
Implementing agent communication languages
directly from UML specifications

Stephen Cranefieldy, Mariusz Nowostawski and Martin Purvis

Department of Information Science
University of Otago

PO Box 56, Dunedin, New Zealand
fscranefield, mnowostawski, mpurvisg@infoscience.otago.ac.nz

ABSTRACT
This paper proposes the use of the Unified Modelling Language
(UML) as a formalism for defining an abstract syntax for Agent
Communication Languages (ACLs) and their associated content
languages. It describes an approach supporting an automatic map-
ping from high-level abstract specifications of language structures
to specific computer language bindings that can be directly used
by an agent platform. Some advantages of this approach are that it
provides a framework for specifying and experimenting with alter-
native agent communication languages and reduces the error-prone
manual process of generating compatible bindings and grammars
for different syntaxes. A prototype implementation supporting an
automatic conversion from an abstract communication language
expressed in UML to a native Java API and a Resource Descrip-
tion Framework (RDF) serialisation format is described.

Keywords
Agent communication languages, abstract syntax, UML, XMI, Java
binding, marshalling, RDF

1. INTRODUCTION
Following the introduction of agent communication languages based
on speech acts and declarative content languages [8], a number
of agent development toolkits became available supporting agent
communication using variants of the Knowledge Query and Ma-
nipulation Language (KQML) [6]. Being the product of academic
research laboratories, this software, understandably, has often not
been particularly robust and has not provided a high level of support
for the string processing required to parse and access the contents of
messages. Creating agents using these toolkits, although preferable
to starting from scratch, requires time-consuming and error-prone
implementation of parsers and pattern matchers for KIF or other
content languages, or the implementation of specific solutions for
the types of messages that the application was designed to process.

Since the establishment of the Foundation for Intelligent Agents
(FIPA) [7], several industrial research laboratories have developed
implementations of FIPA agent platforms that are more robust and
provide a higher level of support to the agent application writer than
previously available agent toolkits (at least for core functionality
such as agent messaging rather than the extensions and enhance-
ments of the state of the art that are usually the focus of academic
yThe work described was performed while the first author was vis-
iting the Network Computing Group at the Institute for Informa-
tion Technology, National Research Council of Canada in Ottawa.
Thanks are due to host Larry Korba and to the University of Otago
for granting leave and providing financial support.

research). However, while standards organisations such as FIPA
have a vital role to play in encouraging industrial adoption of agent
technology, there is a danger that they can become bound by the
inertia of their existing standards and find it difficult to incorporate
any promising advances that may emerge from the research com-
munity.

This paper proposes an approach to support experimentation with
alternative agent communication languages (both ACLs and con-
tent languages) by providing a way of mapping from high-level
abstract specifications of language structures to specific computer
language bindings that can be “plugged into” an agent platform. In
particular, the paper discusses a procedure for automatically map-
ping from UML [14] class diagrams describing an ACL and a con-
tent language to a set of Java classes representing the concepts
in these languages. In addition, Resource Description Framework
(RDF) schemas [21] corresponding to the languages are produced
and the Java classes include code to marshal and unmarshal mes-
sages to and from an RDF [23] representation (serialised using the
RDF XML syntax).

This technique also allows descriptions of domain objects that are
instances of an ontology expressed in UML to be marshalled and
sent by value within the content of messages, however a discussion
of the application of this idea is beyond the scope of this paper.

The structure of the paper is as follows: Section 2 describes how
agent communication and content languages can be given an ab-
stract syntax using UML [14]. Section 3 briefly summarizes the
implications of using abstract syntax, and discusses the major ben-
efits of such a modelling technique. Section 4 presents a proof-of-
concept infrastructure for automatic generation of a concrete rep-
resentation from abstract syntax (UML), and gives an example of a
mapping to an object-oriented language (Java). Section 5 uses the
same framework to generate a message serialisation format based
on RDF, used for marshalling and unmarshalling in-memory object
structures. Section 6 briefly discusses the marshalling support pro-
vided and Section 7 provides a summary and suggestions for future
work.

