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Abstract 

A modularised connectionist model, based on the Mixture of Experts (ME) 

algorithm for time series prediction, is introduced. A set of connectionist 

modules learn to be local experts over some commonly appearing states of a 

time series. The dynamics for mixing the experts is a Markov process, in 

which the states of a time series are regarded as states of a HMM. Hence, 

there is a Markov chain along the time series and each state associates to a 

local expert. The state transition on the Markov chain is the process of 

activating a different local expert or activating some of them simultaneously 

by different probabilities generated from the HMM. The state transition 

property in the HMM is designed to be time-variant and conditional on the 

first order dynamics of the time series. A modified Baum–Welch algorithm 

is introduced for the training of the time-variant HMM and it has been 

proved that by EM process the likelihood function will converge to a local 

minimum. Experiments, with two time series, show this approach achieves 

significant improvement in the generalisation performance over global 

models. 

Key Words: Time Series prediction; Mixture of Experts; HMM; 

Connectionist Model; Expectation and Maximization; Gauss Probability 

Density Distribution;   
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  Y:  A time series, also a series of observations for HMM. Y={y1, y2, ..., yT}. 

 yt: Value of a time series at time t. 

T: Length of a time series. 

Xt: Model input at time t, it is a vector by embedding L previous values of a time 
series. Xt=[yt-1, yt-2, ...,  yt-L].  

Dt: Dynamic situation defined for a time series at time t: . 

  :   Output from expert j at time t.  

 M:   The number of states in HMM, also the number of local experts, and the 
number of clusters extracted by fuzzy clustering technique. 

:   Distribution function of probability density in HMM. It is assumed Gauss in 
the paper. 

:   Variance of Gauss distribution. 

S:    State series of a Markov chain along a time series. St={s1, s2 , ..., sT}. 

 st:   The value of S at time t.  

 ζ:   Space of state values, s, can be taken. 

 :   Probability of being in state i at t=0. 

:   State transition probability from state i at time t-1 to state j at time t. 

 λ':    Value of HMM parameters used for E-step in the modified Baum-Welch 
algorithm. 

  λ:    Variable for HMM parameters or the parameters to be estimated in M-step in the 
modified Baum-Welch algorithm. 

ξ:   Space of HMM parameter, λ, can be taken. 

   :   Likelihood function of observing Y. 

   :    Probability of observing Y with λ'. 

:    Probability of observing Yt={y1, y2, ..., yt} ( ) and ending up in state i at  time 
t. 

:   Probability of observing Yt' ={yt+1, yt+2 ,..., yT} from time t and starting with state 
st=i at time t. 

  : Probability of being in state j at time t when observing Y. ( ). 

 (t): Probability of being in state i at time t and being in state j at time t+1 when 
observing Y . 

 

Figure 1.  List of the symbols used in the paper.

 



 

1 Introduct ion  

In the field of time series analysis, the modelling techniques can be divided generally into 
two categories:  local modelling or nonparametric modelling and global modelling or 
parametric modelling. Local models, such as nearest neighbour algorithm, are formed in 
each step relied on amount of data. The philosophy is finding segments of the time series 
that closely resemble the segment of the current point. Global models, such as 
autoregression models, and connectionist models, are usually constructed to fit the whole 
process of a time series by minimizing the squared error. One problem of local models is 
that they cannot give a global description of the time series. However, it is also not easy to 
construct a single global model to represent a time series precisely especially when the time 
series show some complex features, such as chaos. To deal with these problems, a type of 
model, called Mixture of Experts (ME), appearing. The ME was developed on divide-and-
conquer principle with the idea that dividing a complex problem into some simple ones and 
dealing with each of them separately.  

1.1  Connect ionis t  ME models  

The ME was introduced to connectionist society by Jacobs (Jordan et al., 1991) in 1991. The 
main point is training some " sub-models" in local environments to make them become "experts" 
over the local environments, and combining the experts by some algorithms to generate final 
output. Generally there are three main model structures developed based on ME: GE (Gated 
Experts and Hierarchical Mixture of Experts) (Jordan et al., 1991; Jordan et al., 1992; Jordan et 
al., 1994; Weigend et al., 1996), HME (Hidden Markov Experts) (Weigend et al., 2000), and 
IOHMM (Input/Output Hidden Markov Model) (Bengio et al., 1995; Bengio, 1996). GE 
combines the experts by a gating network, which is usually a liner (Jordan et al., 1991; Jordan et 
al., 1992; Jordan et al., 1994) or a non-linear (Weigend et al., 1996) feed forward network. In 
both HME and IOHMM, the experts are hosted by a HMM, but the state transition probabilities in 
the IOHMM are generated from a set of recurrent networks called state transition network.  

