
Interaction Protocols for a Network of
Environmental Problem Solvers

M. K. Purvisa, P. Hwanga, M. A. Purvisa, S. J. Cranefielda, and M. Schievinkb

aInformation Science Department, University of Otago, Dunedin, New Zealand

bDepartment of Computer Science, University of Twente, Enschede, The Netherlands

Abstract: Environmental management and emergency response often involves the joint cooperation of a
network of distributed problem solvers, each of which may be specialised for a specific task or problem domain.
Some of these problem solvers could be human, others could be ‘intelligent’ environmental monitoring and
control systems. Environmental software systems are needed not only for the provision of basic environmental
information but also to support the coordination of these problem solvers. An agent architecture can support
the requirement associated with disparate problem solvers. The various stakeholders in the process are
represented by software agents which can collaborate with each other toward achieving a particular goal. The
communication between agents can be accomplished by using interaction protocols which are represented by
coloured Petri nets (CPN). This paper describes an approach for providing this support by employing a
software agent framework for the modelling and execution of environmental process tasks in a networked
environment.

1. INTRODUCTION

The management of extended environmental areas
when unforseen events take place can require rapid
responses on the part of many people or services
with specialised skills. In such circumstances the
resources and skills required to respond to the
emergency may go well beyond the capabilities of
the permanent staff who normally maintain the
area. Consider, for example, what happens when
a massive forest fire breaks out in a national forest
or when a blizzard threatens the lives of several
scattered groups of trampers in a national park. In
these cases the environmental managers may need
to call on the services of a number of specialists
who can provide crucial assistance in connection
with specialised rescue operations and medical
assistance. In today’s economic and political
climate, it is more likely that these specialist
service providers are private operators who can be
contracted by the government to respond to
emergencies in critical situations, rather than
people under the permanent employ of the
government.

Environmental information systems (EIS) take on
the ambitious task of providing decision and
management support for operations in the context
of large, complicated parts of the natural
environment. To fulfill this task they require
access to as much information as possible
concerning how the environmental area is
modelled and what operational capabilities are

available for application in real time. With the
increasing use of wireless communications, EIS
components may come in and out of range as
environmental professionals move around in the
field. Thus, although many environmental
information systems are closed systems (involving
a fixed number of participants and data sources),
there are situations where an open EIS is
appropriate. For such an open EIS, dynamic
distributed information system technology is
needed so that the systems can adjust to changing
conditions and provide satisfactory responses in a
timely manner. In this paper, we describe some
key features of such technology based on an open
system of interacting software agents [Jennings,
1999]. A key component of this technology is both
the specification and exchange of interaction
protocols [Greaves and Bradshaw, 1999] for agents
to use in a dynamic environment. This agent-
based technology is described in the context of an
example scenario that illustrates its operational
aspects.

2. AGENT-BASED SYSTEMS

2.1 Software agents

Agent-based software engineering is based on the
notions that (a) large interactive software systems
should be built using modelling approaches that
take advantage of abstraction, decomposition, and
organisation [Booch, 1994] and (b) a collection of

interacting agents offers the most intuitive, robust,
and scalable modelling approach with those
characteristics. With agent-based software a
loosely-coupled collection of agents can cooperate
to achieve a common goal. Each individual agent
is presumed to be a specialist for a particular task,
and the expectation is that, just as is in the sphere
of human engineering, complex projects can be
undertaken by a collection of agents, no one of
which has the capability of performing all the
required tasks of the project. In addition, if the
system has an open agent architecture, then
individual agents can be replaced by improved
models, thereby enabling the system to improve
gradually, grow in scope, and generally adapt to
changing circumstances. (Note that the agent
system characteristic of being loosely coupled and
open means that the communication is
asynchronous: unlike a function or method call,
there is no ‘return’ information available, and
there is not even a guarantee of message delivery.)
This model is particularly apt for the type of
dynamic EIS under discussion, since many of the
system components represent actual, physical
human agents that will be brought to bear to
handle an environmental problem.

