
A Framework for Distributed Workflow Systems

Martin Purvis
Maryam Purvis
Selena Lemalu

The Information Science
Discussion Paper Series

Number 2000/20
December 2000
ISSN 1172-6024

University of Otago

Department of Information Science

The Department of Information Science is one of six departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/publications.htm). Any other cor-
respondence concerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/publications.htm
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

1

A Framework for Distributed Workflow Systems

Martin Purvis Maryam Purvis Selena Lemalu
Department of Information Science

University of Otago
Dunedin, New Zealand

{mpurvis, tehrany, slemalu}@infoscience.otago.ac.nz

Abstract

Workflow management systems (WFMS) are being
adopted to assist the automation of business processes
that involve the exchange of information. As a result of
developments in distributed information system
technology, it is now possible to extend the WFMS idea to
wider spheres of activity in the industrial and commercial
world and thereby to encompass the increasingly
sprawling nature of modern organisations. This paper
describes a framework under development that employs
such technology so that software tools and processes may
interoperate in a distributed and dynamic environment.
The framework employs Petri nets to model the
interaction between various sub-processes. CORBA
technology is used to enable different participants who
are physically disparate to monitor activity in and make
resource-level adaptations to their particular subnet.

Keywords

Distributed systems, workflow, process modelling, Petri
nets

1. Introduction

Developments in networking and telecommunications
have in the past few years opened up enormous
opportunities for linking up disparate information sources
and computational modules. This has raised significant
hopes for improvements in the area of software
interoperability: the linking of software modules to carry
out complex computational tasks. An example of an
application that facilitates software interoperability is a
Workflow Management System (WFMS), which provides
support for the automation of business or industrial
processes involving human and machine-based activities.
By using such systems, organizations can accelerate
throughput, reduce costs, and monitor performance of
common, well-understood operational processes in their
domain.

Existing WFMSs, however, are practical for only the
most straightforward operational processes and are not
necessarily suited for the current business climate. This is
due to the fact that the current changing, globally
competitive business and engineering environment has led
in recent years to fundamental changes in the ways
organizations themselves are managed and structured.
The climate is increasingly marked these days by the need
for rapid response to changing consumer demands,
intense competition, and a rapidly evolving technical
infrastructure [5]. Organizations that once were vertically
arranged in hierarchical, bureaucratic structures are
becoming increasingly decentralised into geographically
distributed semi-autonomous business units so that they
can respond more quickly and efficiently to changing
market conditions. At the same time, business processes
have become more complex, involving the concurrent
participation of multiple and distributed functional units.
These changing conditions have led to the need for
improved workflow management tools that are (a)
adaptive to changing conditions and (b) provide
assistance in the area of horizontal, cross-organizational
management. The focus of this paper is on the
development of such workflow management tools.

We note in general that the management of a business
process has three basic stages: (1) design and creation, (2)
the provision of resources, and (3) enactment. Of course
there are great differences in the range of business
processes, and they might be loosely scaled according to
the following categories:
• Administrative – repetitive, predictable processes with

simple coordination rules
• Ad-hoc – processes that involve more human

judgement, such as a sales process
• Collaborative – processes, such as system design, that

are even less structured and require support for group
work.
Existing WFMSs have primarily concentrated on

administrative workflows, for which the processes are
well-understood, and so these systems typically only offer
support for enactment [11]. As a consequence, such
systems often lack support for both design and for

2

adaptation to the dynamic changes of resource needs and
availability. Furthermore, most existing systems adopt a
centralised architecture and do not operate across multiple
platforms.

The focus of the current work is on the development
and characterisation of dynamic workflows (ad-hoc and
collaborative processes) in a distributed environment. We
contend that the development of distributed, dynamic
workflow systems, by facilitating the interoperation of
tools and mechanisms in a heterogeneous environment,
will be a key factor in the evolving information-intensive
economic environment. Consequently they deserve
significant attention from the software engineering
community.

In this paper the following sections describe:
• the software architecture of the system
• key technical components that are used in connection

with this architecture
• an example workflow, taken from the area of

university enrolment
• plans for monitoring and adaptive workflow

modelling, and
• conclusions and future work.

