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Abstract. Contemporary software systems are exposed to demanding, dynamic,
and unpredictable environments where the traditional adaptability mechanisms
may not be sufficient. To imitate and fully benefit from life-like adaptability in
software systems, that might come closer to the complexity levels of biological
organisms, we seek a formal mathematical model of certain fundamental con-
cepts such as: life, organism, evolvability and adaptation. In this work we will
concentrate on the concept of software evolvability. Our work proposes an evolu-
tionary computation model, based on the theory of hypercycles and autopoiesis.
The intrinsic properties of hypercycles allow them to evolve into higher levels
of complexity, analogous to multi-level, or hierarchical evolutionary processes.
We aim to obtain structures of self-maintaining ensembles, that are hierarchically
organised, and our primary focus is on such open-ended hierarchically organised
evolution.

1 Introduction

The rapid growth of complexity in different areas of technology stimulates research in
the field of engineering of self-organising and adaptive computation systems. Adap-
tive software models refer to generic concepts such asadaptabilityandevolution. This,
on the other hand, inherently leads to fundamental questions about the nature of open-
ended uniform evolutionary processes: their essential properties, minimal requirements,
architectures, models, and evolution of evolvability. Answers to some of these funda-
mental questions will lead to progress in automatic evolutionary design of computa-
tional machines and in engineering techniques for self-organising and self-adaptable
software systems.

1.1 Traditional methods

In common English usageadaptationmeans the act of changing something to make
it suitable for a new purpose or situation. In software systems, the term adaptation is
being used mostly, if not exclusively, with a second semantic meaning. What is usually
meant by software adaptation is that the system will continue to fulfil its original pur-
pose in new or changing circumstances, situations or environments. The adaptability
in such software systems may be achieved by a feedback loops between the system,
the controller monitoring and changing and adapting the system, and the environment



itself. The system purpose is pre-defined in advance as a set of specifications, which are
kept within the controller. The behaviour of the system is automatically altered if the
expected outputs are outside of these pre-defined specifications. Such models operate
analogously to the way automatic control systems work (15). Most of them are based
on top-down design and work well in limited environments, where changes in the envi-
ronment can be predicted and constrained in advance (21). Such adaptive systems are
tuned to particular kinds and specific levels of change in the environment.

Most of the adaptability in traditional software systems is achieved via control
mechanisms like in automatics. There is a central system, with a set of sensors and
actuators, a controller, and an environment. Sensors sense an environment, the system
and controller are tied via a set of feedback loops, and the controller tries to keep the
system within pre-defined boundaries. This model can be implemented in a straightfor-
ward fashion, however it is static and must be applied in situations where it is possible
to predict in advance all the changes and variations of the environment. To make things
more robust and flexible, it is possible to implement into the controller an ability to
learn, so the rules for changing the system become more dynamic, thereby enabling the
entire ensemble to follow changes in more dynamic environments. Yet such systems
still suffer from drawbacks associated with the simple control model. Even though the
system shows some adaptability on another scale of complexity, there are limits of envi-
ronmental change with which the system can cope. And these limits are pre-established
with the structure of the learning mechanism itself.

1.2 New requirements

Contemporary software systems, especially open multi-agent distributed systems, eg. (26),
that may potentially be spread around the globe and interact with various changing web-
services and web-technologies, are exposed to demanding, dynamic, and unpredictable
environments where the traditional adaptability mechanisms may not be sufficient.

To imitate and fully benefit from life-like adaptability in software systems, that (at
least in theory) might come closer to the complexity levels of biological organisms,
we seek a formal mathematical model of certain fundamental concepts such as: life,
organism, evolvability and adaptation. In this work we will concentrate on the concept
of software evolvability.

The landmark step in understanding the evolutionary process of living organisms in
natural life was done by Darwin (4), who proposed mechanisms by which purposeful
adaptive changes take place via processes of random mutation and natural selection.
Darwinian mechanisms postulate reproduction, the statistical character of change pro-
cesses, and the process of elimination (after elimination the organism ceases to exist,
i.e. is not alive anymore).

1.3 Computation and biological inspirations

In this work we use a theory of evolvable virtual machines, which exhibits adaptability
and self-organisation. The model has been inspired by ideas that have been developed
over the last decades. The roots of the proposed model can be traced back to the work
of John von Neumann (38; 39), who submitted that a precise mathematical definition



should be given to basic biological theories. This has been most prominently continued
and extended by Gregory Chaitin (2; 3).

Some current research in evolutionary computation (EC) is emphasising information-
centric methods that mirror Darwinian theory of random mutations and natural selec-
tion. This is visible in well-established computational optimisation methods, such as
Genetic Algorithms (GA), Genetic Programming (GP), and their variations, such as as-
sorted Artificial Life systems. Despite some successes, the typical simple single-layer
evolutionary systems based on random mutation and selection have been shown to be
insufficient (in principle) to produce an open-ended evolutionary process with potential
multiple levels of genetic material translation, see e.g. (5; 41).

