
1

Multi-Agent System Interaction Protocols 

in a Dynamically Changing Environment

Martin Purvis
Information Science Department

University of Otago
Dunedin, New Zealand

+64-3-479-8318
mpurvis@infoscience.otago.ac.nz

Stephen Cranefield
Information Science Department

University of Otago
Dunedin, New Zealand

+64-3-479-8083
scranefield@infoscience.otago.ac.nz

Mariusz Nowostawski
Information Science Department

University of Otago
Dunedin, New Zealand

+64-3-479-8317
mnowostawski@infoscience.otago.ac.nz

Maryam Purvis
Information Science Department

University of Otago
Dunedin, New Zealand

+64-3-479-8423
tehrany@infoscience.otago.ac.nz

ABSTRACT
An area where multi-agent systems can be put to effective
use is for the case of an open collection of autonomous
problem solvers in a dynamically changing environment.
One example of such a situation is that of environmental
management and emergency response, which can require the
joint cooperation of a distributed set of components, each
one of which may be specialised for a specific task or
problem domain.  The various stakeholders in the process
can all be represented and interfaced by software agents
which collaborate with each other toward achieving a
particular goal.  For such situations new agents that arrive on
the scene must be apprised of the group interaction protocols
so that they can cooperate effectively with the existing
agents.  In this paper we show how this can be done by
using coloured Petri net representations for each role in an
interaction protocol and passing these nets dynamically to
new agents that wish to participate in a group interaction.
We argue that multi-agent systems are particularly suited for
such dynamically changing environments, but their
effectiveness depends on the their ability to use adaptive
interaction protocols.  

Keywords
Multi-agent systems, agent conversations, adaptive systems.

1. INTRODUCTION
There is a widely-held view that multi-agent systems

provide a robust and scalable approach for the solution of
complex problems [6].  Each individual agent is presumed to
be a specialist for a particular task, and the expectation is
that, just as in the sphere of human engineering, complex
projects can be undertaken by a collection of agents, no one

of which has the capability of performing all the required
tasks for the project.  In addition, if the system has an open
agent architecture, then individual agents can be replaced by
improved models, thereby enabling the system to improve
gradually, grow in scope, and generally adapt to changing
circumstances.  For agent systems to operate effectively,
they must exchange information in the form of messages,
and the agents must have a common understanding of the
possible message types and the terms (and possible
relationships among the terms) that are used in the
messages.  This shared information can be represented by
an ontology, and a considerable amount of research has
been devoted to the development of techniques for
representing ontologies and for reasoning about messages
that have been expressed in terms of them [5].  However,
understanding messages that refer to ontologies can require
a considerable amount of reasoning, and this may place a
computational burden on agents that could limit their overall
responsiveness.  Thus although the agents are individual
specialists concerning their own problem domains, their
need to cooperate with other agents in a larger contextual
(i.e. ontological) environment can present performance
problems in areas where agents are operating in real-time,
real-world environments, such as environmental response
systems or electronic business.

Of course a straightforward way of reducing some of the
search space of possible responses to agent messages is by
using conversation policies, or interaction protocols [4].  An
interaction protocol specifies a limited range of responses
that are appropriate to specific message types when a
particular protocol is in operation.  For example, when a
person enters a restaurant, he (or she) doesn’t have to worry
about all the possible statements that might be made about



2

Out

In

Receive
request
result

Result
Fail Done

Start

Send
request

Request
sent

Not-understood
Rec. request

answer

answer

Refuse

Agree
Process
answer 

Figure 1.  Request interaction protocol for the Initiator role.

food.  Instead, he expects to be given a menu and to place an
order.  Later the food will be brought, and only afterwards
(for this particular restaurant, anyway) will he be expected to
pay the bill.  This may be called a “restaurant interaction
protocol”, and the existence of such a protocol greatly
reduces the search space of possible responses required,
which is limited to the responses appropriate to the
particular point that one has reached in the protocol.  The
customer, the waiter, the cook, and the cashier all know this
protocol and keep track of where they are in terms of it.
(Note that the waiter and the cashier may be holding many
simultaneous conversations with various customers, all
using the same protocol.)