2. System architecture

The Workflow Management Coalition’s (WfMC)
Workflow Reference Model (Figure 1) shows the major
components and interfaces within the architecture of a
WFMS [15], where a workflow is defined to be “the
computerised facilitation or automation of a business
process, in whole or part.” The Process Definition
component is used by the user to define and specify the
sequence of operations of a workflow. Typically this will
involve the use of some visual modelling representation.
The Workflow Engine is responsible for the execution of
the overall workflow, at various stages of which
individual workflow applications (Client Applications or
Invoked Applications) will be accessed or executed.

Although the WfMC has defined a graphical workflow
modelling notation as a proposed standard, we use Petri
nets to model workflow systems, due in part to their
sound mathematical foundation and the fact that they have
been used extensively in the modelling of distributed
systems [13, 14].

Figure 1. Reference architecture for the
Workflow Management Coalition

We use the Renew (Reference Net Workshop) [8] net
editor to represent (Process Definition component) and
execute (Workflow Engine component) our workflow
models. Renew is written in Java and comes with the
complete source code, which has enabled us to make
modifications in order to incorporate it into our system.

Renew reference nets are closely related to coloured
Petri nets [7] in that they consist of the following basic
building blocks:
• places (circles) which are typed locations that can

contain zero or more tokens – (Renew also has an
untyped formalism which is useful for prototyping).
An input place is connected to a transition by an arc
that points from a place to a transition and is examined
to see whether or not a transition is enabled. An output
place is a place to which tokens may be added when a
transition fires.

• transit ions (squares) which are actions whose
occurrence (firing) can change the number and/or
value of tokens in one or more of the places connected
to them. In a workflow model a transition may
represent a task.

• arcs (arrows) which are connections between places
and transitions. Renew has arc types in addition to
input and output arcs e.g. test arcs (no arrows) that
provide read-only access to a token and flexible arcs
(double-headed arrows) that allow multiple tokens to
be moved by a single arc.

• all of the above may have inscriptions associated with
them (in Renew, inscriptions are Java expressions e.g.
'action inscriptions' are a special transition inscription
which are guaranteed to be evaluated exactly once
during the firing of a transition and can be used to
produce side effects).

• tokens which are typed markers with values – the type
can be any Java class, and, in addition, a simple black
untyped token is denoted by [].
Figure 2 shows the use of Java expressions within

action inscriptions on the first transition to get an array of

3

tokens representing customer requests and the use of a
'flexible arc' (a special Renew construct) for splitting that
array into its constituent elements. The Order Entry
transition only needs one token in its input place for it to
fire resulting in identical tokens being deposited in each
of its output places. Once both the Inventory Check and
Credit Check transitions have fired and tokens have
appeared in their output places, the Evaluation transition
may fire. The sequence from the input place of the Order
Entry transition to the output place of the Evaluation
transition is the Petri net equivalent of the standard
parallel routing construct. When the Evaluation transition
fires, the token deposited in the output place will reflect
the decision and determine whether the Approval
transition or the Rejection Letter transition will be fired.
This is the standard conditional routing construct. The
model execution finishes when all requests are located in
the output place of the Archiving transition. This example
will be used again in Section 4.

Shipping
Archiving

Billing

Approval

Evaluation

Inventory
Check

Order
Entry

[] action source = new TokenSource();
action req = source.getTokens();

req

req req

req req

Credit
Check req

req req

reqreq

req
reqreq

req

reqreq
req

Rejection
Letter

req
req

reqreq

req req

Figure 2. Order processing example

Significant reasons for preferring Petri net modelling
in connection with workflow modelling over other
notations are [14]:
• Despite their graphical nature, coloured Petri nets have

a formal semantics, which makes the execution and
simulation of Petri net models unambiguous. It can be
shown that Petri nets can be used to model workflow
primitives identified by the WfMC [14]

• Typical process modelling notations, such as dataflow
diagrams, are event-based, but Petri nets can model
both states and events. This enables a clear distinction
between task enablement and execution and makes it
easier to represent the time of task execution in the
model

• The many analysis techniques associated with Petri
nets make it possible to identify 'dangling' tasks,
deadlocks, and safety issues.