Our work proposes an alternative path, based on the theory of hypercycles (5)
and autopoiesis (20). The intrinsic properties of hypercycles allow them to evolve into
higher levels of complexity, analogous to multi-level, or hierarchical evolutionary pro-
cesses. We aim to obtain structures of self-maintaining ensembles, that are hierarchi-
cally organised, and our primary focus is on such open-ended hierarchically organised
evolution.

2 Computational evolution

2.1 Information-centric approach

It is believed by some that the information-centric approach is a correct, if not the only
possible, path to pursue the research and make progress in the field of theoretical and
computational biology (23; 3). In our work, we use some of the basic concepts of the
information-centric approach, and throughout this work we will use two basic notions
of information as introduced by Shannon (33) and in Kolmogorov-Solomonoff-Chaitin
algorithmic information theory (18). We will refer to the Shannon notion asinformation
and to the Kolmogorov-Solomonoff-Chaitin notion asalgorithmic information.

There have been many more or less formal attempts to define life, complexity, or-
ganism, organism boundaries, and information content (32; 25; 19). Some authors have
attempted to give rigorous quantitative definitions of these concepts, in a formal de-
ductive form (39; 3; 10). Interestingly, authors coming independently from different
sets of basic definitions and assumptions reached the same or very similar conclusions
(e.g. (3) and (10)). According to theoretical and experimental work of most authors,
the process of improvement in individuals and ensemble growth are best accomplished
by carrying along all, or almost all, of the previously developed structures while new
pieces of an ensemble structure are being added (34). Simulations and statistical analy-
sis in the fields of Artificial Life experimentally confirm the efficiency of this approach.
Recent work in incremental reinforcement learning methods also advocate retention of
learned structures (or learned information) (e.g. (30)). The sub-structures developed or
acquired during the history of the program self-improvement process are kept in the
program data-structures. It therefore comes as a bit of surprise that this general proce-
dure is not being exhibited by any of (standard) evolutionary programming models (7)
such as: Genetic Programming (GP) (16)) or Genetic Algorithms (GA) (40). Although
these evolutionary programming models are inspired by biological evolution, they do



not share some significant aspects that are recognised in current evolutionary biology,
neither can they be used (directly) in incremental self-improvement fashion.

We are seeking a new, robust, and flexible evolutionary model, that can accommo-
date meta-learning and incremental self-improvement, as well as hierarchically organ-
ised evolutionary processes.

2.2 Information measure

Information is a measure based on a selection from a set of available choices.Algo-
rithmic informationis a uniform measurement of encoding information relative to the
given computing machine (virtual machine).

The amount of information is based on the ability to make a correct selection from a
given set. Let us consider a unique codek ⊂ X×Y , i.e.y = k(x), wherex ∈ X, y ∈ Y ,
x represents a given condition, andy represents the correct selection.X andY can be
any sets, but in the context of finite state machines and discrete computation, one can
treat them as sets of program blocks. Let us use indexg to indicate a particular selection
of x for a giveny (goal). This model can be expressed now asxg = k−1(yg). Selection
of a single unique conditionxg gives us all necessary information to obtain the output
yg: I(xg) = −log p(xg), wherep(xg) is the probability of picking a correct condition
x, andI is the information content of a particularxg (33; 1).

One of the possible ways to refer to the probability distributionp(x) is to compare
it with the reference distribution of the system. We can take as a reference a system that
makes all possible choices with equal probability. Such a system would have maximum
entropy (equivalent to the thermodynamical state of equilibrium). Byentropywe mean
an information theory measure which, when applied to an information source, deter-
mines the maximum channel capacity to transmit the source encoded according to a
particular signal alphabet. The state of maximum information entropy we will refer to
as a system inabiotic equilibrium. In such a state the probability of a correct selection
of a given condition for a given output is uniformly distributed across all the possible
conditions, and therefore all selections are equally probable. By calculating the differ-
ence between the actualp(x) and this uniform abiotic distribution, one can calculate the
information content needed to make a correct selection. (This is the difference between
the given channel and one with maximum information capacity.)

In the context of incremental search methods through program search-space, as in
the case of (31),p(x) can be interpreted as the probability of executing a particular
instruction during the course of program execution. The program itself can accumulate
information about its environment and requirements by adjusting these probability dis-
tributions. A program can modify the probability distributions for different instructions
at runtime. The difference between abiotic probability distributions (the initial uniform
distribution) and the given probability distribution of a given system will be the measure
of acquired information.

2.3 Darwinian systems

Darwin’s principle of natural selection is widely used in current computational models
of evolutionary systems for optimisation or simulation purposes (in fact in Evolutionary



Computation in general). Some authors regard natural selection as axiomatic, but this
assumption is not necessary. Natural selection is simply a consequence of the properties
of population dynamics subjected to specified external constraints. The main objective
of the work of Darwin and Wallace (4) was to provide some basic insights into the
process of evolution and the phylogenetic interrelations among species.

