
Generating ontology-specific content languages

Stephen Cranefield and Martin Purvis
Department of Information Science

University of Otago
PO Box 56, Dunedin, New Zealand

fscranefield,mpurvisg@infoscience.otago.ac.nz

ABSTRACT
This paper examines a recent trend amongst software agent appli-
cation and platform developers to desire the ability to send domain-
specific objects within inter-agent messages. If this feature is to be
supported without departing from the notion that agents communi-
cate in terms of knowledge, it is important that the meaning of such
objects be well understood. Using an object-oriented metamod-
elling approach, the relationships between ontologies and agent
communication and content languages in FIPA-style agent systems
are examined. It is shown how object structures in messages can be
considered as expressions in ontology-specific extensions of stan-
dard content languages. It is also argued that ontologies must dis-
tingish between objects with and objects without identity.

1. INTRODUCTION
Agent communication languages (ACLs) in the style of the Knowl-
edge Query and Manipulation Language (KQML) [15] and FIPA
ACL [17] are based around the idea that “Communication can be
best modelled as the exchange of declarative statements” [19]. Un-
der this paradigm, agents send, receive and reply to requests for ser-
vices and information with the intent of the message specified by
a performative (such as ‘inform’ or ‘request’) describing the way
in which an inner content expression should be interpreted. The
content is encoded using a declarative knowledge representation
language such as the Knowledge Interchange Format (KIF) [21] or
FIPA’s Semantic Language (SL) [18]. In addition, the ACL spec-
ifies any ‘ontologies’ that define the terminology used to denote
domain-specific concepts inside the message content.

This paper examines a recent trend amongst software agent appli-
cation and platform developers to desire the ability to send domain-
specific objects within inter-agent messages. If this feature is to be
supported without departing from the notion that agents communi-
cate in terms of knowledge, it is important that the meaning of such
objects be well understood. To clarify this issue, this paper uses
the Unified Modeling Language [4] and an object-oriented meta-
modelling approach to examine the relationships between ontolo-
gies and agent communication and content languages. It is shown
how object structures in messages can be considered as expressions
in ontology-specific extensions of standard declarative content lan-
guages. In particular, domain-specific ‘objects’ within messages
can be viewed as object-oriented encodings of terms, propositions
or definite descriptions. To make the discussion more concrete,
the proposed approach is illustrated in terms of a particular model
of agent communication: that defined by the Foundation for In-
telligent Agents (FIPA) specifications [16]. However, this account
of domain objects within messages is applicable to other styles of
declarative-message-passing agent systems as well.

2. INCLUDING OBJECTS IN MESSAGES
Traditionally ontologies are used in agent systems “by reference”.
An agent is not required to explicitly reason with the ontology, or
even to have an online copy available. The names of ontologies
can simply be used as a contract between agents undertaking a di-
alogue: they each claim to be using an interpretation of the terms
used in the conversation that conforms to the ontology. The content
language uses a string-based syntax to represent sentences in the
language which are constructed using constants and function and
predicate symbols from the ontology as well as built-in language
symbols such as “and” and “or”.

However, the popularity of the Java programming language for
agent development, as well as the increasing use of XML-based
formats for serialising structured data, appear to be causing agent
developers to look for ways of creating outgoing messages and
analysing incoming ones that are more in line with the object-
oriented paradigm than the traditional approach of building and
parsing strings. This is evidenced by conversations between the
authors and local agent researchers, messages on the FIPA agentc-
ities mailing list, and the feature introduced into the JADE agent
platform allowing application-specific Java classes to be associated
with concepts in an ontology.

JADE [14] allows ontologies to be defined using a frame-based
language. An ontology is defined at run time by constructing an
ontology object and adding frames to it. A Java class can be asso-
ciated with a frame so that an application can create instances of
the frame as Java objects and insert them in the message content.
The JADE messaging system then handles the serialisation of the
objects, which can be customised by users for particular content
languages.