2.1. Workflow engine component

When a Renew net is created using the Process
Definition component, a static (Java class) structure is
created. When a simulation is started by the Workflow
Engine, a new instance of that net is created. Two such
instances can communicate with each other by means of
synchronous channels [2,8,9,10], which provide a
mechanism for the synchronization of two transitions (in

two separate nets) which fire atomically at the same time.
The initiation (“calling”) transition has a special net
inscription, called a “downlink”, which passes
parameterised information to the designated subordinate
net/subnet transition. The downlink expression must
make an explicit reference to the other net instance, so it
takes the form, netexpr:channelname(arg, arg, …). The
designated transition in the subnet has an “uplink”
inscription, which is used to serve requests from downlink
calls. The uplink expression has the form
:channelname(arg, arg, …). Hierarchical Petri nets are
(usually) those for which a single transition can be
substituted by an appropriately structured subnet.
Although the reference nets of Renew are designated in
[1] to be non-hierarchical, we have implemented
hierarchical coloured Petri nets with Renew by using
synchronous channels. This means that a workflow can
be refined hierarchically in our system, using the Petri net
formalism.

We also distribute subnets across various processors
via the construction of wrapper classes, called stub
classes, which are used to set up the synchronous channel
mechanism. The pair of channel invocations or
synchronization requests that are required to start a
subnet, and for control to be returned to its top-level net,
are put in the body of a method within the subnet’s
wrapper class. Nets located on different machines can
communicate via method calls [8, 10] and by means of
CORBA (the Common Object Request Broker
Architecture).

2.2. Process definition component

The process definition tool in our workflow system
currently uses the Renew net editor, which is based on the
JHotDraw package [4]. A net can be drawn in a drawing
window and saved to a file in a serialized textual format.
However there is no connection between separate
drawings, i.e. there is no “point and click” mechanism for
moving between levels in the hierarchy.

The Renew system assists in the construction of
syntactically correct models by (a) making an immediate
syntax check whenever an inscription is added or
changed, (b) by providing menu options that when
selected run extra checks (e.g. syntax checking and
detecting naming conflicts), and (c) by not allowing the
user to draw an arc between two places or two transitions.

2.3. Invoked workflow applications

When an individual Petri net transition is fired during
the course of a model execution by the workflow engine,
an application program may be accessed to carry out a
particular task. This may involve, for example, the saving
of information to a database, the presentation and

4

collection of information to and from a client's computer
terminal, or the sending of some email messages. For
those applications not already written in Java, we
construct Java wrappers and access the wrappers by
means of method calls (an action method) when a
transition fires. Applications resident on remote
computers are accessed by means of CORBA calls to the
remote Java programs that provide the relevant services.
Consequently application programs may be distributed
across a network and accessed at the appropriate time by
the workflow engine during workflow execution.

We illustrate h ow an application can be invok ed by
means of CORBA by a s imple example (to increm ent a
num ber on the s erver) descr ibed in Listings 1 and 2 and
Fig ure 3.

Listing 1. Server class

package Incrementer;
public class IncrementImpl extends
 Incrementer._IncrementImplBase{
 private int sum;

 public IncrementImpl(java.lang.String name){
 super(name);
 sum = 0;
 System.out.println("Initial value of sum: "
 + sum);
 }
 public IncrementImpl(){
 super();
 }
 public int increment(){
 sum++;
 return sum;
 }
 public void sum(int val){
 sum = val;
 }
 public int sum(){
 return sum;
 }
 public static void main(String[] args){
 try{
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init();
 org.omg.CORBA.BOA boa = orb.BOA_init();
 Increment increment = new
 IncrementImpl("MyObject");
 boa.obj_is_ready(increment);
 System.out.println("Press return to exit
 server");
 try{
 System.in.read();
 }catch(Exception e){
 System.out.println(e);}
 boa.deactivate_obj(increment);
 orb.shutdown();
 }catch(Exception e){
 e.printStackTrace();}
 }
}

num

[]

action client = new Incrementer.IncrementClient();
action num = client.IncrementExecute();