For software agent systems to operate, the agents
must be able to exchange information in the form
of messages, and the agents must have a common
understanding of the possible message types and
the terms (and possible relationships among the
terms) that are used in connection with message
‘content’. This shared understanding of the ‘world’
is referred to as an ontology, and considerable
agent-based software engineering research has
been devoted to the development of techniques for
representing ontologies and for reasoning about
messages that have been expressed in terms of
them [Gruber, 1993]. Understanding messages
that refer to ontologies can require a considerable
amount of reasoning, and consequently agents with
such a capability must be highly ‘intelligent’ (i.e.
equipped with advanced artificial intelligence
technology).

2.2 Interaction protocols

However, there is a straightforward way of
reducing the search space of possible responses to
an agent message, and it is one that is also used by
humans. This approach uses what are called
“conversation policies”, or sometimes “interaction
protocols”. Consider what happens when someone
enters a restaurant and sits down at a table. Such
a person doesn’t have to worry about all the

possible statements that might be made about food.
Instead, he or she expects to be given a menu and
to place an order. Later the food will be brought,
and only afterwards (for this particular restaurant,
anyway) will he or she be expected to pay the bill.
This is a “restaurant interaction protocol”, and the
existence of such a protocol greatly reduces the
search space of possible responses required, which
is limited to the responses appropriate to the
particular point that one has reached in the
protocol. The customer, the waiter, the cook, and
the cashier all know this protocol and keep track of
where they are in terms of it. Note that the waiter
and the cashier may be holding many simultaneous
conversations with various customers, all using the
same protocol.

With a software agent system, the same approach
is used in connection with interaction protocols. If
two agents share the same protocol, they can
engage in a conversation and keep track of where
they are in terms of the protocol.

For an agent-based EIS, information repositories
or organisations that provide some service are
interfaced to the system by agents. The agents
representing these components will interact based
on interaction protocols that they share. If the
system is to be open, it must be possible for new
agents to appear on the scene (a new service-
provider, for example) and interact with the
system. This means that newly appearing agents
must be able to acquire the appropriate interaction
protocol information. In the next section we
describe how we achieve this.

3. INTERACTION PROTOCOLS USING
COLOURED PETRI NETS

When an agent is involved in a conversation that
uses an interaction protocol, it maintains a
representation of the protocol that keeps track of
the current state of the conversation. After a
message is received or sent, it updates the state of
the conversation in this representation. The
Foundation for Intelligent Physical Agents (FIPA)
[FIPA, 2001] is an organisation devoted to the
development of international standards for the
interoperation of software agents. FIPA has
developed some standard and general interaction
protocols that can be adopted by agents, and these
have been expressed as state machines [Greaves
and Bradshaw, 1999]. Other representations for
interaction protocols have been enhanced Dooley
graphs [Parunak, 1996] and extended UML [Odell,
et al., 2000]. We use coloured Petri nets (CPNs)

Out

Get

In

Put

Receive
request
result

Result
Fail Done

Start

Send
request

Request
sent

Not-understood
Rec. request

answer

answer

Refuse

Agree
Process
answer

Figure 1. Request interaction protocol for the
Initiator role.

Out

Get

In

Put

Fulfill
request

Result

Fail
Done

Send
not

understood

Not-understood

Receive
request

Request

Refuse

Agree
Process
request

Send
fail

Send
done

Send
result

Send
agree

Send
refuse

Figure 2. Request interaction protocol for the
Participant role.

[Jensen, 1992, Cost et al., 2000], because their
formal properties facilitate the modelling of
concurrent conversations in an integrated fashion.
Coloured Petri nets are similar to ordinary Petri
nets in that they comprise a structure of places,
transitions, and arcs connecting those two types of
elements. Additionally, coloured Petri nets have
structured tokens and a set of net inscriptions (arc
expressions, guards, and place initialisations)
which can be evaluated to yield new net markings
when transitions are fired. Moreover, coloured
Petri nets facilitate the modelling of individual
agent conversations within a larger behavioural
modelling context associated with a particular
problem domain.

In order to illustrate the Petri net modelling of
agent conversations, we first consider one of the
fundamental FIPA message types, the request
message. When an agent sends a request to
another agent, it expects a response message a little
later, and so we can consider this message
sequence a request interaction protocol that
involves the relatively brief conversation.

Whenever there is a conversation, there are always
at least two roles: that of the initiator of the
conversation and the roles of the other participants
in the conversation. In most cases, though, there
are just two roles, the initiator and the single
participant who receives the first message. In
Figure 1, we show the Petri net representation of
the initiator of the FIPA request interaction.
Circles represent Petri net places, and boxes
represent transitions. For diagrammatic simplicity,
we omit the inscriptions from the diagram, but we
will describe some of them below.