2. AGENT COMMUNICATION
LANGUAGES AND UML

Agent communication languages such as KQML and the FIPA ACL
are based on the notion of exchanging information represented as
sentences in a logic-based content language such as the Knowl-
edge Interchange Language (KIF) [11] or FIPA’s Semantic Lan-



guage (SL). The agent communication language has an outer layer
that specifies information needed for routing the message and un-
derstanding its conversational context, and also indicates the type
of the communicative act represented by the message (e.g. inform
or request), the language in which the content is expressed, and the
name of the ontology defining the meanings of symbols appearing
in the content. The message’s content field is then used to store the
parameters of the act, which must be a well-formed formula in the
content language used and must be parsed by the receiving agent.
This paper proposes the use of UML class diagrams to define the
abstract syntax of ACLs and content languages. In this approach,
an ACL defines interface types corresponding to the concepts re-
quired by the communicative acts supported by the ACL.

In the case of FIPA, the ACL is specified by a list of standard com-
municative acts and the names and descriptions in English of the
allowable message parameters and their meanings. There are spe-
cific representations defined for the ACL in several formats: two
string-based and defined by grammars (one designed for human
readability and the other for efficient transmission over wireless
devices) and one based on an XML encoding and defined by a doc-
ument type definition (DTD).

Similarly, FIPA currently has experimental specifications for four
different string-based content languages. These all share a com-
mon core of basic concepts, but there is no formal or semi-formal
framework in which these languages can be related to each other, or
which can specify the relationship between concepts in the content
languages and those in the ACL. The interface between the two
types of language is only implicitly defined in the specifications.
From the ACL point of view, the parameters defined for each type
of communicative act (CA) specify the number and types of con-
tent expression needed for that CA (these must be contained within
a tuple occupying a single content field allowed by the FIPA ACL).
From the content language point of view, the FIPA SL specification
mentions the “grammar entry point”—an SL content expression,
and then goes on to list three cases: a proposition, an action and
an identifying referring expression (a term identifying an object
in the domain of discourse). Thus a message must, depending on
the type of the communicative act, have a correctly-typed tuple of
expressions within its content field. For a given content language
to be used with a particular communicative act, the content lan-
guage must include some representation for the concepts that must
be communicated within that type of message, e.g. only content
languages that can describe actions can be used within a request
message.

In the proposed approach the ACL model defines interface types
corresponding to the concepts required by the communicative acts
supported by the ACL. In the case of FIPA ACL these are the con-
cepts of a proposition, an action description and a definite descrip-
tion (a reference to an unknown object by describing a proposi-
tion that it must uniquely satisfy, e.g. “the father of John Brown”).
These are modelled by marker interfaces (i.e. interfaces with no
operations), which just declare that the concepts exist. It can then
be declared that a content language includes representations of one
or more of these concepts by using a UML realisation relationship
between classes in the content language model and interfaces from
the ACL model. This formalises the relationship between an ACL
and a content language and explains how a well-formed message
can be constructed by nesting a content language expression within
an ACL wrapper.

Message
sender : String
receiver : String
ontology [1..*] : String

Reference
<<Interface>>

InformRef

1

1

1

1

DefiniteDescription
<<Interface>>

1
1

1
1

QueryRef

1

1

1

1

Proposition
<<Interface>>

Inform

1

1

1

1

ActionDescription
<<Interface>>

Request

1

1

1

1

Other message 
elements and 
specialised subclasses 
have been omitted

Figure 1: A UML class diagram for an agent communication
language

Predicate
name : String
ontology : String
arity : Integer

Term

AtomicFormula

11 11

0..*

1
0..*{ordered}
1

self.term->size = 
self.predicate.arity

Constant
name : String
ontology : String

Conjunction

Wff
2..*

1

2..*{ordered}

1

Variable
name : String

DefiniteDescription

1

1

1

1

11 11

ACL::Proposition

ACL::DefiniteDescription
ACL::Reference

Figure 2: A UML class diagram for a fragment of a content
language

Figures 1 and 2 give examples of UML class diagrams defining
subsets of an ACL and a content language based on FIPA ACL and
FIPA SL respectively.

In order to understand these diagrams, it is sufficient to know the
following:

Rectangles depict classes with the class name in the top sec-
tion of the box (in italics in the case of an abstract class) and
the attributes declared in a separate compartment (if applicable).
Lines between classes represent association relationships. A dia-
mond shape may appear at one end of an association; this means
that objects of the class beside the diamond symbol are aggre-
gates of objects at the other end of the association (although parts
may be shared if the diamond is not filled in). Numbers at the
end of an association indicate how many objects may have this
association with instances of the class at the other end (‘0..*’
means “zero or more” and ‘1..*’ means “one or more”). If an
“ordered” constraint is present it means that the set of objects at
that end of the association that are related to a common object at



the other end has an ordering relation on it. In implementation
terms this means that the association end is represented by a list
data structure within the class at the other end, rather than a set.