1.2  ME model  in  t ime ser ies  predict ion 

For time series modelling, the benefits of ME include that, on one side it could be used to 
extract regimes or states from complex time series, on the other side taking a sub-model to 
fit each state leads the localised modelling more efficient and precise. Just as Weigend said, 
"Extracting regime information does not sacrifice prediction accuracy. In contrary, we can 
obtain better predictions since the experts can truly be experts in their region, as opposed to 
covering everything poorly" (Weigend et al., 1996).  

Some early works for time series modeling include TAR (Threshold Autoregression) (Tong 
et al., 1980), CART (Classification and Regression Trees) (Breiman et al., 1984), and 
MARS (Multivariate Adaptive Regression Splines) (Friedman, 1991). These models simply 
split the input space into some regions and fit them locally with regression models. In 
connectionist society, all the GE, HME, and IOHME models have been used for time series 
prediction (Weigend et al., 1996; Weigend et al., 2000; Bengio, 2001). These models have 
firmly statistical background as the model-training is a process of maximising the 
probability of observing the time series instead of minimizing the squared error. In addition 
to these models, there are also some other models based on ME: HMME (Liehr et al., 1999) 
and the model introduced in (Kohlmorgen et al., 2000). Both models are based on HMM and 
trying to describe the state transition process more precisely. Another model, which should 
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be classified to GM model, is the model introduced in (Cao, 2003), where a SOM is used as 
gating network rather than a feed forward network. 

For dynamical time series, it is commonly to define them in terms of a state space description: 
),( 1 ttt g wss −=                             (1) 

),( ttt vfy s=                      (2) 

where  is the state of the time series, wt , vt are white noise. For such time series,  
hidden Markov model is appropriate for representing the underlying dynamical process. So 
HMMs have been popularly adopted for time series analysis.  

s
t R∈s

Some significant work about HMM for time series analysis include the follows: Hamilton applied 
the idea of switching regimes to model conditional variance of economical time series, where 
autoregressive conditional heteroskedasticity (ARCH) is used to model the variance, but its 
parameters are regime-related and learned by EM algorithm (Hamilton, 1989; 1990; 1996; 
Hamilton et al., 1994). Weigend combined HMM and nonlinear feed forward networks to predict 
probability density distribution for a financial time series: S&P500 (Weigend et al., 2000). 
Bengio employed different IOHMEs, which take linear and linear networks as experts, for 
financial return series prediction (Bengio, 2001). In addition to the applications in economical 
field, Liehr, (Liehr et al., 1999) and (Kohlmorgen, 2000) used their models for chaotic time series 
segmentation. 

Usually HMM works in a ME structured model, where it moderate the experts to represent 
the state transition. When the model is applied for prediction, a problem it face to is that it is 
unable to describe the transitions at each time point precisely since the state transition 
property is defined over the whole process. Hence the difficulty is that on one hand people 
intend to take the advantage of HMM to model time series more accurately, on the other 
hand the global property makes the transitions in same probability and results in inferior 
predictions. Here we introduce a model in ME structure named "THME" (Time-line Hidden 
Markov Experts) for point prediction. It has a similar process to a HME (Weigend et al., 
2000), but the state transition property is time-variant. That means rather than holding a 
transition probability for the whole process, the THME localizes the transition property at 
each time point and models it from the dynamic situation of the time series. Hence, the state 
transition at a time point is available when the dynamic situation of the time series is known. 
The training process for THME includes decomposing a complex time series into some 
simple and commonly appeared states, learning each of them locally by an expert, and 
constructing a first order HMM to moderate the experts for observing the whole series with 
maximum probability. Finally a connectionist model is employed to learning the time-
variant transition probability. In the process of prediction, all experts with the same inputs 
take part in prediction but the relative contributions of them are determined by the HMM.  

The paper is organised as follows: in section 2 we give a description about the THME and 
compare it with other ME models. The algorithms for the model training are provided in 
section 3, and the prediction process is given in section 4. In section 5 we test the model 
with two time series: Laser data, and Leuven data, followed by discussion and conclusion in 
section 6. In appendix we present the details about a modified Baum-Welch algorithm for 
model training and give the explanation for its convergence.   
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Figure 2. THME with M local experts moderated by a HMM. "State Tran. Net." Means "state 
 Transition Network". ∆ is differentiating operation. 