Everything should work reasonably smoothly if all the
agents already know the interaction protocol prior to
engaging in an interaction.  But what happens in a new or
changing environment, where the protocol is either unknown
or may need to be changed to meet changing conditions?
For example, when a traveler goes to a foreign country and
enters an eating establishment, he may not be familiar with
the specifics of the restaurant protocol for that locale.  In that
case he may need to revert to his traveler’s dictionary (his
ontological reference) and attempt to engage in some sort of
complex negotiation in order to carry out even a simple
transaction.  This will not result in the kind of adaptive and
responsive agent system that is needed for changing
environments.  

Thus for agent systems to operate effectively in highly
dynamic environments, they need to have a mechanism for
exchanging new or altered interaction protocols on the fly.
In this paper we describe an approach to achieve this and
discuss how this approach can make agent systems suited to
certain types of problem areas. 

2. INTERACTION PROTOCOLS USING
COLOURED PETRI NETS

When an agent is involved in a conversation that uses an
interaction protocol, it maintains a representation of the
protocol that keeps track of the current state of the
conversation.  After a message is received or sent, it updates
the state of the conversation in this representation.  The
Foundation for Intelligent Physical Agents (FIPA) [3] has
developed some standard and general interaction  protocols
that can be adopted by agents, and these have been
expressed as state machines [4].  Other representations for
interaction protocols have been enhanced Dooley graphs [9]
and extended UML [10].  We use coloured Petri nets (CPNs)
[7,1], because their formal properties facilitate the modelling
of concurrent conversations in an integrated fashion.  We
believe Coloured Petri nets are a more compact and intuitive
representation for modelling concurrent processes than that

offered by traditional finite-state machine techniques.
Coloured Petri nets are similar to ordinary Petri nets in that
they comprise a structure of places, transitions, and arcs
connecting those two types of elements; but, in addition,
CPNs also have structured tokens and a set of net
inscriptions (arc expressions, guards, and place
initialisations) which can be evaluated to yield new net
markings when transitions are fired.  The availability of net
analysis tools means that it is possible to check the
designed protocols and role interactions for undesired loops
and deadlock conditions, and this can then help eliminate
human errors introduced in the design process.  Moreover,
coloured Petri nets facilitate the modelling of individual
agent conversations within a larger behavioural modelling
context associated with a particular problem domain.  

2.1 The FIPA request Interaction Protocol
In order to illustrate the Petri net modelling of agent
conversations, we first consider one of the fundamental
FIPA message types, the request message.  When an agent
sends a request to another agent, it expects a response
message a little later, and so we can consider this message
sequence a request interaction protocol that involves the
relatively brief conversation.  

We model all interaction protocols in terms of the roles in
the interaction: for each role there is a separate Petri net
(which differs somewhat from our earlier approach [9]).
The collection of individual Petri nets associated with all the
interaction protocol roles represents the entire interaction
protocol.  For every conversation, there are always at least
two roles: that of the initiator of the conversation and the
roles of the other participants in the conversation.  In most
cases, though, there are only two roles, the initiator and the
single participant who receives the first message.  In Figure
1, we show the Petri net representation of the initiator of the
FIPA request interaction.  Circles represent Petri net places,
and boxes represent transitions.  For diagrammatic
simplicity, we omit the inscriptions from the diagram, but
we will describe some of them below.



3

Out

In

Fulfill
request

Result

Fail

Done

Send
not

understood

Not-understood

Receive
request

Request

Refuse

Agree

Process
request

Send
fail

Send
done

Send
result

Send
agree

Send
refuse

Agree
sent 

 

Figure 2.  Request interaction protocol for the Participant role.

The Start place will have a token placed there by the agent
at the outset of the interaction, and it is highlighted with a
thicker line than the other places.  A token in this place
initiates the interaction. The In place (in this and the
following Petri net diagrams) will have tokens placed there
when the agent receives messages from other agents.  The In
place here is a fusion node (a place common to two or more
nets): the very same In place may exist on other Petri nets
that also represent conversations in which the agent may be
engaged.  Every time the agent receives a message from
another agent, a token with information associated with the
message is placed in the In place that is shared by several
Petri nets.  The transitions connected to the In place have
guards on them such that the transitions are only enabled by
a token on the In place with the appropriate qualification.

Figure 2 depicts the Petri net scheme for the agent that plays
the Participant (FIPA uses this term) role, who receives the
initial request message.  