Even in the traditional string-based model of message creation and
decomposition there are signs that agent programmers desire an
ability to send ‘objects’ within messages. The FIPA SL grammar
includes a production for “functional terms”. In addition to some
built-in function symbols for arithmetic and for constructing and
performing operations on sets and sequences, functional terms can
be built using function symbols from an ontology. The SL specifi-
cation describes two uses for ontology-specific functional terms.

The first use applies when an ontology defines function symbols
specific to its domain. Objects can then be referred to “via a func-
tional relation . . . with other objects . . . rather than using the di-
rect name of that object, for example, (fatherOf Jesus) rather
than God”. This can be interpreted using the standard semantics
for first-order logic—terms of this form correspond to descriptions

of particular pre-existing objects. In a first order logic without an
equality symbol, a functional term denotes a particular object in
the domain of discourse that is distinct from the object denoted by
any other term. Adding an equality symbol introduces the possi-
bility of making assertions that distinct terms in the language are
equal, meaning that they denote the same domain object. The usual
semantic models used to define first order logics with equality inter-
pret terms by equivalence classes in the ‘term algebra’ with respect
to the equality predicate. These equivalence classes can be consid-
ered to be an abstract representation of the actual domain objects
represented by terms in the language.

The second use for ontology-specific functional expressions in-
volves “descriptions where the function symbol should be inter-
preted as the constructor of an object, while the parameters repre-
sent the attributes of the object”. The following example is given:

(vehicle
:colour red
:max-speed 100

:owner (Person :name Luis
:nationality Portuguese))

The SL specification describes this usage as one where “the func-
tion symbol should be interpreted as the constructor of an object,
while the parameters represent the attributes of the object”. How-
ever, this notion of constructor is not explained, nor is any guidance
given on when a term of this form is considered to be well-formed.
A number of questions are raised with this notation:

� What constitutes a constructor in an ontology? For frame-
based and object-oriented ontology modelling languages the
answer is fairly clear, but is there a set of requirements that
could be used to identify constructors in other types of on-
tology modelling language? This paper focuses on the use of
object-oriented ontologies and does not address this question
for other modelling paradigms.

� Does each appearance of a given constructor term denote the
same object, or does every use of a constructor create a new
object? Allowing the universe of discourse to grow dynami-
cally departs from the usual semantics of first order logic and
would require a thorough investigation of its implications on
the semantics of SL. This paper therefore attempts to classify
the possible uses of ontology-specific functional terms with-
out abandoning the usual closed (but possibly infinite) world
model underlying first-order logic.

� Can a meaning be given for such a functional term repre-
senting an object with identity? One possible interpreta-
tion is that objects can be passed from one agent to another.
However, this requires additional theory and infrastructure
to model the dynamic association of objects to the agents re-
sponsible for them and to ensure the preservation of objects’
uniqueness or to account for their duplication and possible
destruction. This is left for future work. For the present we
prefer to retain the traditional view that the message content
is a declarative representation of knowledge about the world.

We address these issues by proposing that a distinction be made
between objects with and objects without identity, as in the Object

Query Language [5]. Our account of agent messaging does not al-
low for objects with identity to be transported within messages—it
is only meaningful for objects without identity (i.e. complex data
values) to be denoted by functional terms in a content language.
For concepts representing classes of objects with identity, we re-
gard functional expressions such as the vehicle one above to be
invalid as a term denoting a domain object. Instead, we propose
that this type of functional expression should be meaningful only
as a form of proposition (describing some or all of an object’s at-
tributes) or as a definite description (identifying an object in terms
of the values of attributes). In both cases, the notation can be gen-
eralised to include networks of objects and (in the case of definite
descriptions) variables.

The key difference between objects with and without identity is
that it is possible to refer to the former by reference. We make
no assumptions about the form of object references, but to be in-
cluded within an agent message, a reference must be expressible
as a ground term within some content language. Many different
reference schemes could be used for referring to objects: names,
CORBA interoperable object references (IORs), World Wide Web
Uniform Resource Identifiers (URIs), etc. This is discussed further
in Section 4.1. Note that we do not explicitly address the possibility
of a reference being used to refer to different objects by different
agents or at different times. Sufficient namespace or context infor-
mation to resolve this problem is assumed to be included as part of
a reference.