A solid line with a triangular arrowhead indicates a generali-
sation/specialisation relationship, with the arrow pointing to the
more general class. A named ‘lollipop’ symbol attached to a
class indicates that the class implements the named interface.

The dog-eared rectangle in Figure 2 represents a constraint on
the class AtomicFormula. This is expressed using the Object
Constraint Language (OCL) [14] which can be used in conjunc-
tion with UML in order to constrain the possible models of a
specification in ways that cannot be achieved using the UML
structural elements alone. In this case the constraint states that
the number of Term objects associated with an AtomicFormula
object must be equal to the value of the arity attribute of the as-
sociated Predicate object.

A similar rectangle can be used for notes attached to model
objects. These give informal documentation about model ele-
ments.

It is important to note that an abstract syntax as shown in Figure 2
is not a substitute for semantics. It is still necessary to define the
semantics of the structures modelled in these class diagrams, for
example, the feasibility preconditions and the rational effect of the
various communicative acts. We assume the standard FIPA seman-
tics except for the following differences:

� Figure 1 includes a specialised message class InformRef.
This is not the same as the FIPA ACL inform-ref macro
action, which takes a single parameter—a definite descrip-
tion —and allows an agent to reason about how another agent
should respond to a query-ref message, without knowing
in advance the answer to the query. When (and if) that query
is answered, it will be in the form of an inform message con-
taining an equality statement that equates the query’s definite
description and the answer to the query (the name of some
domain entity). However, requiring the use of the generic
inform message type for this communication needlessly re-
quires agents to have a notion of equality in order to be able
to answer query-ref messages. The ACL in Figure 1 there-
fore adds a concrete InformRef message class that sepa-
rately identifies the definite description and the returned an-
swer instead of requiring the content language to relate these
within an equality statement.

� The ACL also deviates from the FIPA ACL by allowing more
than one ontology to be associated with a message and, to
simplify the discussion, only allows a single message recip-
ient to be named and ignores message envelope issues such
as specific transport protocol addresses for agents.

Note also that Figure 2 only shows a partial model of an SL-like
content language—it only includes the concepts necessary to ex-
press the example discussed below. A full version would include
negation, disjunction, implication, action and belief expressions.

Figure 3 shows an example message in FIPA ACL and the corre-
sponding representation as a UML object diagram (the “iota” ex-
pression in the upper part of the figure represents the definite de-
scription “the entity x that is the parent of Mary and is a doctor by
profession”).

(inform :sender agent1
:receiver agent2
:ontology (sequence (Family Professions People))
:language FIPA-SL
:content ((= (iota ?x (and (parent Mary ?x)

(profession ?x doctor)))
Mavis))

)

sender = "agent1"
receiver = "agent2"
ontology = { "Family", "Professions", "People" }

 : InformRef
 : DefiniteDescription

name = "Mavis"
ontology = "People"

 : Constant

name = "x"

 : Variable
 : Conjunction

 : AtomicFormula : AtomicFormula
name = "parent"
ontology = "Family"
arity = 2

 : Predicate

name = "profession"
ontology = "Professions"
arity = 2

 : Predicate

name = "x"

 : Variable
name = "Mary"
ontology = "People"

 : Constant

name = "doctor"
ontology = "Professions"

 : Constant

{ordered} {ordered}

{ordered}

Figure 3: A message in FIPA syntax and its representation as a
UML object diagram

In object diagrams, rectangles denote objects, specifying their class
(after an optional name and a colon) and the object’s attribute val-
ues. The lines connecting objects show links: instances of associ-
ations between classes. In Figure 3, where there was an ordered
end to the corresponding association in Figure 2, an “ordered” con-
straint is shown between links to specify the ordering (this is not
standard UML, but as of UML 1.3 no notation has been defined to
convey this information).