The Initiator of the request interaction will have a token
placed in the Start place (Figure 1), and this will trigger the
Send request transition to place a token in the Out place.
Thus we are assuming that there is some communication
transport machinery that causes tokens to disappear from a
Petri net’s Out place and (usually) a corresponding token to
appear on the In place of another agent.  We do not assume,
however, that the transfer is instantaneous, or even
guaranteed to occur.  It is possible for agents messages to be
lost in transit, and thus it is possible for a token to disappear
from one role’s Out place without a corresponding token
appearing at another agent’s In place. 

The Participant role-playing agent will get incoming
messages and place them in the In place.  The Receive

request transition will, if it doesn’t understand the message,
place a token in the Not-understood place.  If it does
understand the message, it will place a token in the request
place.  Note that the FIPA specifications often include the
possibility of a “not-understood” response, but we regard
such messages as similar to software exceptions and place
them on another, parallel coloured Petri net (not shown) that
deals with exceptional conditions and is connected to the
primary net by a ‘fusion’ place.  For this reason we show
the Not-understood places in Figures 1 and 2, and the
associated transition for sending a “not-understood”
response by dashed lines, which indicate that these nodes
are actually located on parallel nets that deal with
exceptions.  (We discuss parallel Petri nets in connection
with policies in Section 6, below.) 

If the original request message is understood by the
Participant, it either agrees to or refuses the request and
sends the appropriate response back to the Initiator (Figure
2).  If the Initiator gets an agree message back from the
Participant and subsequently the enabled Process answer
transition is fired, a token with the appropriate information
is put in the Agree place. Meanwhile the Participant
attempts to fulfill the original request.  In terms of the
coloured Petri net, this activity is carried out as part of the
coloured Petri net transition’s action code (executable code
that can be activated when a transition is fired) associated
with the Fulfill request transition.  Thus the Fulfill request
transition is connected with the agent’s actual carrying out
of the request.  Upon completion of the action, a token is
placed in the Done, Result, or Fail place, depending upon
the circumstances of the request action taking place at the
Participant agent.  The appropriate transition will then be
enabled and ultimately fired, and the response will be sent
back to the Initiator. 

When the Initiator gets the response back from the
Participant, the Receive request result transition will be
enabled if the incoming message contains information that
matches with the token that was already stored in the Agree
place.  Note that the Initiator could be involved in several
concurrent request interaction conversations, and the
placement of specific tokens in the Agree place enables this
agent to keep track of which responses correspond to which
conversations.  This is how the coloured Petri net
representation assists the agent in managing multiple,
concurrent interactions involving the same protocol and can
be compared to the manner in which a restaurant waiter
keeps track of several ‘orders sent to the kitchen so that
resulting food preparations can be associated with the right
customers.

Thus an interaction protocol has a specific Petri net
associated with each role in the conversation, and the



4

Initiator Ranger

Service
agents

Ranger
+ proxy

Ask ranger
for help

Carry out
proxy action

Result

Report to
initiator

Figure 3.  Top-level process model.  Recruitment of
service providers.

participating agents can use these Petri nets to keep track of
what stage they are in the conversation.  The Petri nets
representing all the roles of an interaction protocol can be
encoded in XML and sent as the message content of a FIPA
inform or propose message.  This means that a new agent
that appears on the scene can be sent the interaction protocol
and can “load” the appropriate Petri net role into its
conversation module and engage on-the-fly in a
conversation using the new interaction protocol.

4. INTERACTION PROTOCOLS FOR
ENVIRONMENTAL EMERGENCY
SYSTEMS

Let us now consider a somewhat more involved situation,
the management of extended environmental areas when
unforseen events take place.  This can require rapid
responses on the part of many people or services with
specialised skills.  In such circumstances the resources and
skills required to respond to the emergency may go well
beyond the capabilities of the permanent staff who normally
maintain the area.  For example, when a massive forest fire
breaks out in a national forest or when a blizzard threatens
the lives of several scattered groups of trampers in a national
park, the environmental managers may need to call on the
services of a number of specialists who can provide crucial
assistance in connection with specialised rescue operations
and medical assistance.  In today’s economic and political
climate, it is more likely that these specialist service
providers are private operators who can be contracted by the
government to respond to emergencies in critical situations,
rather than people under the permanent employ of the
government.  Environmental management systems attempt
to manage these dynamic situations.With the increasing use
of wireless communications, system components may come
in and out of range as environmental professionals move
around in the field. 