Whether or not instances of a given concept are considered to have
identity will depend on the range of applications for which the on-
tology is designed. To be completely general, any object could
potentially be referred to in an assertion—this is one of the de-
sign criteria for the Semantic Web where “anyone can say anything
about anything” [3]. However, for purposes of simplicity and ef-
ficiency, it may sometimes be advantageous to declare concepts to
be “value types”.

The difference between objects with and without identity can be
seen in the following example. The FIPA agentcities project [1] is
building a test-bed for the large-scale deployment of FIPA agent-
based services by forming a global network of agents providing
information relating to particular cities. One of the ontologies un-
der development in this project describes the concept of weather
reports. A weather report is an example of a plausible value type.
Although it is possible to imagine scenarios where agents may wish
to refer to a weather report by reference (e.g. to disagree with it),
in many common cases it would be sufficient to have the ability
to include weather report structures within messages. Note that
this would not mean that weather reports could not be recorded in
an agent’s knowledge base—another object such as an array could
hold weather reports internally as part of its own structure.

In contrast, a city is a clear example of an object that has identity
and which could not be meaningfully included within a message.

3. A METAMODELLING VIEWPOINT
To analyse the relationship between ontologies and content lan-
guages expressions, this paper extends a metamodelling account
of agent systems and models presented previously [13]. Figure 1
shows three levels of a metamodelling hierarchy. Level 0 comprises
the objects that exist at run time: agents, domain objects and mes-
sages and their content expressions. Level 1 contains models of the
concepts that are instantiated in Level 0, i.e. ontologies and defini-

Domain
ontologies

expressions and
Content language

knowledge objects

and concrete
Abstract

content lang. models
and concrete

Abstract

ACL models

refine refine

Message
objects (objects)

(models)
Level 1

(meta-model)
Level 2

Level 0

(extended with ‘valuetype’ and ‘resource’ stereotypes)
UML meta-model

Agent models

Agents

describe

containand data values
Domain objects

Figure 1: A metamodelling view of agent systems and models

tions of the abstract and concrete syntax for agent communication
and content languages. The relationship between a Level 0 object
and the corresponding Level 1 object is instantiation (or equiva-
lently set membership if concepts are viewed semantically as sets
of instances).

Note that analysing agent systems using the metamodelling view-
point does not presuppose that agents are implemented using object-
oriented technology. The same relationships between and across
levels hold no matter how agents and languages are modelled and
instantiated. Furthermore, Figure 1 could be extended to account
for other multi-agent system concepts, such as conversations, which
could be explicitly represented at Level 0 with conversation models
at Level 1.

The Level 1 models must be expressed in some language. In this
work, the Unified Modeling Language (UML) [4] is used as a uni-
fying representation language for all agent-related models at Level
1. It has been argued elsewhere that this industry-standard object-
oriented modelling language is a good candidate for representing
ontologies [11, 12, 2, 9] and the abstract syntax of agent commu-
nication languages [13, 10]. Level 2 therefore contains the UML
metamodel: a model of the concepts in UML. Other “metameta-
models” could also be included at this level to allow for different
representation languages to be used at Level 1.

Figures 2 and 3 illustrate fragments of an agent communication
language and a content language (respectively) modelled as UML
class diagrams. The UML ‘lollipop’ symbol is used to indicate that
particular classes implement interfaces from another model: the
CL package shown in Figure 4. This package uses ‘marker’ inter-
faces (ones with no operations) to name the abstract concepts that
any content language must implement in order to be used with the
FIPA ACL. This abstraction provides a strongly typed way for ex-
pressions in any content language to be included within an ACL
expression. For example the Object Query Language could be
used as a form of definite description simply by defining a class
OQLDescriptor with a string-valued attribute query and declar-
ing it to implement CL::DefDescriptor.