For diagramming convenience, Figure 3 includes two separate vari-
able objects, each having “x” as the value of the name attribute.
One of these objects is shared by two AtomicFormula objects. In
fact, it would make no difference if three separate variable instances
were used or if one was referenced three times—the intended se-
mantics of the content language in Figure 2 is that variables are
identified by name, not by object identity.

3. BENEFITS OF AN ABSTRACT SYNTAX
The previous section discussed the advantages of UML abstract
models of ACLs and content languages for clarifying the current
specifications and the relationships between related languages. How-
ever, there are also more pragmatic advantages to this approach
for language specification. High-level abstract models provide a
common representation from which automated mappings can be
defined to produce programming language bindings (which spec-
ify how to construct and, in some cases, interact with instances of
the models from within a given programming language) and struc-
tured transport formats based on the Extensible Markup Language
(XML) [13, 22] for serialising instances of models. While these
automatically generated mappings may not produce results as el-
egant or concise as hand-crafted ones designed for specific prob-
lems, they can provide a standard and easy way to produce appli-
cation code specialised to a new problem domain (in the case when
the UML model represents a problem domain ontology).

In the case of agent communication languages, applying these tech-



niques provides a way of rapidly defining new and extended lan-
guages and generating infrastructure code to support the use of
those languages. For example, there are many interesting ways in
which current agent communication languages could be extended:
examples include extending the notion of reference to integrate
object-oriented and World Wide Web technologies with agent sys-
tems, and incorporating social notions such as commitments and
trust. To support and encourage experimentation with such ex-
tended languages it would be desirable to provide ways of cus-
tomising existing agent platforms to provide application program-
mer interfaces allowing these languages to be used, while maintain-
ing the rest of the agent platform infrastructure.

In order to increase the extensibility of agent platforms based on the
proposed UML-based approach to language specification, the fol-
lowing technology is needed: (i) for each programming language
of interest, the implementation of mappings from UML class dia-
grams to constructs of that programming language, and (ii) a mar-
shalling framework that allows messages to be serialised to and
from in-memory data structures. After determining that these tech-
nologies were not yet publicly available, such a mapping was im-
plemented for the Java language using a XSLT stylesheet [20] ap-
plied to UML class diagrams1 encoded in XMI [15] (version 1.0 for
UML 1.3) documents—an export format supported by the CASE
tools Argo/UML 0.8 and Rational Rose 2000 (with the Unisys XMI
add-in). Another stylesheet was implemented to generate an RDF
Schema document corresponding to a class diagram, and the Java
binding was extended to include methods for marshalling and un-
marshalling instances of the model to an instance of the RDF sche-
ma, using the RDF XML serialisation. This technology is not spe-
cific to agent communication—it can be used for any application
where there are models represented as class diagrams. However,
the next section will discuss some details of the implementation
and illustrate its application to agent messaging.

4. XMI TO JAVA
Extensible Stylesheet Language Transformations (XSLT) [20] is a
language for transforming XML documents into other documents.
An XSLT stylesheet is composed of a set of templates that match
nodes in the input document (represented internally as a tree) and
transform them (possibly via the application of other templates)
to produce an result tree. The result tree can then be output as
text or as an HTML or XML document. Starting from an existing
stylesheet for displaying class information from an XMI file as a ta-
ble in HTML [16], this was first updated to work with XMI 1.0 files
based on the UML 1.3 meta-model (the existing stylesheet was de-
signed for UML 1.1). The resulting stylesheet was then converted
and extended to produce a new stylesheet to produce Java source
code corresponding to the model in the XMI files.

The mapping between UML and Java is mostly straightforward:
classes and interfaces map to their equivalents in Java and attributes
and associations map to Java fields, which may be implemented
using an array or java.util.Set depending on the multiplicity
and the presence or absence of an ordered constraint (which only
applies to association ends in UML at present, not attributes). Cur-
rently it is assumed that the only primitive types in the UML model
are the OCL types Boolean, Integer, Real and String, and these are
mapped to the corresponding Java class types (with Real mapping
to Double) instead of primitive types. This allows the possibility
1To be precise, the stylesheet is applied not to an encoding of the
diagram itself, but to the model—the declarations of classes and the
relationships between them—that is encoded in the XMI document.

of a null value for fields representing attributes or association ends
with a multiplicity range that includes zero. Operations are de-
clared in the corresponding interfaces and classes, and an empty
body is generated within classes.