Figure 3. Increment net

Listing 2. Client class

package Incrementer;
public class IncrementClient{
 public IncrementClient(){
 }
 public static int incrementExecute(){
 String[] args = {""};
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init(args, null);
 Increment incrementer =
 IncrementHelper.bind(orb, "MyObject");
 incrementer.increment();
 return incrementer.sum();
 }
}

3. An example workflow

We consider the process of the enrolment of
prospective postgraduate students at our university. This
example has been chosen, because a number of university
groups (i.e admission office, academic departments,
financial office) must collaborate during this process, and
the part of the process that each group is responsible for
can be thought of and modeled as a sub-process. Each
sub-process can be distributed to the “process-owner”
group, while still enabling the whole process to be
monitored by individual participants.

Figure 4 represents a Petri net model of the activities
involved in the enrolment process. Each of these activities
in turn can be further refined in separate sub-nets. For
example, Figure 5 shows the refinement of one of these
activities associated with the assessment of the students’
proposed courses. In both of these figures, the net
inscriptions have been omitted for clarity. Figures 4 and
5 demonstrate the usefulness of a hierarchical model in
which the modeler can specify the basic sub-processes
and their interactions without worrying about the details
associated with each of the sub-processes.

A token in any instantiated net in our workflow model
is a complex object representing an enrolment request
from a prospective postgraduate student. This complex
object has fields for identification and routing. Additional
fields could be added to refer to documents and to record
information (e.g. outcomes/decisions) associated with
each request. The values of these fields are accessed or
set in the course of the workflow.

5

Provide
Course
Advice

Receive
Fees

true

false

false

true

false

Assess
Student’s
Proposed
Course

start

 Applying
 for
 scholarship?

Process
Application for
Scholarship

true

 Study at
 another university
 to be credited?

true

Aruthorise
Enrolment

Notify
Student,
Send
Schedule and
Invoice

Process
Request

Assess
Transfer
Credit

 Schedule
 returned?

false

 Changes to
 schedule?

Support
Loan
Application
Process

false

true Paying by
 loan?

Figure 4. The enrolment net

Assess
Academic
Background

Compromise
Not
Reached

Approve/
Reject
Formal
Application

start

end
Background
Inadequate

Send
Formal
Application
Form

Form
Not
Returned

Determine
Whether
Course
Involves
Research

Determine
Whether
Dept Can
Support
Research

Negotiate
Topic

Original
Topic
Accepted

Non-Research
Year

Compromise
Reached

Form

Research

Support

Negotiate

Decision TOTAL

Figure 5. The admissions subnet

Figure 4 has three types of transitions: atomic tasks
(black transitions), complex tasks (white) and routing and
synchronizing tasks (grey). Every atomic task must have
a resource (human or computer) allocated to execute it,
whereas a complex task is a top-level abstraction for an
underlying subnet, e.g. the complex task Assess Student’s
Proposed Course corresponds to the subnet in Figure 5.

In the enrolment net (Figure 4), an enrolment request is
received to be processed. At this point two parallel
activities can take place: (1) if the student has requested a
scholarship, this application can be accessed and (2) if the
student has course work that has been transferred from
another university, this can be assessed. After the initial
assessment of a student’s record, the student’s proposed
courses to be undertaken must be evaluated. Figure 5
shows the corresponding activities associated with this
evaluation. The outcome of this evaluation, which
specifies a set of papers or a research plan to be
undertaken along with the result associated with the
transition Process Application for Scholarship, is sent to
the student. The student can then either accept the
proposed program of study or decline the offer. If the
student would like to make some changes to the proposed
program of study, approval must be obtained, which is
represented in the model by the transition called Provide
Course Advice. Finally the student associated with the
request is officially enrolled once fees have been received
or have been arranged to be paid by loan.