The CL package (Figure 4) models abstract content language con-
cepts that are required by the semantics of the FIPA ACL and its
communicative act library, but otherwise makes no commitment
about how particular content languages might be structured. For
example, the concept of a variable is included because this seems
to be intrinsic to the semantics of definite descriptions [23]. How-
ever, the concept of a predicate is not included. Although some
FIPA communicative acts require propositions as parameters, the
ACL is neutral about how propositions are represented—a content
language is free to represent propositions in non-standard ways,
e.g. as object structures asserting the attribute values [13].

Message
sender : String
receiver : String
ontology [1..*] : String

CL::RefTerm
<<Interface>>

InformRef

1

1

1

1

CL::DefDescriptor
<<Interface>>

1
1

1
1

QueryRef

1

1

1

1

CL::Proposition
<<Interface>>

Inform

1

1

1

1

CL::ActionDescription
<<Interface>>

Request

1

1

1

1

Other message
elements and
specialised subclasses
have been omitted

Figure 2: A partial UML model of an ACL

Predicate

name : String
ontology : String
arity : Integer

Term

AtomicFormula

11 11

0..*

1

0..*{ordered}

1

self.term->size =
self.predicate.arity

Constant

name : String
ontology : String

Conjunction

Wff
2..*

1

2..*{ordered}

1

Variable

name : String

DefiniteDescription

1

1

1

1

11 11

CL::Proposition

CL::DefDescriptor
CL::RefTerm

Figure 3: A partial UML model of an SL-like content language

«interface»
Term

«interface»
GroundTerm

«interface»
ValueTerm

«interface»
RefTerm

«interface»
AgentRefTerm

«interface»
Act

«interface»
CommunicativeAct

«interface»
LambdaAgentCommAct

«interface»
NonGroundTerm

«interface»
Variable

«interface»
ActionDescription

«interface»
Proposition

«interface»
LambdaTermProposition

«interface»
LambdaAgentProposition

«interface»
DefDescriptor

«interface»
AgentDefDescriptor

Figure 4: The CL package: generic content language concepts

In the figure, the dashed lines represent dependencies: for example,
an action description requires descriptions of an act and an agent,
but at this abstract level it is not appropriate to make any decisions
about how the implementation structure of these three concepts
should be related. A dependency is shown from DefDescriptor
to NonGroundTerm because a definite description comprises two
non-ground terms linked by common free variables: a query ex-
pression and a template for the result.

Some of the content language concepts shown are not explicitly
named in the FIPA specifications: for example, some communica-
tive acts (such as proxy) require content expressions representing
communicative acts with the receiver (an agent) omitted. This is
modelled by the interface LambdaAgentCommAct. The interface
LambdaTermProposition represents a function that produces a
proposition when a single parameter is supplied (used in the ‘call
for proposals’ communicative act) and LambdaAgentProposition
is a specialisation of this where the parameter is an agent reference
(this concept is not currently used by FIPA ACL, but seems likely
to be useful).

4. ONTOLOGIES AND OBJECT IDENTITY
In Section 2 it was argued that a distinction should be made be-
tween objects with and objects without identity. The approach
taken in this paper is to make this distinction on a per-concept basis,
with the ontology declaring for each concept whether its instances
have identity or not, and how references to instances of that concept
can be expressed. In this section we show how the extension mech-
anisms of UML can be used to model these aspects of an ontology.

4.1 Modelling references
The object model underlying UML does not take a position on the
nature of object identity and reference. UML assumes that ob-
jects have an identity that is implicitly provided by the underly-
ing implementation infrastructure and which does not need to be
included as an attribute of the corresponding class in the model.
UML makes no commitment about the nature of this identity or
the way in which links between objects are implemented. This
is too agnostic a stance for use in the description of multi-agent
systems, at least for those based on the Foundation for Intelligent
Physical Agents (FIPA) [16] specifications. One of the FIPA com-
municative acts is query-ref which is used to ask an agent for a
reference to the object that uniquely satisfies a given “definite de-
scription” (a quantified propositional expression, where the bound
variable represents the object of interest). The semantics of definite
descriptions assume each object (taken in a broad sense to mean an
identifiable entity) is identified by constants representing “standard
names”. This is sufficient for agent systems that are disconnected
from the real world and observe it without interacting with any of
its entities. However, when agents are integrated into today’s per-
vasive network infrastructure, which includes telephone networks,
distributed CORBA and Java objects and Web resources, this is
no longer sufficient. Objects can be identified by phone numbers,
CORBA interoperable object references (IORs), World Wide Web
uniform resource identifiers (URIs), etc., and agents are free to de-
part from ACL-level communication to interact with these objects
using the appropriate protocols for these references. We therefore
propose an extension to the UML metamodel to allow classes to be
annotated with their appropriate reference types.