Of course, Java does not allow multiple inheritance and the style-
sheet does not do any restructuring to avoid this — it passes multi-
ple inheritance through for the Java compiler to detect.

Although Figures 1 and 2 do not show this, class diagrams often in-
clude role names on association ends. These are used as Java field
names if they exist, otherwise default names are generated based
on the OCL conventions for specifying navigation paths in class
diagrams. In particular, the name of the class next to an association
end is used as a default role name, with the initial letter in low-
ercase. Any ambiguity due to the lack of role names (e.g. in the
case of unlabelled reflexive associations) is not detected and will
be caught by the Java compiler when declarations of multiple fields
with the same name are encountered. The visibility of attributes
and association ends specified in the UML model is respected, but
for the purposes of modelling agent languages it is expected that
the designer will make these public.

Finally, the generated class, interface or field names are checked
against a list of Java reserved words and an underscore character is
prepended if necessary to avoid a Java compilation error.

A parameter to the stylesheet specifies whether class constructors
should be generated. If this option is turned on, the generated con-
structors will contain parameters corresponding to all attributes and
composition links related to the class (either inherited or declared
in the class). Figure 4 illustrates the use of the generated construc-
tors to build a message object within an agent, as well as the use of
the marshalling method described in Section 6.

The stylesheet currently handles association classes but not quali-
fied associations or attributes, associations or operations with class
scope. Enumeration types are not supported, and there is also no
mapping of UML namespaces to Java packages.

Figure 4 illustrates some advantages and disadvantages of the gen-
erated Java code for constructing messages. The example code pre-
sented shows how a message can be created and serialised using
the generated Java classes. This is certainly longer than using a
string-based message creation function with the FIPA ACL expres-
sion shown in the upper part of Figure 3 provided as a parameter.
Also, the order of arguments is dictated by the mapping process.
A fuller ACL model would include many optional message param-
eters, each of which would have a corresponding argument in the
constructor. This would have to be given a null value if not re-
quired. These problems could be solved by providing an alterna-
tive keyword–value version of the constructor, and by providing
additional input to the mapping process in the form of a binding
schema, as is being investigated for the Java XML Data Binding
facility under development by the Java Community Process [19].

The main advantage of the generated application programmer in-
terface (API) used to create the message in Figure 4 is that it is
generated automatically. It provides a strongly typed interface for
constructing messages and thus helps to reduce errors. Also, mes-
sages are not necessarily composed in one step as depicted in this
simple example in Figure 4. They may be constructed incremen-
tally during an agent’s computations, which would be more con-



x = new Variable("x");
m = new InformRef(

"agent1", "agent2", // Sender and receiver
Arrays.asList(new String[] { "Family", "Professions", "People" }), // Ontologies
new DefiniteDescription(

x,
new Conjunction(

Arrays.asList(

new Wff[] { new AtomicFormula(
new Predicate("parent", "Family", 2),
Arrays.asList(

new Term[] { new Constant("Mary", "People"), x })),
new AtomicFormula(

new Predicate("profession", "Professions", 2),

Arrays.asList(
new Term[] { x, new Constant("Mavis", "People")}))

}))),
new Constant("Mavis", "People"));

ByteArrayOutputStream messageStream = new ByteArrayOutputStream();
MarshalHelper.marshalObjects(Collections.singleton(m), // All objects to be marshalled

m, // Root object
"http://some.namespace/for/message#",
messageStream);

Figure 4: Using the generated Java code to create and serialise a message

veniently and safely done using this API than by piecing together
strings. In addition, a structured representation would be required
as the output of a string-based parser anyway. This technique pro-
vides a starting point on top of which it should be possible to define
more readable string-based representations. An interesting direc-
tion for future research is to investigate ways of mapping from a
UML model to a string representation of a language, and to for-
mally relate this to the corresponding object-oriented API.

5. XMI TO RDF SCHEMA
The XMI format was designed to allow the interchange of UML
models. As such, it is based on an XML document type definition
encoding concepts from the UML meta model, such as the concepts
of class and association, and the instances in an XMI document cor-
respond to particular classes and associations. As UML includes
object diagrams, it would be possible to serialise objects within an
XMI document, but the relationships between objects would be ex-
pressed as separate though interrelated elements describing objects,
links and link ends. To achieve a more compact serialisation it is
necessary to generate a document schema that is specialised to the
particular model in a UML document. One option that has been
investigated elsewhere is to generate an XML DTD from a UML
class diagram [17] (although many features of class diagrams, in-
cluding generalisation relationships, were not supported). Work
has also been done on producing DTDs [5] or XML Schemas [9]
from models expressed in ontology modelling languages, but expe-
rience from the latter work showed that the XML Schema notion of
type inheritance does not correspond well to inheritance in object-
oriented models.