2 THME Model  

The architecture of THME is shown in Figure 2, the experts in THME have similar 
meanings as that in ME, but they are not limited to particular structures such as linear or 
non-linear feed forward network, which is often the case in GE, HME, and IOHMM, but not 
always appropriate for time series modelling. The experts may be any type of connectionist 
models or regression models depending on the suitability for a particular problem. Each 
expert responds to a time series state extracted by a Fuzzy clustering technique according to 
the dynamical situation of the time series , so that the data samples that have 
similar features are clustered into the same groups. This allows the experts to be relatively 
simple to learn, and therefore to have good generalization properties. The State Transition 
Network is a connectionist model used to map localized state transitions. It takes ∆X as 
input to estimate state transition so as to trace the experts defined by some changing patterns 
of a time series. The HMM combines experts by the prior probability of being in each state, 
which is generated by the state transition probabilities and previous state status. Therefore 
the mixing process is determined by both interior information and exterior information. A 
processing diagram is given in Figure 3. In the THME it assumes that for each state the 
probability density for observations is Gaussian. It takes the output of the expert as the 
conditional mean and adjusts the variance in training process to fit the noise level on the 
state. This not only allows a distribution explanation for the expert’s output at each time 
point, but also paves the way for using Bayes law to calculate posterior probability in one-
step-ahead prediction. So the THME has a closed-loop re-correction process. 

1ttt −−= XXX∆

 
The advantages of THME over GE include that the THME has dynamics in experts-mixing 
process, it allows state status re-estimating by Bayes law, and no limitation for expert structure. 
Comparing with HME, both of them take HMM as the dynamics in experts-mixing, however 
THME is able to describe the state transition probabilities at each point. To IOHMM, THME has 
Gaussian explanation for output of each expert, whereas the state network in IOHMM just 
generates conditional mean and its experts must be MLPs. Although the models in (Liehr et al., 
1999) and (Kohlmorgen, 2000) have Gauss assumption, they have a restriction that all experts 
share a same variance value, and the latter one takes the value as the variance of mixed output. 
For time series prediction, as experts fit their regions with different noise levels, they cannot have 
same variance value. Even though the noise levels of all experts are same, the variance of the 
mixed output must be smaller than that of any single expert. Otherwise the mixture would be a 
failed one. Another problem with the models is that, for state estimation, they either use softmax-
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1999) or Bayes law but covering just a temporal neighbourhood (Kohlmorgen, 2000) without 
consider of the probability derived from the process: .  

There is a significant difference between THME and above models that all the models, 
except HME, take input X to search experts or state transitions. That means the regions of 
the experts or the state transition are determined by the input position, whereas THME uses 
the differentiation of input ∆X. Since THME defines the experts' domains by some changing 
patterns, taking ∆X to trace state transition would be more efficient and precise. Previously 
the authors have experimented with defining experts and modelling state transitions by X, 
but generalization performance, accuracy and convergence speed were inferior to the current 
model. 

3 Model  Training  

The training process and the productions in each step is shown in Figure 4.  

3.1  States  extract ion  

The dynamical situation of a time series at time point t is defined as follows: 

( ) ( ) ([ ]1)L(tLt3t2t2t1t1tttt yy...,,yy,yy +−−−−−−− −−−=−== XXXD ∆ )          (3) 

Fuzzy C-means clustering (Bezdek, 1981; Bezdek et al., 1992) is applied to cluster all time 
points into groups according to the feature defined in equation 3. The process calculates the 
cluster membership degree jµ , which is defined as the degree to which vector X belongs to 
cluster j, and updates cluster centres Vj iteratively to make the following objective function 
reach a minimum: 

P(st=1) P(st=2) P(st=M-1) P(st=M)

.  .  . 

. . .

A=[aij(t)]

P(st-1)
P(st)

t

 State Tran. Net.

Xt

Expert M-1

Xt

)(tŷ1

)(tŷ2
)(tŷ

1M
.  .  .