Although the metamodel for UML is fixed, there is a way to de-
fine a ‘virtual’ extension of the metamodel by defining stereotypes:
named specialisations of particular concepts (such as ‘class’) from

SpecialisedSL

«valuetype»
WeatherReport

«resource»
City

{refscheme = URI}

Ontology
WeatherReport

City

CityDescriptor

CL::ValueTerm

CL::Proposition

CL::NonGroundTerm

SLCL
«refine»

Figure 5: An ontology-specific content language

the metamodel. Model elements can be endorsed with the names of
stereotypes within guillemets (French quotation marks) to indicate
that they have a different intent or additional semantics beyond that
normally associated with that type of model element.

For modelling classes of objects with identity we have introduced a
stereotype <resource> . This represents a specialised subtype of the
class concept in the UML metamodel, one whose instances (partic-
ular classes in a model) are constrained to include a one to many
relationship with a Reference abstract class that is assumed to ex-
ist at the model level (Level 1) and to implement the CL::RefTerm
interface. In an ontology, adorning a class with this stereotype is
the same as manually adding the association between that class and
the Reference class. It is therefore possible for any instances of
that class to be linked to instances of particular reference classes
such as URI (note that we do not assume there is a unique reference
to each object). To provide more information about the particu-
lar type of reference, another UML extension mechanism, a tagged
value, is used to name the type of reference used for objects of that
class. The tag name is “refscheme”. The value of this tag should
be the name of an predefined class extending Reference.

The bottom left side of Figure 5 illustrates the use of these mech-
anisms to specify that the class City represents resources having
URIs (in the style of the Semantic Web where URIs can be used to
refer to physical objects as well as Web documents). The rest of
the figure will be explained in the following sections.

4.2 Modelling data values
To represent value types another stereotype, <valuetype> is intro-
duced. Model concepts defined with this stereotype are not mod-
elled as classes, but as instances of a different child of the Class

concept’s parent class in the UML metamodel: ValueType. This
is not a standard concept in UML but an extension that is required
to adequately model objects without identity. UML has a similar
concept DataType, but this has restrictions that seem to be un-
necessary for value types: a data type may not have any outgoing
associations with other types. However, it seems reasonable for a
value type to have composition relationships with other value types
as these do not require references for their implementation—they
can be interpreted as defining a nested structure.

In Figure 5, the WeatherReport class is annotated with the stereo-
type <valuetype> to indicate that this represents a type of object
without identity.

 name : String

«resource»
Person

{refscheme = URI}

Man Woman

*

father
1

2

/son

*

mother
1

*

/daughter

*

2

{ parent = Set { mother, father }
 son = child->select(oclIsTypeOf(Man))
 daughter = child->select(oclIsTypeOf(Woman)) }

/parent

*

child
2

{ ordered }

{ ordered }{ ordered }

Figure 6: A class diagram representing a family ontology

5. ONTOLOGY-SPECIFIC CONTENT
LANGUAGES

Figure 1 showed a number of relationships between different types
of object: messages contain content language expressions, which
describe domain objects and agents. At the model level, ACL
and content language concrete syntaxes (e.g. models of XML en-
codings) refine abstract syntaxes. However, there is currently no
clear account of the relationship between ontologies and content
languages that explains how and when it makes sense to include
domain-specific objects within messages. Strictly speaking, there
is no direct connection between concepts in ontologies and those
in content languages: as discussed in the introduction, content ex-
pressions traditionally refer to ontological entities by reference (i.e.
by name) only.