For the marshalling framework described in this paper it was de-
cided that mapping class diagrams to RDF schema specifications
would be a simpler approach than using XML schema. The Re-
source Description Framework (RDF) [23] is a simple entity–attri-
bute–value model designed for expressing metadata about resources.
The RDF Schema is a set of predefined resources (entities with

uniform resource identifiers) and relationships between them that
define a simple meta model, including concepts of classes, prop-
erties, subclass and subproperty relationships, a primitive type Lit-
eral, bag, set and sequence types and domain and range constraints
on properties.

In mapping from an XMI document to an RDF schema, it was not
a goal to express all details of the model, only enough to facili-
tate serialisation of model instances. For example, the generated
schema does not distinguish composition relationships from asso-
ciations — this would require extensions to RDF Schema and is not
required because knowledge of the relationship type is built into the
marshalling code. If an agent needs access to a full description of a
language it can access the XMI file directly using one of the avail-
able or forthcoming Java APIs for XMI [12, 18].

The XMI to RDFS stylesheet was developed by adapting and sim-
plifying the one for XMI to Java. One issue that required address-
ing was the problem that RDF properties are first class entities—
they are not defined relative to a class. Therefore a given property
cannot be defined to have a particular range when applied to objects
of one class and another range when applied to objects of a differ-
ent class2. The option chosen in this work was to create properties
with names of the form Classname.FieldName so that these were
unique for each class.

Another issue was that RDFS has no notion of an interface. Instead,
interfaces are modelled as classes, and realisation relationships be-
tween classes and interfaces are modelled as subclass relationships
between classes.

The appendix shows how the example message from Figure 3 can

2Various solutions to this have been discussed in the www-
rdf-interest mailing list (see thread beginning with the message
http://lists.w3.org/Archives/Public/www-rdf-interest/2000Feb/
0157.html).



be serialised with reference to the RDF schemas corresponding to
the ACL and ContentLanguage models. Admittedly this is rather
verbose compared to the original ACL message, but the RDF/XMI
representation is designed for easy machine parsing rather than hu-
man readability.

Note that there is an XML namespace (e.g. http://nzdis.otago.ac.nz/
0 1/ACL#) associated with each generated schema, and this must
be provided as a parameter to the stylesheet.

Further discussion and examples of the mapping from UML to
RDFS can be found in Reference 1.

6. MARSHALLING MESSAGES
Once the XMI to RDFS mapping was defined, the ability to gener-
ate marshalling and unmarshalling methods was added to the XMI
to Java stylesheet. The aim in this code was to avoid the need to
reflect on the model (by Java reflection or accessing the XMI or
RDFS files). Instead the marshalling methods explicitly marshal
each field in the class that corresponds to an attribute as well as
fields corresponding to composition relationships. The actual seri-
alisation to and from RDF is performed by a utility class that uses
an existing Java RDF API [10].

The use of the serialisation mechanism is illustrated in Figure 4.
The class MarshalHelper has a static method marshalObjects

that takes four arguments: a collection of objects to include in the
serialised object diagram, the object that is considered to be the
‘root’ or reference point of the diagram, an XML namespace for
the RDF resources that will be defined in the RDF serialisation, and
the output stream to which the serialised objects should be written.
The method returns the Uniform Resource Identifier (URI) for the
root object in the resulting XML document (this return value is not
used in Figure 4).

7. CONCLUSION
This paper has focused on the use of UML to define agent commu-
nication and content languages, building on previous work investi-
gating the use of UML as an ontology modelling language [2–4].
The use of a common modelling language for the ACL and con-
tent languages has helped to clarify the relationships between ex-
pressions in these two types of language. In particular, the FIPA
SL notion of “entry points” to the SL grammar can be explained
in terms of a requirement that content languages include concepts
that are declared to implement ‘marker’ interfaces representing the
key concepts of proposition, action description, definite descrip-
tion and reference in the ACL model. Further research is needed to
study the relationship between content languages and ontologies.
In particular, previously it has been proposed that ontology-specific
content languages could be generated automatically to provide con-
venient and compact serialisation formats for encoding descrip-
tions of domain objects within content language expressions [2].
It is important that any mechanism for this is well founded and
based on a clear understanding of the relationships between the
ACL, the ontology-specific content language and the ontology it-
self. It is intended to investigate this issue using a meta-modelling
approach [4].