There are some inherent properties of conventional computational Darwinian sys-
tems which are sometimes overlooked. Darwinian systems rely on the concept of an
environment with embedded self-replicating entities competing for resources and re-
production. For the model to be consistent, one has to postulate a stable species which
competes for selective preferences and a stable reproduction of the best adapted species.
In other words the model postulates that the selection operates purely on the individuals,
hence there is only a flat single level of individuals which the evolutionary processes
operate on. In such a model, there is a limit to the amount of the information content a
stable species can have. Therefore the evolution of such a system is limited to a certain
level of complexity defined by the threshold for maximum information content for a
given setup/configuration of species. To overcome this threshold, further levels of se-
lection and evolutionary information translation would need to be introduced into the
system.

A second important aspect concerns random mutations. In real biological systems,
due to overly complex and dynamic environments, the mutations can simply be a func-
tion of the environment. There is no need to postulate an external, god-like source of
randomness. However, in computational models, the environments are highly regular
and fixed, and the only way to introduce the necessary noise to the search process is by
introducing an external source of randomness. This, as with certain random-search opti-
misation methods, can be useful, and in fact works quite well for some classes of prob-
lems (with the main computational techniques employed being Genetic Algorithms,
Genetic Programming, and other evolutionary computation optimisation methods).

However in the context of adaptable, self-organising and open-ended evolutionary
software system that exist in dynamic environments, it makes little sense to introduce
additional external sources of randomness. By definition, the environment should sup-
ply all the randomness for the adaptable software system. If the environment stabilizes,
the system should stabilize as well. It is a simple result of maximisation of the system
aptness to the given environment. On the other hand, the learning mechanism involved
in adapting the system to the given environment, or to the changes in the environment,
may internally need to use some sort of probability distribution (that is represented in-
ternally, or externally via the environment itself). This is, however, a different matter
to an artificially introduced external source of randomness, as in evolutionary compu-
tation.

One possible way of dealing with that is via bias-optimal search methods (17; 29),
or via incremental search methods (31). To narrow the search, one can combine several
methods, for example it is possible to construct a generator of problem solver genera-
tors, and employ multiple meta-learning strategies. We will discuss some of the details
further in the following sections.



3 Autopoietic hypercycles

3.1 Hypercycle

Lets consider a sequence of reactions in which products with or without the help of ad-
ditional reactants undergo further transformations. Thereaction cycleor cycle is such
a sequence of reactions in which some of the products are identical with the reactant
of any previous step of the sequence. The most basic is a three-membered cycle, with
a substrate, enzyme, and a product. The enzyme transforms a substrate into enzyme-
substrate and then enzyme-product complexes, which in turn is transformed into a prod-
uct and free enzyme. See Figure 1.
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P

Fig. 1.An example of three-membered catalytic cycle: the free enzyme (E), the enzyme-substrate
(ES) and the enzyme-product (EP) complexes all demonstrate a catalytic cyclic restoration of the
intermediates in the turnover of the substrate (S) to the product (P).

The cycle as a whole works as acatalyst. Unidirectional cyclic restoration of the
intermediates presumes a system far from energy equilibrium. This can be associated
with a dissipation of energy into the environment. Equilibration occurring in a closed
system would cause each individual step to be in balance: catalytic action in such a
closed system would not be microscopically irreversible.

Lets now consider a reaction cycle in which at least one of the intermediates them-
selves is a catalyst (see work of Kaufmann on autocatalytic nets (14)). The simplest
representative of this category is a singleautocatalyst(or a self-replicative unit).

A system which connects autocatalytic or self-replicative units though a cyclic link-
age is called ahypercycle. Compared with a simple autocatalyst or a self-replicative unit
(which we can consider here to be a “flat” structure) a hypercycle is self-reproductive to
a higher degree. This is because each of the intermediaries can itself be an autocatalytic
cycle.

3.2 Autopoiesis

Following Maturana and Varela terminology (20), machines are unities which are made
out of components. All components are characterized by certain properties. Machine
components must operate according to certain relationships among their interactions
and transformations that define the operation of the machine. The details of properties



other than those participating in the interactions and transformations which constitute
the machine are not relevant.

Theorganisationof the machine is defined as all the relations that define a machine
as a unity and determine the dynamics of interactions and transformations which it may
undergo as such a unity. The organisation of a machine does not specify the properties
of the components which realise a concrete machine. The organisation of a machine
is independent of the properties of its individual components, which can be any, and a
given machine can be realised in many different manners by many different kinds of
components.

Thestructureof the machine is defined as the actual relations which hold among the
components which realise a concrete machine in a given space. A given machine (ma-
chine with fixed organisation) can be realised by many different structures. An organi-
sation may remain constant by being static, by maintaining its components constant, or
by maintaining certain relations between components constant which are otherwise in
continuous flow or change.

An autopoietic machineis defined as a unity by a network of production, transfor-
mation, and destruction of components which: (i) through their interactions and trans-
formations continuously regenerate and realise the network of relations that produced
them, and (ii) constitute the machine as a concrete unity in the space by specifying
the topological domain of its realisation as such a network. An autopoietic machine is
an homeostatic or rather a relations-static system that has its own organisation as the
fundamental variable which it maintains constant.