The inclusion of domain-specific objects within messages can be
considered either to be semantically incoherent, or (more charita-
bly) as representing an object-oriented encoding of values, proposi-
tions and definite descriptions. This paper takes the latter approach,
which can be explained as the use of an ontology-specific content
language. Given an ontology, a specialised content language can
be generated either as a simple application-specific representation
or as an extension of an existing general-purpose content language
(so that generic concepts like conjunction are available).

Figure 5 illustrates our approach to generating ontology-specific
content languages. The dashed arrows are dependencies and there-
fore are directed from the generated classes back to the correspond-
ing concepts in the ontology. The generalisation relationship be-
tween the generated Specialised SL package and the pre-existing
SL one indicates that all concepts defined for SL (such as con-
junction and negation) are (optionally) included in the generated
package.

A valuetype declared in an ontology maps to an equivalent decla-
ration (without the valuetype stereotype) in a new package corre-
sponding to the generated language. This is because objects of that
type can meaningfully be embedded in messages.

{ ordered }

{ ordered }{ ordered }

PersonDescriptor

PersonTerm

varName : String

PersonVar
CL::Variable

ST::StringTerm

varName : String

ST:StringVar

CL::Variable

value : String

ST:StringObject

ManDescriptor ManVar

ManTerm

*

name1

WomanVar WomanDescriptor

WomanTerm
CL::Variable

parent 2

*

child*
2

2

son

*

father
1

*

mother
1

*
2

daughter

*

CL::Term

Figure 7: Generated descriptor classes for Person objects

A class with the resource stereotype maps to a structurally identi-
cal class that implements the CL::Proposition interface—this indi-
cates that objects of this sort can be used as descriptions of corre-
sponding domain entities (by describing their attribute values and
links). In addition, a corresponding descriptor class is generated to
allow an object-oriented structure to be used as the query part of
a definite descriptor, therefore this class implements the interface
CL::NonGroundTerm.

A class with no stereotype has a corresponding proposition class
generated, but no definite descriptor class is generated as nothing
is known about whether or not objects of this type have identity. It
may therefore be impossible to return a reference in response to a
query-ref message containing a definite description referring to
an instance of this class.

Figure 7 shows the structure of the generated descriptor classes cor-
responding to a simple family ontology (expressed as a UML class
diagram in Figure 6). Each attribute and navigable association end
must be capable of taking a variable object as a value. Therefore,
for each class an interface is defined and two subclasses that imple-
ment it: a descriptor class and a variable class. All association ends
are directed at the interfaces instead of the classes. The package ST
is assumed to hold variable and object types corresponding to each
primitive type.

6. IMPLEMENTATION
The previous section presented a scheme by which extensions of
content languages like FIPA SL can be automatically augmented
with ontology-specific representations for propositions, definite de-
scriptions and (for valuetypes) terms. It remains to formally de-
fine and implement these mappings. In previous work, a “UML
data binding scheme” has been developed [7, 8]. This allows agent
messages to be visualised as object diagrams and serialised using
the XML-based Resource Description Framework [20]. The se-
rialisation is performed with reference to RDF schemas that are
generated from the UML definitions of the ontologies used and the

UML-based
design tool

<....>
 <....>
 <...>
 <.>
<..>

XMI document

.. {
 ...(.) {

 }
}

100110
101001
011011
000110
101101

RDF schema
(in XML)

Knowledge
(in RDF/XML)

XSLT

XSLT

references

javac

references

Applications
loads

references

Java
source files

Java
class files

.. {
 ...(.) {

 }
}

.. {
 ...(.) {

 }
}

Marshalling
package RDF API

uses

uses

javac

Figure 8: The UML data binding framework

ACL and content language. A set of Java classes corresponding
to the concepts in these models are also generated, and these in-
clude marshalling support so that object diagrams can be converted
between in-memory networks of Java objects and RDF serialisa-
tions with a single method call. The generation of RDF schemas
and Java classes is performed using the Extensible Stylesheet Lan-
guage Transformations language [24] starting from encodings of
the UML models in the XML Model Interchange format (XMI).
The UML data binding scheme is illustrated in Figure 8.