We examine a scenario in which a national park is managed
by a collection of park rangers.  The park has many tracks
available for trampers, and tramping groups have guides
equipped with personal digital assistants which can be used
to contact park officers when necessary, such as in an
emergency situation.  Although park rangers can handle
routine events themselves, there can be cases when they
need outside assistance.  If trampers are trapped in a remote
location, they may need to be rescued quickly.  This can
require specialist medical personnel, firefighting
professionals and equipment, professional mountain
climbers and speleologists, and special types of transport
(four-wheel-drive trucks, airplanes, helicopters, boats, etc.).  

These specialist groups can be authorised to provide their
services in an emergency and be compensated accordingly.

As new people with special skills move into the national
park region, they can be added to the network of potentially
participating service agents that can be called upon to
provide assistance in emergency situations.  For open agent-
based environmental management systems, new rescue
service providers can plug into the system, as long as they
are provided with the appropriate interaction protocols.  

In this scenario we assume that a skilled tramping guide or
park officer has assessed the situation and has an idea of the
kind of assistance that is needed.  This person has a personal
software agent that we call the “Initiator”.  The Initiator
communicates with the “Ranger” agent, who is a service
recruiter, in order to find out what resources are available
and see what can be organised.  A simplified, top-level view
of this activity can be shown for illustrative purposes in
terms of the Petri net shown in Figure 3.  Note that this Petri
net does not represent an interaction protocol role, but,
instead, represents a simplified view of the overall
interaction.  Here the Initiator sends a “proxied” message to
the Ranger: within the content of the message to the Ranger
is another message that is to be sent other service agents
who will attend to the problem.  The Ranger, here, is a
recruiter of specialised agents who can deal with the
particular emergency at hand.  Thus the Initiator can send a
message that (a) contains a request that the Ranger recruit
service agents and (b) contains the interaction protocol to be
used to interact with the target service agents.

Figure 3 over-simplifies the situation, because it shows a
synchronous interaction between the Initiator and the
Ranger, which, as we have mentioned above, it not a true
representation of asynchronous messaging.  As a result of
this interaction, the Ranger has received the proxied



5

Out

In
Receive

sub-protocol
result

Sub-prot
result

Sub-prot
fail

Sub-prot
done

Start

Send
proxy to
recruiter

Proxy sent

Not-understood Rec. proxy
acceptance

Refuse

Agree

Fail
(match

not found)

Recruiter
failed

Recruiter
done

Receive
recruiter

result

Receive
recruit
failure

 

Figure 4.  Recruiting interaction protocol for the Initiator role.

Out

In

Send
n-u

Not-understood
Rec. proxy

Proxy
msg.

Refuse

Agree

Fail

OK

Receive
sub-protocol
acceptance

Send
refuse

Proc.
agree

No
match

Send fail

Match
found

Send proxy
to target(s) Send

done
proxy

Send fail

Start
sub-protocol

proxy
sent

Start sub

Proc.
msg.

 

Figure 5.  Recruiting interaction protocol for the Recruiter role.

Out

In

Get
sub-protocol

result

Result

Fail

Done

Receive
sub-protocol

proposal

Refuse

Agree

Start
sub-protocol

Send
refuse to
recruiter

Send
agree to
recruiter

Agree
sent Send

done

Send fail

Send
result

Start sub

Sub-protocol
result

Figure 6.  Recruiting interaction protocol for the Target agents
role.

information from the Initiator that is to be transmitted to the
Service agents.  The proxied information from the Initiator
can actually involve a complex and asynchronous exchange
of messages between the Ranger and the Service agents.
That is, the Initiator asks the Ranger to carry out some sub-
protocol interaction with the Service agents and then have
the results from this sub-protocol sent back to the Initiator
and possibly other parties, which, following FIPA, are
designated as Destinators.  This interaction corresponds to
the FIPA Recruiting Interaction Protocol Specification [3].  

There are four basic roles associated with this more
complicated interaction protocol: Initiator, Ranger (the
recruiter), Service-agent (the target agents of the original
communication from the Initiator), and Destinator.  It is
here, in the context of such more complicated conversations,
that dynamic interaction protocol modelling and exchange
can help demonstrate how agent-based systems can respond
effectively to changing conditions.  