In contrast, a machine in which organisation is not autopoietic does not produce the
components that constitute it. The products of such a machine are different from the
machine itself. The physical unity of such a machine is determined by processes that
do not enter into its organisation. Such a machine is calledallopoietic(20). Allopoietic
machines have input and output relations as a characteristic of their organization: their
output is the product of their operation, and their input is what they transform to pro-
duce this product. The phenomenology of an allopoietic machine is the phenomenology
of its input-output relations. The realisation of allopoietic machines is determined by
processes which do not enter into the organisation of the machine itself.

Self-organisation An autopoietic system is considered to be a unity in the physical
space. It is an entity topologically and operationally separable from the physical back-
ground. It is defined by an organisation that consists of a network of processes of pro-
duction and transformation of components, molecular and otherwise, that through their
interactions: a) recursively generate the same network of processes of production of
components that generated them; and b) constitute the system as a physical unity by
determining its boundaries in the physical space.

The important aspect of an autopoietic system is that it remains invariant in its
organisation. The system itself can be deformed by external circumstances, but its in-
ternal organisation remains invariant. In other words, the self-organisation and self-
maintenance of defining relations is inherent in the autopoietic model. Any change in
the autopoietic organisation beyond a particular threshold is equivalent to the loss of
identity, and the system disintegration.



Thus, an autopoietic system is defined as a unity by its autopoietic organisation, and
all the transformations that it may undergo without losing its identity are transforma-
tions in which its organisation remains invariant. All autopoietic systems are therefore
homeostatic. They maintain their own organisation constant through their operation. All
the various unitary phenomena of an autopoietic system are constitutively subordinated
to the maintenance of its autopoiesis.

Hierarchies In conventional Darwinian systems all self-replicative units competing for
selection are non-coupled. In other words, the selection forces operate purely on a single
level: the level of individuals. This simply leads to a conservation of a limited amount of
information, which cannot pass above a specified threshold. In hypercyclic systems, as
distinct from conventional Darwinian systems, we deal with similar selective pressures.
Note however, that in the hypercyclic case we also deal with integrating properties, and
this allows for cooperation of otherwise competing units. Hypercycles are capable of
establishing higher-order linkages. When inter-cyclic coupling is established, individual
hypercycles may form hierarchies. In other words, the basic unit of selection may not
be a single hypercycle, instead a whole chain of interrelated hypercycles. This is an
important aspect of our work — exploiting the hypercyclic integrating properties and
multi-level selective pressures.

If the autopoiesis of the component unities of a composite autopoietic system con-
forms to allopoietic roles that through the production of relations of constitution, speci-
fication, and order define an autopoietic space, the new system becomes in its own right
an autopoietic unity of second order. The most stable condition for coupling appears
if the unity organisation is precisely geared to maintain this organisation — that is if
the unity becomes autopoietic. Therefore there is an ever present selective pressure for
the constitution of higher order autopoietic systems from the coupling of lower order
autopoietic unities.

In the theory of autopoiesis, unlike many other theoretical models of the process of
life, the process of evolution is simply a side-effect, a consequence of limited resources,
not the prerequisite. Whenever we deal with restricted resources, we have the selection
and evolutionary pressures naturally occurring within our computational models. It is
however important to recognize that life (or precisely: autopoietic systems) would still
exist even if the process of evolution were not to occur in a system.

4 Evolvable machine

4.1 Hierachical Computation

Some scholars believe that all sufficiently complicated systems are modelled best by
hierarchical models (11; 27; 36). In system sciences and cybernetics any system un-
der investigation is thought of as a composition of multiple subsystems, each of which
can itself be decomposed into subsystems, and this follows all the way down to a ba-
sic, fundamental level (34). Hierarchies help us deal with complex phenomena by de-
composing them into more manageable subsystems and investigating the interactions



between these subsystems, one interaction at a time. The emphasis is placed on investi-
gation of properties on different levels, mutual dependencies, and interactions between
and within the hierarchy levels. Hierarchical decomposition of the problem space deals
with complexity in a way that is natural and intuitive to humans.

4.2 Virtual machines

Hierarchically organised virtual machines can be used as a specific computation model.
Such a model is based on the traditional notion of computing machines, but extends
it in certain aspects. The model discussed here provides a flexible and robust platform
for experimentation with self-organisation and self-adaptability. It allows for a detailed
analysis of different aspects of hierarchical complex system decomposition, together
with the analysis of interactions between and within different hierarchical levels. This
may help to understand a modelled problem or phenomenon better, giving us at the
same time a robust and adaptable computing framework.

Formal definitions The following formalism is inspired by typical models of comput-
ing machines. More theoretical foundations for computing models from a programming
perspective can be found in (24; 13).