Further work is needed to provide a more convenient form of con-
structor for the generated Java classes. It would also be beneficial
to provide a mechanism for defining mappings between an abstract
language specification in UML and a string-based grammar. Such a
mapping would require additional inputs defining formatting con-

ventions for particular types of objects, sets and lists, etc. This is
an important topic for further research as it would allow a single
structured language specification to be used for both XML-based
and traditional string-based encodings.

It is our hope to continue the present work in cooperation and
with suggestions from FIPA on abstract syntaxes for the full FIPA
ACL. The goal is also to prepare appropriate mappings for all con-
tent languages already defined by FIPA, in particular all SL-family
languages. Once the abstract syntax specifications are finished, it
would be desirable to publish all abstract models expressed as UML
diagrams together with other related FIPA specifications. It would
be feasible then to integrate the reference implementation discussed
in this paper with existing FIPA platforms, thus providing develop-
ers with a flexible framework to experiment with possible exten-
sions to the current ACL and content languages.

8. REFERENCES
[1] S. Cranefield. Networked knowledge representation and

exchange using UML and RDF. Journal of Digital
Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/.

[2] S. Cranefield and M. Purvis. UML as an ontology modelling
language. In Proceedings of the Workshop on Intelligent
Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999. http://sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-23/
cranefield-ijcai99-iii.pdf.

[3] S. Cranefield and M. Purvis. Extending agent messaging to
enable OO information exchange. In R. Trappl, editor,
Proceedings of the 2nd International Symposium “From
Agent Theory to Agent Implementation” (AT2AI-2) at the 5th
European Meeting on Cybernetics and Systems Research
(EMCSR 2000), Vienna, 2000. Austrian Society for
Cybernetic Studies. Published under the title “Cybernetics
and Systems 2000”. An earlier version is available at
http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2000-07.pdf.gz.

[4] S. Cranefield, M. Purvis, and M. Nowostawski. Is it an
ontology or an abstract syntax? – Modelling objects,
knowledge and agent messages. In Proceedings of the
Workshop on Applications of Ontologies and
Problem-Solving Methods, pages 16.1–16.4, 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/16.pdf.

[5] M. Erdmann and R. Studer. Ontologies as conceptual models
for XML documents. In Proceedings of the 12th Workshop
on Knowledge Acquisition, Modeling and Management
(KAW’99). Knowledge Science Institute, University of
Calgary, 1999. http://sern.ucalgary.ca/KSI/KAW/KAW99/
papers/Erdmann1/erdmann.pdf.

[6] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. M. Bradshaw, editor,
Software Agents. MIT Press, 1997. Also available at
http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[7] FIPA. Foundation for Intelligent Physical Agents Web pages.
http://www.fipa.org/, 2001.

[8] M. R. Genesereth and S. P. Ketchpel. Software agents.
Communications of the ACM, 37(7), July 1994.



[9] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The
Relation between Ontologies and Schema-languages:
Translating OIL-specifications in XML-Schema. In
Proceedings of the Workshop on Applications of Ontologies
and Problem-Solving Methods, 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/7.pdf.

[10] S. Melnik. RDF Java API project Web page. http://www-db.
stanford.edu/˜melnik/rdf/api.html, 2000.

[11] National Committee for Information Technology Standards.
Draft proposed American national standard for Knowledge
Interchange Format. http://logic.stanford.edu/kif/dpans.html,
1998.

[12] Novosoft. Novosoft UML Library for Java.
http://sourceforge.net/projects/nsuml/, 2000.

[13] OASIS. The XML Cover pages. Organization for the
Advancement of Structured Information Standards (OASIS)
Web site at http://www.oasis-open.org/cover/xml.html, 2000.

[14] Object Management Group. OMG Unified Modeling
Language Specification, version 1.3. http://www.omg.org/
technology/documents/formal/
unified modeling language.htm, 2000.