At present, classes in ontologies are mapped directly to RDF re-
sources with properties that correspond directly to the attributes
and association ends associated with the classes. Extending this to
implement the mappings described in the previous section would
provide agents with an automatically generated Java application
programmer interface for including domain-specific objects within
messages—but only when they represent propositions, definite de-
scriptions or values of value types.

There is one feature of the UML data binding scheme that has not
yet been addressed in the present work. If propositions are to be
encoded as object structures, it must be possible to omit the values
of some attributes and association ends if these are not of relevance
to the discussion—otherwise an agent may have to send a network
representing all its knowledge every time it answers a question.
If a value is not present for a role of an optional association then
the agent receiving the information must be able to distinguish be-
tween the case where there whether there really is no value and
the case where this information has been omitted. This is handled
by declaring in the RDF serialisation of a message the property–
resource pairs for which incomplete or no information is provided
[8]. This, or an alternative mechanism, needs to be accounted for in
the conceptualisation of knowledge as a UML object diagram. One
possible approach would be to use a stereotype or tagged value to
indicate potentially incomplete knowledge.

Although XSLT provides a convenient language for implementing
transformations on XML-based data, it is debatable whether an
XSLT stylesheet can be considered to be a definition of a map-
ping. One possible way in which the mapping from ontologies
to specialised content languages could be defined is based on re-
search from the Precise UML group [22]. Figure 9 shows hows
OCL constraints can be used to define the mapping between ab-

Abstract
Syntax

Concrete
Syntax1

AS<->CS1
Class

Association

source

target 1

1

*

*

Box

Connector

source

target 1

1

*

*

Compartment
*

1

Box Connector

Class Association

*

* *

*

context c:Class inv:
 c.box->size=c.box.diagram->size
context a:Association inv:
 a.connector.source->forAll(b |
 a.connector->select(c|c.diagram=b.diagram).source=b)
 and a.connector.target->forAll(b |
 a.connector->select(c|c.diagram=b.diagram).target=b)
context c:Class inv:
 c.box->forAll(b | let n=b.compartment->size in

n>=1 and n<=2)

Diagram

*

*

1

1

Figure 9: The pUML approach to mapping between abstract
and concrete language models (modified from Clark et al. [6])

stract and concrete syntaxes for a language. This technique may
provide a formal way to define the relationship between ontologies
and ontology-specific content languages described in this paper.

7. CONCLUSION
This paper has analysed the relationship between ontologies and
content languages and, based on a desire from agent programmers
to include ‘objects’ within messages, has clarified when this can
be considered to be meaningful. This ability can be provided in
a principled way by generating an ontology-specific content lan-
guage from an ontology.

It has also been argued that ontologies should distinguish between
object types having an identity and those without. Two UML stereo-
types have been proposed to indicate this distinction, which also
affects whether domain-specific object structures in an ontology-
specific content language can be used to represent propositions,
values or definite descriptions.

Acknowledgements
Thanks to the members of the FIPA agentcities mailing list for stim-
ulating our thoughts on this topic, especially Federico Bergenti who
espoused the need for a “metamodel” for content languages and
thereby inspired the design of the abstract content language model
shown in Figure 4.

8. REFERENCES
[1] agentcities.org. The Agentcities project Web site.

http://www.agentcities.org, 2001.

[2] F. Bergenti and A. Poggi. Exploiting UML in the design of
multi-agent systems. In A. Omicini, R. Tolksdorf, and
F. Zambonelli, editors, Engineering Societies in the Agents
World, Lecture Notes in Computer Science 1972, pages
106–113. Springer, 2000. (an earlier version is available at
http://lia.deis.unibo.it/confs/ESAW00/pdf/ESAW13.pdf).

[3] T. Berners-Lee. Metadata architecture. World Wide Web
Consortium Discussion Document, 1997.
http://www.w3.org/2000/01/sw/.