P(st)

Expert MExpert 2   Expert 1

)(tŷM

)(tŷi

Figure 3.  Diagram of TMME. st is the state status at time t. P(st)=[P(st=1), P(st=2), …,P(st=M)]. 
P(st=i) is the probability of being in i at time t. is the output from expert i. “Σ” denotes 

summating operation. “ʘ ” denotes multiplication between two values. “⊗ ” denotes multiplication 
between matrixes. Others are same as Figure 2.
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Training Steps Productions

• State Transition Network 
State Transition

Modeling

State Extraction

Initial
Expert-training

Initial
HMM-learning

Refined

HMM-learning

Refined
Expert-training

• 

• HMM &Gauss Parameters

• M Expert Networks 

• 
• 

HMM &Gauss Parameters 
State Probability for Y

• M Expert Networks 

Fuzzy Membership Degree

Figure 4. Training process and the Productions. 
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The clustering process classifies the time points into M clusters. These clusters are called 
states of the time series and are also regarded as states of the HMM. Hence, )(tjµ  may be 
interpreted as the degree to which the point t belongs to a specified state j. 

3.2  Expert  tra ining  

In both initial expert-training and refined expert-training, local experts are trained by 
corresponding data samples clustered by state extraction. In initial expert-training, a 
relatively high threshold K is applied to the fuzzy membership degrees to extract the time 
points that are strongly featured with a particular state. These time points are then used to 
train a local expert so as to link the expert to the state. The philosophy behind the process is 
that some time points that belong to a state of the time series to a high degree should be 
extracted to train a module to make it a local expert for the state. In the refined expert-
training following initial HMM-learning, a relatively lower threshold K' is applied for the 
probabilities a time point belongs to each state. This allows the model to assign the point 
into a state or two states if probabilities for the two states are all over the threshold. This 
process classifies all time points into states and uses them to train the corresponding experts. 
Comparing with initial expert-training, the refined expert-training re-trains the experts with 
relatively wider range of samples to make them cover their domains totally.  

3.3  HMM learning 

Along with the expert training process, the HMM learning also splits into two processes: an 
initial one and refined one. The difference between them is that the first one is based on the 
performance of the initial-trained experts and the latter one is on the refined-trained experts. 
The performance is determined by the output from each expert, which provides the 
conditional mean for the assumed Gauss distribution on the corresponding HMM state. The 
HMM with time-variant transition property is learnt by a modified Baum-Welch algorithm 
based on EM principle (Baum et al., 1970; Dempster et al., 1977; Rabiner, 1989). 
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Supposing the probability distribution of the HMM is Gaussian. For state j  

)',,|()( λX ttttj jsypyb ==  
( )[ ]

2
j2

2
tjŷty
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As each state is associated with a local expert, the number of cluster, M, is also the number 
of states and the number of expects. ; ; . Similar to (Baum et 
al., 1970; Liporace, 1982), the likelihood function for getting observations Y with current 
parameters λ' and to-be-optimised parameters λ ( ) is defined as follows:  
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Given a particular state sequence S, the probability of getting Y is: 
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0 is π=π  is the probability of being in state  (0s ζ∈0s
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) at t=0. As in THME the state 
transition probability is time-variant, at time t it is defined as the probability of transiting 
from state st-1 at time t-1 to state st at time t: . Hence the likelihood 
function becomes: 
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In order to estimate the parameters for obtaining the maximum of the likelihood function, 
the following two steps should be repeated. 

Expectation (E-step) • 

In E-step a forward and a backward process are performed. In the forward process, a 
probability of observing the partial sequence Y and ending up in state i 
( ) at time t is defined as: 

},...,,{ 21 tt yyy=
)'|is,y,..., tt2 λ=M21i ,...,,∈ ()( y,ypt 1i =α . In the backward process, we 

define )',is|'(p tt λY ==)t(iβ  for the probability of starting with state st=i at time t to observe 
. The probability of being in state i at time t for observing the whole 

sequence of observations is defined as 
},...,2 Ty+,{' 1 ttt yy +=Y

)',Y|is(p)t( ti λγ == . Then the three parts in Q function 
become (see Appendix A): 
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Maximisation (M-step)  • 

By maximising the Q function, updating formulas are derived as follows:  
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By the modified Baum-Welch algorithm, function Q and P can converge to local maximums 
(Appendix B).  

3.4  State  trans i t ion  model l ing  

The state transition property is a series of matrix entries corresponding to the hidden state 
sequence for each point of the time series. In THME, when the time series' dynamical 
situation changes, there will be a change of the expert that is best for modelling current 
situation, or a change of the proportion that each expert contributes to the output. That 
means the expert that was best for the preceding situation may no longer be best for the 
current situation, or that the degree of fitness for each expert to the current situation 
changes. Consequently the HMM will experience a transition on state, which may be either a 
transition from one state to another or a partial transition from being a state in some 
probability to a new value. Hence we can map the state transition probabilities from the 
dynamical situation of the time series. Here RBF structured State Transition Network 
performs the modelling (Figure 2,3).  