From the Church-Turing Thesis we expect that all models of discrete computation,
including the one presented here, will have the same properties as any other model
of computation with respect to uncomputability and undecidability. This fact has some
interesting and fascinating implications, see e.g. (6). All the well known properties from
computational complexity (18) are naturally exhibited by to the computational model
presented here. This includes, for example: undecidability, the halting problem, and the
concept of non-computable functions.

Definition 1. A virtual machine or a computing machine (or just a machine for short)
is a tupleM = (K, Σin, Σout, δ, s) whereK is the set of states ands ∈ K is the initial
state.Σin and Σout are sets of input and output symbols, respectively, referred to as
input and output alphabets.δ is a function that mapsK×Σin toK×Σout, and is called
the program. We sayδ (or the program) runs on machine M. Remember that formally
δ is an integral part of the machine itself. The notationM(x) represents the output of
machineM given the input sequencex. M(x, y) represents the output of machineM
given the input sequencex followed by the input sequencey.

Definition 2. Suppose thatf is a function from(Σin)∗ to (Σout)∗, and letM be a
machine with input and output alphabetsΣin andΣout respectively (the symbol∗ has
the usual meaning of “set of all possible sequence from a given alphabet”). We say that
M computesf if for any stringx ∈ (Σin)∗,M(x) = f(x). If such machine M exists,f
is called a recursive function. We also say that functionf is computed by machineM .

Definition 3. If for machineM = (K,Σin, Σout, δ, s) there exists a machineM ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) which computesδ, we call machine M a recursive virtual ma-
chine or recursive machine for short. We call programδ′ an interpreter ofM , and we
say anM interpreter runs on machineM ′. We have∀x ∈ (Σin)∗, M(x) = M ′(δ, x).



Definition 4. Suppose we have a machineM = (K,Σin, Σout, δ, s) and there ex-
ists machineMc = (Kc, Σinc , Σoutc , δc, sc), whereΣin ⊆ Σinc and machineM ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) whereΣoutc
⊆ Σ′

in andΣout ⊆ Σ′
out. If ∀x ∈ (Σin)∗, M(x) =

M ′(Mc(x)) then we say thatδc is anM compiler, and we sayMc compilesM into M ′.

The emphasis in the conceptual framework presented above is to treat algorithms
and running programs asmachines(recursive virtual machinesto be precise). This
along with the notions of compilers and interpreters is discussed at length in (13). The
above definitions do not make any assumptions about the number of states a given ma-
chine can have, nor about the storage capability. All possible models of computations,
and different computer/algorithm architectures fit the above definitions. For example
one could useΣ ⊆ Real to perform analog computation on real values. It can be shown
that the proposed conceptual framework is a simple extension of the theoretical models
of computation such as Turing machines and Universal Turing machines (12; 24).

Proposition 1. Let machineM = (K, Σin, Σout, δ, s), with finite input and output al-
phabetsΣ = Σin = Σout, {t, .} ∈ Σ and{h, y, n} ∈ K. In other words the alphabet
contains two special symbols, the blank and the first symbol, and there are three extra
state symbols, namely:h the halting state,y the accepting state,n the rejecting state.
We define three additional symbols, representing cursor directions:← for “left” and →
for “right” and − for “stay”. If δ mapsK×Σ to K ′×Σ, whereK ′ = K×{←,→,−}
then we say that machine M is a Turing machine.

5 The architecture

We can model artificial and naturally occurring phenomena as a chain of virtual ma-
chines. One possible perspective on artificial life or evolutionary systems is to focus on
a tower of compilers and/or interpreters. The concepts of chaining and stacking com-
pilers and interpreters is discussed in detail in (13). The other approach is to use more
traditional functional decomposition. All computing programs, including all evolution-
ary computation models can be represented as a chain of compilers and/or interpreters,
with different functional partitioning on each level. The way this chain is constructed
and how all its elements interact with each other is a principal concern of our hierarchi-
cal computing architectural approach.

5.1 Vertical and horizontal decomposition

Following the formal definitions, a machine can be statically represented as a program
string, consisting of a prefix, together with some instructions following this prefix. The
prefix itself can be decomposed into another prefix and another program, and so on. This
is calledvertical decomposition, or avertical hierarchy. Another type of decomposition
is based on dividing a given machine into interacting parts – this is called ahorizontal
decomposition. Formally, a vertical hierarchy is based on stacking interpreters and/or
compilers (13), see Figure 1. A horizontal decomposition is based on splitting a single
machine into two or more machines, see Figure 2.
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Fig. 2. A vertical split of machine M into a tower of machines M0, M1, M2.

Existing examples of vertical hierarchies are all sorts of (real-life) interpreters and
compilers. For example given a Pascal interpreter written in Java we would have: pro-
gram written in Pascal−→ Pascal virtual machine (written in Java)−→ Java virtual
machine (written for example in C)−→ C virtual machine−→ etc., where the arrow
reads as “runs on” as defined in Definition 3.

