dominated by one or more errors caused by a poor value for the predicted
series.

3.4 An alternative Fw(A, P ) based on slope direction

The goal of this work was to develop a fitness measure that allowed global
information about shape to be incorporated. Simplifying the error measurement
can be achieved by classifying each value of the kth difference into one of three
values; positive slope, negative slope and zero slope. The error for each difference
is then the number of times that the sign of the difference does not match.
This value is normalised by the number of points in the kth sequence to give a
value between zero and one. A perfect match with shape for the kth difference
will equal zero, while a complete mismatch with shape will equal one. Define
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this error measurement for the kth difference as 	k(A,P ). Fig. 3 shows the
normalised shape error for increasing k for the predicted and average curves
related to the actual curve of Fig. 1. Note that the average prediction (straight
line) is now penalised due to its poor correlation with the slope of the actual
curve. The predicted curve, that by observation appears to capture many of the
shape aspects of the actual curve, has a lower error for most of the k differences.

The main objection to this approach is that it appears rather ad hoc com-
pared with the original definition of error. For example, how should this error
be combined with the original RMSE? Since the fitness measure should only go
to zero when the two time series are identical one possible measure would be:

Sw(A,P ) = F 0(A,P ) + F 0(A,P ) ∗
1

w

w∑
k=1

∆k(A,P ) 0 < w ≤ n− 1 (13)

Using Eqn. 13 the error Sn−1(A,P ) for the predicted curve is 43.9 versus the
average (straight line) error of 67.5.
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Fig. 3. Normalised error in slope for predicted and straight line (average) series

4 Discussion

This paper has presented two alternative approaches to incorporating shape
knowledge into a fitness measure when evolving time series models. Fw(A,P )
has been shown to be too complex and produces fitness values that are too large
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when w approaches the total length of the series. The simplified shape estimate,
Sw(A,P ), appears to have some advantages in that it is less computationally
demanding and produces values that are more amenable to use as a fitness
measure.

This preliminary work indicates several lines of possible research. Based on
Fig. 3 it is worth determining what properties of the time series are causing the
predicted shape error to level out to approximately 0.30 when k > 90. This may
have some relationship to seasonal patterns in the data, or to some high order
correlations in the data. At present, work is being undertaken to use Sw(A,P )
to evolve time series models for varying values of w. The results of this work are
expected to confirm that using a shape metric as part of the fitness measure will
allow more accurate time series models to be developed.

5 Conclusion

This paper presents two fitness measures for comparing time series predictions.
Problems associated with the calculation of Fw(A,P ) for large w led to a second
metric that simplified the concept of shape to a positive, negative or zero slope
measurement. This measure Sw(A,P ) has been shown to produce relative errors
between sequences that align more with our intuitive notion of similarity. The
obvious difficulty with this work is proving that Fw(A,P ) or Sw(A,P ) for w >
0 will in general help evolve better solutions then the original non-temporal
error measurements. Each new time series will have different properties and be
more suited to one of the temporal or non-temporal measures that have been
presented. The most persuasive evidence of an improvement by using shape
for fitness would be to evolve a comprehensively better model for a well-known
problem than previously discovered. It is recommended that the fitness measures
introduced here be applied by researchers in time series modelling and GP to
ascertain whether this is the case.
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