[15] Object Management Group. XML Metadata Interchange
(XMI) Specification. http://www.omg.org/technology/
documents/formal/xml metadata interchange.htm, 2000.

[16] Objects by Design. Transforming XMI to HTML. Web site at
http://www.objectsbydesign.com/projects/xmi to html.html,
2000.

[17] D. Skogan. UML as a schema language for XML based data
interchange. In Proceedings of the 2nd International
Conference on The Unified Modeling Language (UML’99),
1999. http://www.ifi.uio.no/˜davids/papers/Uml2Xml.pdf.

[18] Sun Microsystems. JSR #000040: Metadata API
specification. Java Community Process JSR, 1999.
http://java.sun.com/aboutJava/communityprocess/jsr/
jsr 040 mof.html.

[19] T. Sundsted. Adelard, one year later. Available online at
http://www.javaworld.com/javaworld/javaone00/
j1-00-adelard.html, 2000.

[20] World Wide Web Consortium. XSL Transformations (XSLT)
specification version 1.0. http://www.w3.org/TR/xslt, 1999.

[21] World Wide Web Consortium. Resource Description
Framework (RDF) Schema Specification 1.0. http://www.w3.
org/TR/2000/CR-rdf-schema-20000327/, 2000.

[22] World Wide Web Consortium. Extensible Markup Language
(XML) Web pages. http://www.w3c.org/xml, 2001.

[23] World Wide Web Consortium. Resource Description
Framework (RDF) Web pages. http://www.w3c.org/RDF/,
2001.

APPENDIX
The following is an encoding of the example message shown in
Figure 3 in terms of the RDF schemas generated from the class
diagrams in Figures 1 and 2. This is not precisely the format pro-
duced by the marshaller (via Melnik’s RDF API [10]), but has been
converted into a more compact form for ease of reading. However,
this is equivalent to the original apart from the omission of URIs
for all the objects.

<rdf:RDF xml:lang="en"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:acl="http://nzdis.otago.ac.nz/0 1/ACL#"
xmlns="http://nzdis.otago.ac.nz/0 1/SL#">

<acl:InformRef>
<acl:Message.sender>agent1</acl:Message.sender>
<acl:Message.receiver>agent2</acl:Message.receiver>
<acl:Message.ontology>
<rdf:Seq>

<rdf:li>Family</rdf:li>
<rdf:li>Professions</rdf:li>
<rdf:li>People</rdf:li>

</rdf:Seq>
</acl:Message.ontology>
<acl:InformRef.definiteDescription>
<DefiniteDescription>

<DefiniteDescription.variable>
<Variable Variable.name="x"/>

</DefiniteDescription.variable>
<DefiniteDescription.wff>

<Conjunction>
<Conjunction.wff>

<rdf:Seq>
<rdf:li>

<AtomicFormula>
<AtomicFormula.predicate>

<Predicate
Predicate.name="parent"
Predicate.ontology="Family"
Predicate.arity="2"/>

</AtomicFormula.predicate>
<AtomicFormula.term>

<rdf:Seq>
<rdf:li>

<Constant
Constant.name="Mary"
Constant.ontology="People"/>

</rdf:li>
<rdf:li>

<Variable Variable.name="x"/>
</rdf:li>

</rdf:Seq>
</AtomicFormula.term>

</AtomicFormula>
</rdf:li>
<rdf:li>

<AtomicFormula>
<AtomicFormula.predicate>

<Predicate
Predicate.name="profession"
Predicate.ontology="Professions"
Predicate.arity="2"/>

</AtomicFormula.predicate>
<AtomicFormula.term>

<rdf:Seq>
<rdf:li>

<Variable Variable.name="x"/>
</rdf:li>
<rdf:li>

<Constant
Constant.name="doctor"



Constant.ontology="Professions"/>
</rdf:li>

</rdf:Seq>
</AtomicFormula.term>

</AtomicFormula>
</rdf:li>

</rdf:Seq>
</Conjunction.wff>

</Conjunction>
</DefiniteDescription.wff>

</DefiniteDescription>
</acl:InformRef.definiteDescription>
<acl:InformRef.reference>

<Constant
Constant.name="Mavis"
Constant.ontology="People"/>

</acl:InformRef.reference>
</acl:InformRef>

</rdf:RDF>