Figure 2 depicts the Petri net scheme for the agent
that plays the Participant (FIPA uses this term)

role, who receives the initial request message. In
each model, there is a Get transition that has code
associated with it (a net inscription) that obtains
appropriate information from the agent’s message
receiving module (external to the Petri net model)
and places it in the In place. The In place here is
a fusion node: the very same In place may exist on
other Petri nets that also represent conversations in
which the agent may be engaged. The transitions
connected to the In place have guards on them
such that the transitions are only enabled by a
token on the In place with the appropriate
qualification.

The Initiator of the request interaction will have a
token placed in the Start place (Figure 1), and this
will trigger the Send request transition to place a
token in the Out place. This will, in turn, enable
the Put transition, which has code associated with
it that interacts with the agent’s message sending
module (external to the Petri net).

The Participant role-playing agent will get the
incoming message (when the Get transition fires)
and place it in the In place. The Receive request
transition will, if it doesn’t understand the
message, place a token in the Not-understood
place. If it does understand the message, it will
place a token in the request place. The FIPA
specifications often include the possibility of a
“not-understood” response, but we regard such
messages as similar to software exceptions and
place them on another, parallel coloured Petri net
(not shown) that deals with exceptional conditions
and is connected to the primary net by a ‘fusion’
place (a place common to two nets). For this
reason we show the Not-understood places in

Initiator Ranger

Service
agents

Ranger
+ proxy

Ask ranger
for help

Carry out
proxy action

Result

Report to
initiator

Figure 3. Top-level process model. Recruitment
of service providers.

Figures 1 and 2, and the associated transition for
sending a “not-understood” response by dashed
lines, which indicate that these nodes are actually
located on parallel nets that deal with exceptions.

If the message is understood by the Participant, it
either agrees or refuses the request and sends the
appropriate response back to the Initiator (Figure
2). If the Initiator gets an agree message back
from the Participant and the Process answer
transition is fired, a token with the appropriate
information is put in the Agree place. Meanwhile
the Participant attempts to fulfill the original
request and ultimately a token is placed in the
Done, Result, or Fail place depending upon the
circumstances of the request action taking place at
the Participant agent (external to the Petri net).
The appropriate transition will then ultimately be
fired, and the response will be sent back to the
Initiator.

When the Initiator gets the response, the Receive
request result transition will be enabled if the
incoming message contains information that
matches with the token that was already stored in
the Agree place. Note that the Initiator could be
involved in several concurrent request interaction
conversations, and the placement of specific tokens
in the Agree place enables this agent to keep track
of which responses correspond to which
conversations. This is like a waiter at a restaurant
who might send several ‘requests’ to the kitchen
and needs to keep track of the responses so that
they can be associated with the right customers.

Thus an interaction protocol has a specific Petri net
associated with each role in the conversation, and
the participating agents can use these Petri nets to
keep track of what stage they are in the
conversation.

4. INTERACTION PROTOCOLS FOR EIS
PROBLEM SOLVERS

So with this technology available, let us see how it
can be applied to an open, dynamic EIS involving
a network of environmental problem-solving
agents. As an example, we consider the following
scenario in which a national park is managed by a
collection of park rangers. The park has many
tracks available for trampers, and tramping groups
have guides equipped with personal digital
assistants (PDAs) which can be used to contact
park officers when necessary, such as in an
emergency situation. Although park rangers can
handle routine events, themselves, there can be

cases when they need outside assistance. If
trampers are trapped in a remote location, they
may need to be rescued quickly. This can require
specialist medical personnel, firefighting
professionals and equipment, professional
mountain climbers and speleologists, and special
types of transport (four-wheel-drive trucks,
airplanes, helicopters, boats, etc.).

These specialist groups can be authorised to
provide their services in an emergency and be
compensated accordingly. As new people with
special skills move into the national park region,
they can be added to the network of potentially
participating service agents that can be called upon
to provide assistance in emergency situations. For
open agent-based EISs, new rescue service
providers can plug into the system as long as they
are provided with the appropriate interaction
protocols that are used by the given EIS. In
section 5, we explain how this is accomplished.