[4] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[5] R. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan,
S. Gamerman, C. Russell, O. Schadow, T. Stanienda, and
F. Velez, editors. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

[6] T. Clark, A. Evans, R. France, S. Kent, and B. Rumpe.
Response to UML 2.0 request for information.
http://www.cs.york.ac.uk/puml/papers/RFIResponse.PDF,
1999.

[7] S. Cranefield. Networked knowledge representation and
exchange using UML and RDF. Journal of Digital
Information, 1(8), 2001. http://jodi.ecs.soton.ac.uk/.

[8] S. Cranefield. UML and the Semantic Web. Discussion Paper
2001/04, Department of Information Science, University of
Otago, 2001. http://www.otago.ac.nz/informationscience/
publctns/complete/papers/dp2001-04.pdf.gz.

[9] S. Cranefield, S. Haustein, and M. Purvis. UML-based
ontology modelling for software agents. In Proceedings of
the Workshop on Ontologies in Agent Systems, 5th
International Conference on Autonomous Agents, 2001.
http://autonomousagents.org/2001/oas.

[10] S. Cranefield, M. Nowostawski, and M. Purvis.
Implementing agent communication languages directly from
UML specifications. Discussion Paper 2001/03, Department
of Information Science, University of Otago, PO Box 56,
Dunedin, New Zealand, 2001.
http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2001-03.pdf.gz.

[11] S. Cranefield and M. Purvis. UML as an ontology modelling
language. In Proceedings of the Workshop on Intelligent
Information Integration, 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), 1999. http://sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-23/
cranefield-ijcai99-iii.pdf.

[12] S. Cranefield and M. Purvis. Extending agent messaging to
enable OO information exchange. In R. Trappl, editor,
Cybernetics and Systems 2000: Proceedings of the 2nd
International Symposium “From Agent Theory to Agent
Implementation” (AT2AI-2) at the 5th European Meeting on
Cybernetics and Systems Research (EMCSR 2000), Vienna,
2000. Austrian Society for Cybernetic Studies. An earlier
version is available at http://www.otago.ac.nz/
informationscience/publctns/complete/papers/dp2000-
07.pdf.gz.

[13] S. Cranefield, M. Purvis, and M. Nowostawski. Is it an
ontology or an abstract syntax? Modelling objects,
knowledge and agent messages. In Proceedings of the
Workshop on Applications of Ontologies and
Problem-Solving Methods, 14th European Conference on
Artificial Intelligence (ECAI 2000), 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/16.pdf.

[14] CSELT. The JADE agent platform Web site.
http://sharon.cselt.it/projects/jade/, 2001.

[15] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent
communication language. In J. M. Bradshaw, editor,
Software Agents. MIT Press, 1997. Also available at
http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[16] Foundation for Intelligent Physical Agents. FIPA Web site.
http://www.fipa.org.

[17] Foundation for Intelligent Physical Agents. FIPA ACL
message representation in string specification.
http://www.fipa.org/specs/fipa00070/, 2000.

[18] Foundation for Intelligent Physical Agents. FIPA SL content
language specification. http://www.fipa.org/specs/fipa00008/,
2000.

[19] M. R. Genesereth and S. P. Ketchpel. Software agents.
Communications of the ACM, 37(7):48–53, July 1994.

[20] O. Lassila and R. R. Swick. Resource Description
Framework (RDF) model and syntax specification. Technical
report, World Wide Web Consortium, 1999.
http://www.w3.org/TR/1999/REC-RDF-SYNTAX-
19990222.

[21] National Committee for Information Technology Standards.
Draft proposed American national standard for Knowledge
Interchange Format. http://logic.stanford.edu/kif/dpans.html,
1998.

[22] Precise UML Group. The Precise UML Group home page.
http://www.puml.org, 2001.

[23] B. Russell. On denoting. In R. C. Marsh, editor, Logic and
Knowledge: Essays, 1901-1950. Allen and Unwin, 1956.
http://www.santafe.edu/˜shalizi/Russell/denoting/.

[24] World Wide Web Consortium. XSL Transformations (XSLT)
version 1.0. http://www.w3.org/TR/xslt, 1999.