As mentioned in section 2.1, the relationship between
two Petri nets in a hierarchical model is such that a
transition in the top-level net can be substituted for by a
subnet – here, the transition and the subnet that replaces it
share the same input place(s) and output place(s). The
actual implementation of this concept in Renew nets uses
synchronous parameterized channels. When the transition
Assess Student’s Proposed Course (ASPC) fires, it
synchronizes with the start transition in Figure 5 and the
two transitions effectively share the invoking transition's
input place. The ASPC transition is blocked until the
subnet execution is completed and the returned request is
deposited in the ASPC transition's output place via the
synchronization between the invoking transition and the
subnet's end transition.

In the sub-net diagram shown in Figure 5, first an
initial assessment of the student’s academic background is
made, based on the student's course proposal and
evidence of an academic qualification. The student can
then lodge a formal application indicating one or two
areas of interest (Send Formal Application Form). The
application is then evaluated to check whether it involves
course work or solely research. If the program of study
involves research, then a decision must be made as to
whether a faculty member can support (supervise) the
research in the proposed area of interest (Determine
Whether the Dept. Can Support Research). The research
may have to be modified in order to locate a staff member
who is willing to supervise the student undertaking the
specific area of research (Negotiate Topic).

Finally, the proposed program of study (either course
work or research) must be approved (or rejected) by the
postgraduate committee (Approve/Reject Formal
Application). The output of this transition indicates the
decision that has been made with regard to a particular
application and completes the task associated with this
subnet. In this paper we are explicitly describing the
refinement detail of only one of the subnets associated
with the top-level net. Refinement of the other subnets is
done in a similar fashion.

The next phase in the prototype development was to
install CORBA communication in the Java subnet classes
so that the Renew net-subnet communication could be
conducted in a distributed environment. In this
circumstance getting references to the subnet objects was
no longer simple, because CORBA server-client
interaction was required and each CORBA server had to
do the following in order to export a subnet object that
was simulatable:
(a)use a Renew ShadowSimulator instance to load the

shadow form of the net. (In Renew a net is simulatable
in two forms, graphical or shadow. The graphical form
is desirable in our resource project because one of our
goals is to make it possible for a process-owner to
monitor his or her subnet and eventually be able to

6

alter its structure. However use of the graphical form
necessitates manual loading by opening it in the net
editor which does not work in a distributed
environment.)

(b)use a Renew ConcurrentSimulator instance to put the
shadow net into simulation mode.

The token class, of course, also had to be CORBA-
enabled.

Having successfully maintained the communication
mechanism in a distributed environment we were
confronted with the problem of not being able to reconcile
the shadow form of the subnets with their graphical
representations – required for monitoring the rate of
throughput of multiple tokens and evaluating “what-if”
scenarios. As an intermediary solution to this problem,
we are using a combination of bar charts and the Renew
Event package to monitor the throughput (numbers of
tokens in key named places per unit time) in each subnet.
For example, Figures 6 and 7 show charts associated with
two of the subnets in our workflow model – they were
screen-dumped during a simulation. The TOTAL place
was included in order to determine how many requests in
total passed through each subnet.

Figure 6. Dynamic chart of the Admissions
subnet

Figure 7. Dynamic chart of the Assess Transfer
Credit subnet

4. Towards adaptive workflow

In many situations processes, resources, and the
constraints associated with various businesses and
organizations that we are trying to model are changing
frequently. The architecture of workflow systems should
be sufficiently flexible to cope with these unpredictable
changes. Since a change in one component of the system
can have some impact on the rest of the process, these
changes should be explicitly represented on the overall
process model which could be viewed by all the
participants of the system. In a distributed workflow
system, where each section of an organization might be in
a different geographical location, designated regional
representatives should be able to modify some aspects of
their sub-process if they need to do so. At the same time
the interaction between various sub-processes should be
managed by maintaining an overall organizational model
that provides dynamic links to distributed, changeable
sub-processes. This resulting overall model can reveal
any inconsistencies or any other problems which can arise
due to resource conflicts.

Changes to the workflow can be either static or
dynamic. Static changes refer to those changes made to
the workflow while it is not being executed. Modification
can be made to various elements of workflow, such as the
process, the available resources, as well as the changes
that can be made to the resource allocation mechanism.
Dynamic changes refer to those changes made to the
active instances of the workflow [12].