In this scenario we assume that a skilled tramping
guide or park ranger has assessed the situation and
has an idea of the kind of assistance that is needed.
This person has a personal software agent that we
call the “Initiator”. The Initiator communicates
with the “Ranger” EIS agent in order to find out
what resources are available and see what can be
organised. A simplified, top-level view of this
activity can be shown for illustrative purposes in
terms of the Petri net shown in Figure 3.

This over-simplifies the situation, because it shows
a synchronous interaction between the Initiator and
the Ranger. As a result of this interaction, the
Ranger has the “proxy” information from the
Initiator that is to be transmitted to the Service
agents. In the real situation, however, a more

Out

Get

In

Put

Receive
sub-protocol

result

Sub-prot
result

Sub-prot
fail

Sub-prot
done

Start

Send
proxy to
recruiter

Proxy sent

Not-understood Rec. proxy
acceptance

Proxy
answer

Refuse

Agree

Fail
(match

not found)

Recruiter
failed

Recruiter
done

Receive
recruiter

result

Receive
recruit
failure

Figure 4. Interaction protocol for the Initiator
role.

Out

Get

In

Put

Send
n-u

Not-understood
Rec. proxy

Proxy
msg.

Refuse

Agree

Fail

OK

Receive
sub-protocol
acceptance

Send
refuse

Proc.
agree

No
match

Send fail

Match
found

Send proxy
to target(s)

Send
done
proxy

Send fail

Start
sub-protocol

proxy
sent

Start sub

Figure 5. Recruitment interaction protocol for the
recruiter role.

Out

Get

In

Put

Get
sub-protocol

result

Result

Fail

Done

Receive
sub-protocol

proposal

Refuse

Agree

Start
sub-protocol

Send
refuse to
recruiter

Send
agree to
recruiter

Agree
sent Send

done

Send fail

Send
result

Start sub

Sub-protocol
result

Figure 6. Recruitment interaction protocol for the
target agents role.

complicated interaction can take place. The proxy
information from the Initiator can actually involve
a complex and asynchronous exchange of messages
between the Ranger and the Service agents. That
is, the Initiator asks the Ranger to carry out some
sub-protocol interaction with the Service agents
and then have the results from this sub-protocol
sent back to the Initiator and possibly another
party, which, following FIPA, we call the
Destinator. This corresponds to the FIPA
Recruiting Interaction Protocol Specification
[FIPA, 2001].

Thus there are four basic roles associated with this
more complicated interaction protocol: Initiator,
Ranger (the recruiter), Service-agent (the target
agents of the original communication from the
Initiator), and Destinator. It is here, in the context
of such more complicated conversations, that
interaction protocol modelling and monitoring can
be essential for agent-based EIS.

Figure 4 shows the coloured Petri net model for the
Initiator role in the interaction protocol. Again,
the conversation is begun when a token is placed in
the Start place. The initial message sent contains
the proxy message that specifies the additional
interaction that is to take place between the ranger
and some service agents.

Figures 5 shows the interaction protocol role model
for the Ranger (recruiter), and Figure 6 shows the
interaction protocol role model for the target
agents that execute the sub-protocol. The places
identified with thick borders in Figures 5 and 6
(e.g. Start sub and Sub-protocol result) represent
fusion nodes that are connected to other, parallel
Petri nets (not shown), which carry out the sub-
protocol interaction. One possible example of a
sub-protocol interaction is the Request protocol
shown in Figures 1 and 2.

When the recruiter receives the proxy message
from the Initiator (Figure 5), it either agrees or
refuses and sends an answer back to the Initiator.
If it agrees to the action, it checks if it knows of
any target agents that can carry out the requested
proxy action. If there are none (‘no match’), it
sends a failure message back to the Initiator. If,
however, it does find a match, it sends the
requested proxy action to the target agents(s). A
target agent may agree or refuse to carry out the
proxy action, and it reports this response to the
Recruiter (Figure 6). If the target agent agrees,
then a sub-protocol interaction is started between
the Recruiter and the target agent. The steps
associated with this sub-protocol interaction take
place on another, parallel Petri net that is not
shown here. When this proxy interaction is
completed (it could result in failure), the results are
reported back to the Initiator and/or possibly an
additional Destinator (not shown).