Figure 4 shows the coloured Petri net model for the Initiator
role in the interaction protocol.  Again, the conversation is
begun when a token is placed in the Start place.  The initial
message sent contains the proxy message that specifies the
additional interaction that is to take place between the ranger
and some service agents.  

Figures 5 shows the interaction protocol role model for the
Ranger (recruiter), and Figure 6 shows the interaction
protocol role model for the target agents that execute the
sub-protocol.  The places identified with thick borders in
Figures 5 and 6 (e.g. Start sub and Sub-protocol result)
represent fusion nodes that are connected to other, parallel
Petri nets (not shown), which carry out the sub-protocol
interaction.  One possible example of a sub-protocol
interaction is the Request protocol shown in Figures 1 and 2.

When the recruiter receives the proxy message from the
Initiator (Figure 5), it either agrees or refuses to carry it out
and sends an answer back to the Initiator.  If it agrees to the
action, it checks if it knows of any target agents that can
carry out the requested proxy action.  If there are none (‘no
match’), it sends a failure message back to the Initiator.  If,
however, it does find a match, it sends the requested proxy
action to the target agent(s).  A target agent may agree or
refuse to carry out the proxy action, and it reports this
response to the Recruiter (Figure 6).  If the target agent
agrees, then a sub-protocol interaction is started between the
Recruiter and the target agent.  The steps associated with
this sub-protocol interaction take place on another, parallel
Petri net that is not shown here.  When this proxy
interaction is completed (it could result in failure), the
results are reported back to the Initiator and/or possibly
additional Destinators (Figure 7).         



6

In

Sub-protocol
result

Result FailDone

Receive
recruiter

msg

Done(P)

Figure 7.  Recruiting interaction protocol for the Destinator role.

In

Out

Receive
corner

announcement

Corner
info.

Broadcast
corner

info

Recieve
trade bid

Bid

Broadcast
trade
bid

Start

Cards
sent

Send
start

signal

Send
cards

Figure 8.  The Pit Game interaction protocol for the Dealer role.

In

Receive corner
announce

(end)

Rec. bid
from dealer

Rec.
cardsRec.

start
signal

Rec.
bid

accpt. Rec. traded
cards

Accpt.

Cards
dealt

Start
play

Send cards
to player

Out

Cards
Corner?

Corner

Bid
rec'd

Accept
bid

Cards sent
+ bid info.

Cards
rec'd

Make
bid

Cards
left

Cards
offered

 Bid
timeout

Restore
hand

Send
timeout

Bid accepted
+ cards to send

Discarded
rec'd. bid

Process
rec'd
cards

Cards
in

Bid accpt.
timeout

Discarded
rec'd. cards

 

 

Figure 9.  The Pit Game interaction protocol for the Player role.

5. E-BUSINESS APPLICATIONS
We show another example of agent interaction in the area of
electronic commerce.  For illustrative purposes, we look at
the Pit Game [11], which is a card game that simulates
commodity trading and exhibits some of its essential
characteristics.  In this game a dealer distributes nine cards
to each player (three to seven players may play).  There are
exactly nine cards of each of the commodity types, corn,
barley, wheat, rice, etc.  The card deck is prepared so that
the number of commodity types matches the number of
players for the given game.  When play begins, the players
independently and asynchronously exchange cards with each
other, attempting to “corner” the market by getting all nine
cards of one type.  They can only exchange cards that
belong to the same commodity type.  Thus if a player has six
barley cards, two wheat cards and one rice card, he will
typically initially attempt to trade away his two wheat cards,
hoping to acquire one or two barley cards.  Trading is
carried out by a player annoucing, for example, that he has,
say, two cards to trade.  If another player also wishes to
trade two cards, the two players may make an exchange.
Whenever a player manages to get a “corner”, he announces
that fact to the dealer and the “hand” is finished (the
implementation shown here is for a single “hand”).

In our implementation of the game, the trading bids are sent
to the dealer, who, in turn, broadcasts the bids to all the
players.   Figure 8 show shows the interaction protocol for
the Dealer role.  The Dealer deals out the cards and then
sends the “start” signal to all the players (a broadcast
message).