In the workflow literature, various categories of
adaptability have been defined [12] such as flush, abort,
migrate, adapt, and build, with each of these terms
representing a respective increase in the extent to which
the system adapts to change. In flush mode situations all
current instances are allowed to complete according to the
old process model, but new instances are planned to
follow the new model. For the other four modes, the
existing, active instances of the workflow can be
impacted by the change. In the abort mode the current
active instances are aborted, in the migrate mode, the
execution of the workflow continues while the new
changes are integrated into the process, in the adapt mode
the process must be altered for individual instances in
order to accommodate some exceptional cases, and in the
build mode the whole process can be rebuilt at runtime so
that the appropriate process model that corresponds to the
particular situation at hand can be created.

Our approach is to use the migrate mode. Each
workflow is an instance of a workflow template (a Java
class). When a new workflow (template) is produced, old
instances are allowed to execute to completion if their
tokens occupy places that have been changed under the
new arrangement. Otherwise a new instance of a model is
produced and the tokens are inserted into the appropriate

7

places. The system keeps track of multiple models to
accommodate both old and new workflow instances and
their job tokens. In such a scenario the old model is
linked with the new model by means of sharing the same
resources. As the old job tokens are completed old model
instances can be discarded.

An example of how the migrate mode works is shown
in Figure 6.

Figure 6. An adaptive Petri net example

Figure 6 (a) shows an existing workflow associated
with the receipt of an order and its processing (adapted
from [3]). Shipping of merchandise and billing are
carried out in parallel. It is subsequently decided to carry
out billing and shipping sequentially. At the time that this
change is made to the model, we may have some existing
tokens that are already in the parallel segment of the old
model. In order to accommodate this change
dynamically, we must include the existing tokens in the
old part of the model as a part of the new, combined
model until their tokens complete their transit through the
workflow (as in the case of flush mode), as shown in
Figure 6 (c). This is achieved by making sure that
separate workflow instances are coupled by means of
synchronous channels.

However if there are existing tokens only in the “early”
part of the model that is unaltered in the new model, then
we just “migrate” to the new model. This migration is
accomplished by saving the state information of the
existing instance of the workflow and importing that
information into a new instance of the new model which
has the sequential arrangement of the Billing and Shipping
tasks.

5. Conclusion

This paper describes a framework for a distributed
adaptive workflow system. A prototype of the system has
been developed where the process definition can be
represented by means of a Petri net formalism. The
workflow engine employs coloured Petri nets and uses the
Renew implementation as a system component that links
with workflow applications by means of CORBA
technology, enabling access to remote clients and servers.

We are planning to extend the current prototype with
the following capabilities:
• Provide support for the Workflow Client Application

and Invoked Applications components of the WfMC
Reference Model (Figure 1)

• Use CORBA services such as the Naming, Trading,
Event, and Persistent Services in order to maintain a
flexible system architecture

• Provide timed tokens in order to measure the
performance of the system and examine the extent to
which the process deadlines have been met

• Provide utilities for graphically monitoring system
status and performance throughput.
Further research activities involve:

• Exploring the possibility of using third party tools for
analyzing the properties of the model such as
reachability, boundedness, deadlocks, and liveness

• Using agent technology in order to adapt the process in
response to various agents which can be made
responsible for monitoring the system from different
points of view, such as resource allocation.
We emphasise that the work described here will apply

not just to WFMSs as they are currently applied in the
business community, but to the larger scheme of adaptive,
distributed software process execution, where growing
software interoperability means that complex tasks may
be executed across a distributed environment. It is for
this reason that distributed agent technology is likely to
play an increasingly important role in the development of
workflow architectural frameworks such as described in
this paper.