An example of horizontal partitioning would be a functional partitioning of a single
individual virtual machine. Let us imagine that we have a machine that can compute two
operations on the natural numbers domain: addition and multiplication. If we perform
functional partitioning, we can end up with two virtual machines, each computing a
single operation, multiplication or addition, respectively. The union of these two gives
us the original single machine.
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Fig. 3. A horizontal split of machine M into machines M0, M1, M2.



One can enumerate through all the machine levels, starting from the base (funda-
mental) levelM0, up to the final highest-level machine,Mn. The actual input (instruc-
tions) are fed to the machineMn. It is important to remember that, in fact, there is no
special distinction between theprogramrunning on a virtual machine and the program
emulating a particular machine itself.

All the interacting virtual machines are connected by their input/output streams.
The hierarchical structure of that composition can have different forms, depending on
the particular phenomena at hand. It can be a simple linear structure, or it can be a tree-
like structure. In general it is a directed graph, with cycles, with self-referencing nodes,
and possibly with complicated interdependencies (see Figure 5.1).
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Fig. 4. The example of possible dependencies between machines after decomposition

5.2 Partial equivalence

Some machines can be fully or partially equivalent to others; for example a Pascal
virtual machine written in C and a second one written in Java are always perfect and
fully equivalent Pascal virtual machines, even though they use completely different
machines on the lower level. Note that even though these two Pascal virtual machines
have different machines below them, they can have exactly the same virtual machine
one level down, for example a virtual machine for a particular operating system.

One can have a partial Pascal virtual machine that accepts a subset of all possible
programs generated in Pascal. This is referred to asspecialisation. On the other hand



it is also possible to have a Pascal virtual machine accepting a subset of expressions
from the C language, in addition to normal Pascal programs. The process of adding
features to the language and enhancing the input language for a given machine is called
conservative extension(13).

Some machines can be recursively executed on themselves, for example a Java vir-
tual machine interpreter written in Java and executed on a Java virtual machine inter-
preter. Some machines can be functionally equivalent even though they use completely
different language syntaxes or alphabets, for example expressions in prefix, postfix or
reverse Polish notations. All these properties are well known in computer science, in
which specific languages, interpreters and compilers flourish.

Suppose the problem at hand is coded in such a way that the solution can be ex-
pressed as a string of symbols from some language,L. For some languages finding a
solution string is easier than for others: coding the problem is the key issue in solving
the problem. In a sense the languageL captures and exploits some of the properties of
the problem. This is one of the main features of the proposed approach. With recursive
virtual machines we have the necessary framework to model the transformations of a
problem representation from one language to another, and we are able to translate the
original problem into a more easily solvable equivalent.

5.3 Decomposition limits

A particular level from the hierarchy is treated as a virtual machine that provides some
functionality to the other level immediately above it, and uses the level below to have
the computation performed. In other words a particular machine accepts input from one
level, uses other levels to perform computation, and then returns the results back to yet
another adjacent level. The highest level of the chain of machines accepts some input
(instructions), interacts with the level below it by sending/receiving some input/output,
and returns some outputs (results) back. Similarly to the base level, what we consider
the highest level is also arbitrary. There is always a virtual machine feeding the instruc-
tions and accepting the results (e.g. a computer program or a human operator).

A given machine in a chain is formally equivalent to an interpreter or compiler of
another machine located above it. The first, the base level is the very first interpreter,
which we assume as being executed on some universal virtual machine (UVM). In the
case of digital computers (and for the sake of simplicity) we can without loss of gener-
ality assume that the base level machine is equivalent to the Universal Turing Machine
(12). Of course, this is an arbitrary choice, and the decomposition could be carried fur-
ther, treating the UVM itself as a virtual machine, running on some software/hardware
platform and so on, all the way down to electrical and/or chemical reactions and some
physical processes1.

1 Actually, according to (9) we have no reason to stop there, and we can decompose the system
further, based on the idea that physical phenomena itself are running on some (digital, in the
case of Fredkin’s theory) virtual machine.



6 EVM implementation

6.1 Yet another language?

There exist many programming languages developed within the field of Evolutionary
Computation. Many employ usual higher level programming languages designed for
human programmers (such as Lisp for the original formulation of tree-based Genetic
Programming (16)); some are developed with an evolutionary process in mind (35; 28),
and others are developed for machine processing and recursive program manipulations
(31). Some of the languages are highly specialized, and provide the evolutionary mech-
anisms with a bias towards a particular solution subspace. However, none of these lan-
guages provides mechanisms to manipulate levels – a property needed for our EVM im-
plementation. There are other features we want our base machine language to possess,
that none of the existing languages have. For example, we want the language to be capa-
ble of redefining itself. That is, the primitive instruction set must allow the evolutionary
process to restructure and redefine itself. Also, we want a programming language that is
highly expressive, that is, we want solution programs to typically encountered tasks to
be short. And also, we believe that there are efficiency advantages for a language whose
solution spaces are highly recursive.

A programming language used for search in Evolutionary Computation plays an
important role – some programming languages are particularly suited for some, but not
for all, problems. One of the appealing aspects of a multi-level search process is that, in
principle, it can define a new base level and a completely new programming language
that is specialized for the given task at hand. We want to exploit this property.