Whenever a player (Figure 9) has a hand of cards, he always
checks to see if he has a “corner”.  If so, he announces this
to the Dealer, who, in turn, announces it to the rest of the
players, signalling the end of the hand.  After players have
received the start signal and assuming that they don’t have a
“corner”, they may choose to make a bid.  They do this by
sending their bid to the Dealer, which in turn broadcasts the
bid to all other players.  At this point, the player’s cards are
also separated into the “cards offered” and the “cards
remaining” places.  When a bid is received, the player may
choose to accept the bid.  He does this by checking the bid
against his own cards.  If the bid is accepted, a message is
sent to the player (not the Dealer) and a token is stored in a



7

Figure 10.  Petri net with conversation and policy levels.

place (“bid accepted + cards to send”) for future reference.
(If the player doesn’t get a corresponding acceptance of his
own bid before a given timeout period, then he gives up on
this potential deal and restores his offered cards back to the
“cards offered” place.)

A trade of cards can take place if two players have made
bids, and they have both accepted each other’s bid.   Thus if
player A has made a bid, has accepted player B’s bid, and
has received an acceptance message from B that his own bid
has been accepted, then A will send his cards to B (and
expect to receive a corresponding number of cards from B).
When a player receives a message from another player that
his bid has been accepted, it is stored in the “Accpt.” place. 
The “Send cards to player” transition checks (by means of a
guard) to make sure that the accepted bid matches
information in the token located in the “bid accepted + cards
to send” place.  If so, it sends the cards to the other player
and keeps a copy of the acceptance information in the
“Cards sent” place.  If the player receives a bid acceptance
that is not applicable (such as a second acceptance that has
come in after he has already decided to trade cards with
someone who has sent in an earlier acceptance), then the bid
acceptance is discarded.  When traded cards are received,
the “Process rec’d cards” transition checks to see that the
received cards are associated with the bid acceptance
information stored in the “Cards sent” place.  If the cards do
not match the bid acceptance, they are discarded.  If nothing
is received after some time, the “Send timeout” transition
guard is enabled, and the cards are returned to the “Card”
place.  (Though the cards have been sent, the player still has
a copy of what has been sent.)  The “Bid timeout” transition
is enabled if there have been no takers of a bid before a
certain timeout period has elapsed.  When this transition is
fired, the cards are returned to the hand, and the player may
chose to make another bid.

In real e-commerce trading situations new agent “players”
could be sent the appropriate interaction protocols, similar
but more elaborate to those shown in this example, and
immediately begin participating in the trading arena.

6. IMPLEMENTATION
The agent-based system that we have developed is based on
our Opal agent platform [13], and uses  JFern [8], a Java-
based coloured Petri net simulator.  When new agents
appear and are to be incorporated into the network of
available agents, they are sent a FIPA Propose message by
the group manager with a message content containing an
XML-encoding of the interaction protocol that is used.  The
target agent parses the XML-encoded interaction protocol,
and if it accepts the proposed mechanism for interaction,
sends the Accept message back to the group manager.  

We implement the agent conversation module as a layered
Petri net.  For each protocol, there is can be an additional
layer that we have not shown, called a policy layer.  This is
the layer which would, with other approaches, be left to the
agent application to coordinate and not be included
explicitly in the conversation modelling process.  However
we feel that it is more appropriate to treat it as closely
related to the conversation layer. 

Policies may be implemented simply by set of rules, or, in
more complex cases, they may have their own complex
protocols that exist and change state in parallel with the
immediate context of an ongoing conversation.  Under these
more complex circumstances, there might be a "policy-level
interaction protocol" (another protocol, but at the policy
level).  It is under these conditions that we can benefit from
having another modelling layer at the policy level, above
that of the ordinary conversational modelling layer.  The
two layers can be joined together by representing them both
as a coloured Petri Net.

In the Pit Game, for example, the possible rules for legal
bids and legal card exchanges by the players are described
by the basic interaction protocol.  But existing above that
level of abstraction is another level of discourse that can
take place during the game.  Suppose one of the players has
a question concerning the official rules of the game and
wants to have a ruling made by a referee.  Or perhaps one of
the players at some point wants to halt play so that he or she
can attend to some urgent matter.  These kinds of 'interrupts'
or 'exceptions' are common to many kinds of interactions
and can take place at almost any time.  We already
mentioned an example of this type of action in connection
with the “not-understood” message in the FIPA interaction
protocol specifications.  The discourse involved in these
interrupts are usually "off-topic" from the context of the