4 Predict ion 

The prior probability for each state is taken as the combining coefficient for each expert, and 
therefore one-step-ahead prediction is available by the following steps: 

• At time t, with estimated state transition probabilities, the prior probability for each state 
is determined as:  

∑
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• Combine expert by the prior probabilities to make prediction:  
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• The posterior probability for each state can be obtained by Bayes law, and it will be taken 
as the status of the preceding state for next step prediction. 
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5 Experiments  

The THME model has been tested using two chaotic time series: Laser data (Santa Fe Time 
Series Prediction and Analysis Competition) and Leuven data (K. U. Leuven Time Series 
Prediction Competition). Laser data is a low dimension (dimension=2.0~2.2), chaotic, low 
noise data. Chaotic pulsations more or less follow the theoretical Lorenz model of a two 
level system (Hübner et al., 1994). In the experiments we take 1000 data points for model 
training and following 500 data points for testing. The embedding dimension is 5 and the 
time delay is 1. Leuven Competition data is generated from the following computer  
generalized Chua's circuit (Suykens et al., 1997): 
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For the K. U. Leuven data, we take first 1000 data samples as training data, next 500 samples for 
test.  Embedding dimension is 12 and time delay is 1.  

For each data set, an RBF network and one-hidden-layer MLP are used separately as 
experts. The RBF network has exponential transfer function. The MLP takes "log-Sigmoid" 
transfer function, and trained by Back-propagation algorithm. All experiments are conducted 
based on the "same structure" and "same-scale" principle. It means that in the experiments a 
global model is compared with a THME model whose experts have the same network 
structure, same number of hidden layers, and same number of neurons with the global 
model. In other words both models have the same number of degrees of freedom. For 
example, if the THME model uses 2 experts in RBF structure and each of them has 20 
hidden neurons, it will compare to a single RBF network that has 40 hidden neurons. In the 
experiments with the Laser data, THME model been tested with 2 experts in RBF and MLP 
structure separately. For the Leuven data, the number of experts in THME is three for both 
expert structures. 

The quality of prediction in the experiments was evaluated by the RMSE (Rooted Mean Squared 
Error) and NMSE (Normalized Mean Squared Error).  
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For the training process, in Figure 5 and Figure 6, we gave the state statues of both time series 
measured in probabilities Hence, by the end of step 3----“refined HMM-learning”, the probability 
of each point being in each state was determined. Here we just give point 101 to 200 for Laser 
data in Figure 5 and 201 to 400 for Leuven data in Figure 6.  

Figure 5. Probability for each state of Laser training data from point 101 to 200. 
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Figure 6. Probability for each state of Leuven training data from point 201 to 400.. 

For the prediction performance, Table 1 and Table 2 show the prediction results from the THME 
models with both RBF and MLP as experts and their corresponding global models. There are 
consistent improvements on the prediction quality over the corresponding single global models. 
In terms of state prediction, Figure 7 and Figure 8 show the prior probabilities of being in each 
state for both data sets. From the view of Mixture of Experts, they are the gating coefficients for 
each expert in the process of prediction. Here we show only the probabilities for the RBF 
structured experts. For the behaviour of each expert, we display the prediction errors from each 
expert in the THME models in Figure 9 and Figure 10. Here we just give the prediction errors for 
both time series when THME has RBF experts.  
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Single  Model THME  Model 
 

N. H. N. RMSE (NMSE)    N. H. N RMSE (NMSE) 

20 8.531  (0.039) 10/Expert 4.521 (0.011) 
RBF 

50 8.387  (0.038) 25/ Expert 4.332 (0.010) 
20 21.24  (0.242) 10/ Expert 16.15 (0.139) MLP 
40 18.34  (0.181) 20/ Expert 13.34 (0.095) 

Table 1. Prediction RMSE and NMSE on Laser data from global model and THME model (with RBF 
network and MLP as expert separately). "N. H. N." Means "Number of Hidden Neurons". 