Rejection Letter

Billing

Shipping

ArchivingApproval

Credit
Check

Inventory
Check

Evaluation

Order
Entry

Rejection Letter

Billing

Shipping

ArchivingApproval

Credit
Check

Inventory
Check

Evaluation

Order
Entry

Approval

Billing Shipping

Archiving

Billing

Shipping

ArchivingApproval
Billing

Shipping

ArchivingApproval

Approval

Billing Shipping

Archiving

The Old Region The New Region

Figure 6 (a)

Figure 6 (b)

Figure 6 (c)

`

`

8

Acknowledgements

The work reported in this paper has been funded by an
Otago Research Grant entitled “Adaptive Workflow
Modelling in a Distributed Environment”. We wish to
acknowledge the practical and theoretical support we
have received from Olaf Kummer, an authority on Renew,
and the contribution of Dr Stephen Cranefield as a project
advisor.

References

[1] R. Bastide, D. Buchs, M. Buffo, F. Kordon and O. Sy,
Questionnaire for a taxonomy of Petri net dialects
<http://www-src.lip6.fr/homepages/Fabrice.Kordon/
PN_STD_WWW/Qresult.html>

[2] S. Christensen and N. Damgaard Hansen, “Coloured Petri
nets extended with channels for synchronous
communication”, LNCS 815, Application and Theory of
Petri Nets 1994, Proc of 15th International Conference,
Zaragoza, Spain, June 1994, R. Valette (ed.), pp. 159-178,
Springer-Verlag, Berlin, 1994

[3] C.A. Ellis, K. Keddara and G. Rozenberg, “Dynamic
change within workflow systems”, Proc of Conference on
Organizational Computing Systems (COOCS’95), Milpitas,
CA, August 1995, pp. 10-21, ACM Press, New York, 1995

[4] E. Gamma, JHotDraw, 1998
<http://members.pingnet.ch/gamma/JHD-5.1.zip>

[5] M. Hammer and J. Champy, Reengineering the
Corporation, Harper Business, New York, 1993

[6] Y. Han, A. Sheth and C. Bussler, “A taxonomy of adaptive
workflow management”, 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW-98),
Seattle, WA, November 1998
<http://ccs.mit.edu/klein/cscw98/paper03>

[7] K. Jensen, Coloured Petri Nets – Basic Concepts, Analysis
Methods and Practical Use, Vol. 1: Basic Concepts,
Springer-Verlag, Berlin, 1992

[8] O. Kummer and F. Wienberg, Renew – User Guide,
Release 1.3 University of Hamburg, Department for
Informatics, Theoretical Foundations Group and Distributed
Systems Group, September 2000
<http://www.informatik.uni-hamburg.de/TGI/renew/>

[9] O. Kummer, “Simulating synchronous channels and net
instances”, 5. Workshop Algorithmen und Werkzeuge für
Petrinetze, J. Desel, P. Kemper, E. Kindler and A.
Oberweis (eds.), pp. 73-78, Forschungsbericht Nr. 694,
Universität Dortmund, Fachbereich Informatik, October
1998

[10] O. Kummer. “Tight integration of Java and Petri nets”, 6.
Workshop Algorithmen und Werkzeuge für Petrinetze, J.
Desel and A. Oberweis (eds.), pp. 30-35, J.W. Goethe-
Universität, Institut für Wirtschaft-informatik, Frankfurt am
Maim, October 1999

[11] P.D. O’Brien and W.E. Wiegand, “Agent based process
management: applying intelligent agents to workflow”, The
Knowledge Engineering Review, 13(2):1-14, June 1998

[12] S.W. Sadiq, O. Marjanovic and M.E. Orlowska, “Managing
change and time in dynamic workflow processes”,
International Journal of Cooperative Information Systems,
9(1-2):93-116, World Scientific Publishing Company, 2000

[13] W.M.P. van der Aalst, “The application of Petri nets to
workflow management”, The Journal of Circuits, Systems
and Computer, 8(1):21-66, 1998

[14] W.M.P. van der Aalst, “Three good reasons for using a
Petri-net-based workflow management system”, Proc of
International Working Conference on Information and
Process Integration in Enterprises (IPIC’96), S. Navathe
and T. Wakayama (eds.), pp. 179-201, Camebridge,
Massachusetts, November 1996

[15] Workflow Management Coalitition, The Workflow
Reference Model, Document No. TC00-1003, Issue 1.1,
1995