8

immediate conversation, and in fact they are often about the
conversation that is taking place (such as an accusation of
breaking the protocol rules associated with playing the
game).  Since they are likely to be "off-topic" and can occur
at any moment, it can be tedious to include these kinds of
conversational strands in the given (domain-specific)
conversation protocol.  To do so would clutter the visual
simplicity of the original conversation protocol and would
lessen the value in providing a easy-to-comprehend visual
modelling representation of the interaction.  On the other
hand, to leave out the possibility of representing such events
is to ignore the possibility of their occurrence and
consequently means that there is a failure to model the world
adequately so that its essentially contingent nature is
recognised.  Our solution is to model these kinds of
interactions that can guide, interrupt, or redirect existing
conversations by representing them as another, parallel
modelling layer above that of the existing conversation
layer.  This idea was suggested in [2] for specific types of
conversation, but we have generalised the notion and
incorporated it into a Petri Net representation.  Thus a
conversation is a combination of protocols being
instantiated and manipulated by a particular policy.

7. CONCLUSIONS

We have developed an approach for managing non-trivial
interactions in a multi-agent system and have demonstrated
how it can be used to make systems more responsive to
changing protocols in a dynamic environment.  In particular,
we believe that this facilitates the operation of multi-agent
systems in connection with applications where new service-
providing agents are likely to appear and need to be given
updated interaction protocols so that the group of agents can
adapt to a changing environment.

Our approach is based on a network of interacting agents
that follow the FIPA specifications, but we have introduced
and implemented an interaction protocol mechanism based
on coloured Petri nets that may include more complex
interaction protocols than what FIPA has so far specified.
When more complicated, multi-layered and concurrent
conversations take place among groups of agents, the
coloured Petri net approach that we use appears to offer
advantages over the state-machine techniques that have been
commonly used up until now.

8.   REFERENCES
[1] Cost, S., Chen, Y., Finin, T., Labrou, Y., and Peng, Y.,

“Using
colored Petri nets for conversation modeling, Issues in Agent
Communication, Lecture Notes in AI, Springer-Verlag, Berlin
(2000).

[2] R. Elio and A. Haddadi. On abstract task models and
conversation policies. In Working Notes of the Workshop on
Specifying and Implementing Conversation Policies, pages
89-98, May 1999.

[3] FIPA. Foundation For Intelligent Physical Agents (FIPA).
FIPA 2001 specifications,
http://www.fipa.org/specifications/, 2001.

[4] Greaves, M, and Bradshaw, J. (eds.), Specifying and
Implementing Conversation Policies, Autonomous Agents '99
Workshop, Seattle, WA, (May 1999).

[5] Gruber, , T. R., “A Translation Approach to Portable
Ontologies”, Knowledge Acquisition, (1993) 5(2):199-220.

[6] Jennings, N. R., “Agent-oriented software engineering”,
Proceedings of the 12th International Conference on
Industrial and Engineering Applications of AI, (1999).

[7] Jensen, K., Coloured Petri Nets – Basic Concepts, Analysis
Methods and Practical Use, Springer-Verlag, Berlin, 1992.

[8] Nowostawski, M., JFern, version 1.2.1,
http://sourceforge.net/project/showfiles.php?group_id=16338,
2002.

[9] Nowostawski, M., Purvis, M., and Cranefield,  S., “A
Layered Approach for Modelling Agent Conversations”,
Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable, MAS, 5th

International Conference on Autonomous Agents (2001) 163-
170.

[10] Odell, J,  Parunak, H. V. D., Bauer, B., “Extending UML for
agents”, Proceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on
Artificial Intelligence, pp. 3-17, 2000. 

[11] Parker Brothers, Inc., Salem, Mass., 1919. see
http://www.centralconnector.com/GAMES/pit.html.

[12] Parunak. H. V. D., “Visualizing agent conversations: Using
Enhanced Dooley graphs for agent design and analysis”,
Proceedings of the Second International conference on
Multi-Agent Systems ICMAS'96 (1996).

[13] Purvis, M., Cranefield, S., Nowostawski, M., and Carter, D.,
"Opal: A Multi-Level Infrastructure for Agent-Oriented
Software Development", Information Science Discussion
Paper Series, No. 2002/01, ISSN 1172-6024, University of
Otago, Dunedin, New Zealand, 
http://www.otago.ac.nz/informationscience/publctns/complete
/papers/dp2002-01.pdf.gz, (2002).