5. IMPLEMENTATION

The agent-based system that we have developed is
based on our Opal agent platform [Purvis et al.,
2002], and uses JFern [Nowostawski, 2002], a
Java-based coloured Petri net simulator. When
new agents appear as service providers and are to
be incorporated into the network of available
service providing agents, they are sent a Propose
message (one of the FIPA-specified interactions)
with a message content containing an XML-
encoding of the interaction protocol that is used by
the EIS network. The target agent parses the
XML-encoded interaction protocol, and if it
accepts the proposed mechanism for interaction,
sends the Accept message back to the EIS.

The Opal system and the interaction protocol
modules are implemented in Java and are being
ported to the J2ME (http://java.sun.com/j2me/)
environment for use on wireless platforms that can
be applied in the EIS domain.

6. CONCLUSIONS

We have developed an approach for managing
non-trivial interactions among a network of
problem-solving service providers and have
demonstrated how it can be used in connection
with open, distributed environmental information
systems. Our approach is based on a network of
interacting agents that follow the FIPA
specifications, but we have introduced and
implemented an interaction protocol mechanism
based on coloured Petri nets that may include more
complex interaction protocols than what FIPA has
so far specified. When more complicated, multi-
layered and concurrent conversations take place
among groups of agents, the coloured Petri net
approach that we use appears to offer advantages
over the state-machine techniques that have been
commonly used up until now

For the kinds of systems we have described, it is
important not only to acquire information, but to
specify actions to be taken, and we believe this is of
fundamental importance for the future of
environmental management systems.

7. ACKNOWLEDGEMENTS

The authors wish to thank Mariusz Nowostawski,
the author of JFern and a principal developer of the
OPAL system, for technical assistance.

8. REFERENCES

Booch, G., Object Oriented Analysis and Design
with Applications. Addison Wesley, 1994.

Cost, S., Chen, Y., Finin, T., Labrou, Y., and
Peng, Y., “Using colored etri nets for
conversation modeling, Issues in Agent
Communication, Lecture Notes in AI,
Springer-Verlag, Berlin (2000).

FIPA. Foundation For Intelligent Physical Agents
(FIPA). FIPA 2001 specifications,
http://www.fipa.org/specifications/, 2001.

Greaves, M, and Bradshaw, J. (eds.), Specifying
and Implementing Conversation Policies,
Autonomous Agents '99 Workshop, Seattle,
WA, (May 1999).

Gruber, , T. R., “A Translation Approach to
Por table On tologies” , Knowledge
Acquisition, (1993) 5(2):199-220.

Jennings, N. R., “Agent-oriented software
engineering”, Proceedings of the 12th
International Conference on Industrial and
Engineering Applications of AI, (1999).

 Jensen, K., Coloured Petri Nets – Basic Concepts,
Analysis Methods and Practical Use,
Springer-Verlag, Berlin, 1992.

Nowostawski, M., JFern, version 1.2.1,
http://sourceforge.net/project/showfiles.php?gro
up_id=16338, 2002.

Nowostawski, M., Purvis, M., and Cranefield, S.,
“A Layered Approach for Modelling Agent
Conversations”, Proceedings of the 2nd
International Workshop on Infrastructure for
Agents, MAS, and Scalable, MAS, 5th

International Conference on Autonomous
Agents (2001) 163-170.

Odell, J, Parunak, H. V. D., Bauer, B.,
“Extending UML for agents”, Proceedings of
the Agent-Oriented Information Systems
Workshop at the 17th National conference on
Artificial Intelligence, pp. 3-17, 2000.

Parunak. H. V. D., “Visualizing agent
conversations: Using Enhanced Dooley
graphs for agent design and analysis”,
Proceedings of the Second International
conference on Multi-Agent Systems
ICMAS'96 (1996).

Purvis, M., Cranefield, S., Nowostawski, M., and
Carter, D., "Opal: A Multi-Level
Infrastructure for Agent-Oriented Software
Development", Information Science
Discussion Paper Series, No. 2002/01, ISSN
1172-6024, University of Otago, Dunedin,
N e w Z e a l a n d (2 0 0 2) ,
http://www.otago.ac.nz/informationscience/
publctns/complete/papers/dp2002-01.pdf.gz