 

 Single Model THME  Model  
N. H. N. RMSE (NMSE) N. H. N. RMSE (NMSE) 

30 0.0120 (0.0054) 10/ Expert 0.0091(0.0031) 
RBF 

45 0.0137 (0.0071) 25/ Expert 0.0121(0.0054) 
30 0.0491 (0.0910) 10/ Expert 0.0257(0.0248) 

MLP 
45 0.0372 (0.0519) 25/ Expert 0.0281(0.0296) 

Table 2. Prediction RMSE and NMSE on Leuven data from global model and THME model (with 
RBF network and MLP as expert separately).  "N. H. N." Means "Number of Hidden Neurons". 
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Figure 7. Prior Probability for each state on Laser data. The experts are in RBF structure 
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  Figure 8. Prior Probability for each state on Leuven data. The experts are in RBF structure.
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Figure 10. Prediction errors of all experts and mixed expert for Leuvan data 
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 Figure 9. Prediction errors of all experts and mixed expert for Laser data 

6 Conclus ion and Discuss ion 

The experiments show the ME model hosted by a HMM with time-variant transition 
property can be applied to enhance the quality of one-step-ahead time series predictions. 
Using the same network scale and structure, such as the number of hidden neurons and 
number of hidden layers, or the same number of degrees of freedom, the THME model can 
generate better predictions than a global model for the shown data sets. Additionally, it has 
been demonstrated that a connectionist network can be used to model the state transitions 
along a time series.  

One question with the model is the computing cost and convergence property of training a 
series of input-related transition probability matrixes. As the updating of the transition 
probabilities is simultaneously happening at every time point, the time cost is tolerable and  
convergence speed is expeditious. For example, by the modified Baum-Welch algorithm, the 
HMM learning with 1000 points Laser data takes about 5 seconds in Matlab platform on a 
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1MHz PC, and the learning process needs about 10--20 
iterations to get to convergence (Figure 11).  

0 5 10 15 20

Covergence process of Q functionQ

Another significant question with THME is how to choose 
the number of experts (and therefore the number of states). 
From our experience the number has a direct impact on 
prediction quality and the complexity of the models. More 
local experts allow a time series to be modelled more 
precisely (i.e. the training data can be more accurately 
described), however larger errors appear on the state-
transition modelling. This trade-off has to be achieved 
manually by trial and error. Future work will consider how 
this trade-off can be quantified and tuned without manual 
intervention to achieve an appropriate level of 
generalization. 

Figure 11. Converging of Q
Function for Laser data when
THME has RBF experts. 
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Appendix A 

Parameter  updat ing  in  the  modi f i ed  Baum-Wel th  a lgor i thm.  

We define:  
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We define )(tijη  as the probability of being in state i at time t and being in state j at time t+1 for 
observing the whole sequence of observations with parameters λ'.  
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Now return to Q function for Maximisation. As the parameters iπ , , and are independently split 
into three terms in equation 9,10,11, we can optimise each term individual. The first term in Q function is: 
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Adding the Lagrange multiplier δ and using the constraint that  to maximise Q1. 1
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We can get the updating formula for πi: 
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In a similar way, we use the Lagrange multiplier δ and the constraint that  
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The third term in Q function becomes: 
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To maximise it, we get: 
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Appendix B 

 
Convergence property of the modified Baum-Welch algorithm  
 
Convergence character of modified Baum-Welch algorithm is similar to that of classical Baum-Welch 
algorithm. For the issue of estimating parameters  to get a set of observations Y with maximum 
possibility, the Modified Baum-Welch algorithm, in each EM cycle, maximises the likelihood function 

 and estimates corresponding parameters in the M-step. This is a process of finding critical point 
of Q function based on parameters value . For Gauss probability density b, Liparace (Liporace, 1982) 
has proven that Q  has a unique global maximum as a function of 

λ

),( 'Q λλ λ
'λ

),( 'λλ 'λ , and this maximum is the one 
and only one critical point. Hence there is Q  with the equality of . With this 
conclusion, we can prove that there are:  with equality of   (see Theorem 1). By 
EM iteration both functions monotonic increase with updating  and converge to a local maximum (see 
Theorem 2). So by the modified Baum-Welch algorithm, the likelihood function and the probability 
function could converge to (local) maximum.  
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• Theorem 1. By each EM iteration, for , there is: ξλλ ∈',
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Proof:  
We define  as the value of that gets the maximum of Q in l th iteration, and  as the current value 
of the parameters used in the E step. 
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Theorem 2. Q function and P function converge to local maximum. In other words: if  is a 
critical point of function Q, it is also a critical point of .  That is: 
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