Some of the existing languages possess some of these desired properties, but no
single one of them possesses all of them. This is why we have designed our own spe-
cialized programming language. The principal objective of the overall programming
language is to facilitate searches for specialized languages for a given set of problems,
and we want the EVM to facilitate that. Even though there is currently a concrete im-
plementation of the base machine for the EVM system (the primitive instruction set),
we treat it only as a temporary list. We are working on redesigning the base machine to
better suit and to help with the search of program generators. So far, we have obtained
some results suggesting the need of some of more computationally intensive primitive
instructions to be included into the base machine. On the other hand, some of the exist-
ing instructions are rarely being used, and will be removed in the next iteration of our
implementation.

6.2 Computing model

The hierarchical computing model presented in the previous sections can be imple-
mented in multiple ways and in many physical programming languages. It should be
understood that the implementation presented below is only one of many possible im-
plementations, and the choice for this particular implementation as distinct form other
computing architectures, is somewhat arbitrary. On the other hand, we have paid consid-
erable attention in order to make the implementation as flexible and robust as possible



and to facilitate different configurations and different experiments in order to fine-tune
the instruction set and the overall computing architecture for general-purpose use.

Our initial implementation of the EVM architecture is based on a stack-machine,
such as Forth (22), or Java Virtual Machine (JVM) (37). In fact, with small differences,
it is exactly the same as an integer-based subset of a JVM.

The main architectural component, similar to the JVM, is the so calledexecution
frame. The schematic view of the execution frame is presented on Figure 6.2.
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Fig. 5. Schema of the execution frame

The basic data unit for processing in our current implementation is a 32-bit signed
integer. The basic input/output and argument-passing capabilities are provided by the
operand Stack, called hereData Stack, or for shortStack. Data Stack is a normal integer
stack, just as in a JVM for example. All the operands for all the instructions are passed
via the Stack. The only exception is the instructionpush , which takes its operand
from the Program List itself. Unlike the JVM, our virtual machine does not provide
any operations for creating and manipulating arrays. Instead, it provides instructions
for and facilitates operations on lists. There is a special stack, calledL-stackfor storing
integer-based lists. The L-stack is implemented as an a-stack (a-stack is a special way
of implementing stack, such that its top element is stored as a special register/variable).
The L-stack top element is stored in a special list calledList. In other words,List con-
tains the “actual” top element of the L-stack, and the top element that is on the stack
of the L-stack is the second topmost element, and so on. The decision to implement
L-stack based on a-stack is purely for efficiency purposes. However it also makes all
the instructions that operate on a List more natural and more intuitive, as they operate
on an actual list, not on the top element of the L-stack. Both, Data Stack and L-stack
(together with the List), are shared between multiple Execution Frames that share a
common thread of execution.



There is a lower-level machine handle attached to each of the execution frames.
This is a list of lists, where each individual list represents an implementation of a single
instruction for the given machine. So, in other words, the machine is a list of lists of
instructions, each of which implements a given machine instruction. Of course, if the
given instruction is not one of the Base Machine units, the sequence must be executed
on another lower-level machine. The Base Machine implements base instructions that
are not reified further into more primitive units. These instructions will be discussed
later in this section.

The program in the Execution Frame is represented as a list of integers. The pro-
gram counter (PC) points to the current instruction in the program list. The PC is itself
an integer, and that limits the theoretical length of any single program to231. This is
however lowered by the maximum length of any list in the system, which is currently
set to100000. Each instruction in the program list points to the appropriate instruction
in the machine. If the value of a given instruction in the program is bigger than the
number of instructions in the given machine, the index of the instruction is calculated
as index = instruction mod machinesize, wheremachinesize is the number of
instructions in a given machine.

Each Execution Frame can reference the parent frame. The parent frame is respon-
sible for creating and initializing the given frame. Base-level frames are those top-level
frames that do not have any parent frame (the reference isnull).

6.3 Execution model

As described in the previous subsection, the EVM program is represented within the Ex-
ecution Frame as a list of integers. Each integer (modulo Machine number-of-instructions)
points to an individual machine instruction, that implements a particular behaviour of a
given program instruction.

There are two possible situations. First, the instruction of a machine may be a prim-
itive instruction, orEVM operation. In that case, the execution of a program instruction
is simple: the behaviour just happens within the current Execution Frame. For example,
if our program contains an integer, that points toadd operation on the Base EVM Ma-
chine, this operation will take two arguments from the Stack, will add them together,
and will put the result back on the Stack.

The second situation is when the instruction of the machine is a composite instruc-
tion, i.e. a list of instructions for lower-level machine. In that case, the execution of a
program instruction proceeds as follows. First, a new Execution Frame is created. This
new Execution Frame is initialized with the Stack of the parent Execution Frame (all
Execution Frames in the same thread of execution share the same stack for parameter
and return value passing). The PC of the new Execution Frame is set tozero , and the
Program List is set to the Machine Instruction List. Then, the control is passed to this
new Execution Frame, which executes this “subprogram”. Once done, the control is
switched back to the parent Execution Frame.

The EVM is Turing equivalent, therefore there exist EVM programs that can run
indefinitely. Each thread of execution has an instruction time limit, to constrains the
time of each program in a multi-EVM environment. That is, each execution thread



(single program) has a maximum number of primitive instructions that it can execute.
Once the limit is reached, the program halts.

6.4 Instruction set

As noted before, the instruction set is modelled after the Forth (22), and Java Virtual
Machine (37) instruction sets.

The instruction set is divided into several categories, which we describe here briefly.
The first category is “Stack and general operations”. This includes pushing constants
onto the Stack, popping, swapping, rolling, duplicating, etc. Some of the example in-
structions are:const1, const0, pop, swap, roll, dup .

The second category is L-stack operations. There are operations for appending,
removing, and manipulating lists on the L-stack. It also contains operations to trans-
fer lists between L-stack and Stack. Some of the example instructions are:lpop,
lpopn, lswap, ldup, ldepth .

The third category contains List operations, and includes transferring elements be-
tween List and Stack, and manipulating List elements. Some of the example instructions
areprepend, append, load, store, length, rmf, rml, rm, rmn .

The fourth category contains operations for manipulating the Machine list of lists.
This includes similar operations to L-stack operations, but here they refer to Machine.
Some example instructions are:mappend, mprepend, mload, mstore, mrmf,
mrml, mrm, mins .

The fifth category comprises the three level-related operations. These arespawn ,
up anddown. We will discuss them in more detail below.

The sixth category contains all the control instructions. This list is based on the JVM
control operations, and contains the following instructions:ifeq, ifneq, iflt,
ifle, ifgt, ifge, goto, jmp . There are three extra instructions.exec takes
the content of the List, and instantiate new Execution Frame and executes as if List is a
program to be executed. This is equivalent of executing dynamically created subroutine.
The other two instructions are two “search and jump” instruction. They take the element
from the operand stack, and search forward (jmpsf ), or backward (jmsb ) to find same
element in the program list and jump to the next instruction following that element.

The seventh and eighth categories contain all the Logic and Arithmetic operations.
Logic operations are:shl, shr, ushr, and, or, xor, andnot . Arithmetic
operations are:add, inc, sub, dec, mul, div, rem, andneg .

6.5 Multi-level computation

The key feature of the EVM, apart from its clean and elegant “zero operand architec-
ture” (8), is that it offers multi-level processing. This is like having unrestricted reflec-
tion and reification mechanisms built-in for the virtual machine itself. The computing
model is relatively fixed at the lowest-level, but it does provide the user with multiple
computing architectures to choose from. The model allows the programs to reify the
very virtual machine on the lowest level. For example programs are free to modify, add,
and remove instructions from or to the lowest level virtual machine. Also, programs can



construct higher-level machines and execute themselves on these newly created levels.
Not only that – a running program can switch the context of the machine, to execute
some commands on the lower-level, or on the higher-level machine. All together it pro-
vides unlimited flexibility and capabilities for reifying EVM execution.

Let us consider a particular example. Imagine, that we are tasked with writing a
program to add a given numberN of integers. AllN integers are provided on the Data
Stack, and the result is expected to be on the stack. We make it an incremental problem,
by iterating from1 . . . N . On the base machine we only have arithmetic operations,
such asadd . Theadd operation takes two arguments from the data stack, adds them
together, and puts the result back on the top of the stack. The task of adding two numbers
can be solved by a program with one instructionadd . The task of adding three numbers
requires twoadd instructions, and so on. If we generalise it forN , the simplest program
would look like this:

add add add ... add /* (nth-1 instruction) */

Given that the solution forN would be provided as a prefix for the program that
must solve the task forN+1, the probability of randomly generating the postfix code for
theN + 1 problem would be1/|BM |, where|BM | represents number of instructions
in the base level machine.

With the multiple-levels, the prefix however can specialise a higher level machine
for the “adding numbers” problem. This can be easily achieved by creating a higher
level machine, with only one instruction, that adds two numbers. The program would
look like that:

push add /* pushes code for ADD instruction */
depth /* pushes 1 on the stack */
popn_l /* appends 1 element into the list*/
const_1 /* pushes 1 on the stack */
spawn /* creates a higher level machine */
up /* changes to the higher level */
0 ... 0 /* instruction repeated nth-1 times */

Note, that it takes only 7 instructions to construct and switch to the higher level ma-
chine, whose sole purpose is number addition. The higher level machine is a specialized
machine that can only add numbers. It does not matter what theN − 1 instructions are
that are actually appended to the end of the program. The program will always correctly
addN numbers. In this case, the probability of solving theN + 1 problem becomes1,
as any of the added instructions would map to the single instruction on the higher level
machine.

Of course, this is an extremely simple case, but it demonstrates the specialization
capabilities of a multi-level computing machine. The governing idea is to create a cus-
tom specialized language and to solve the problem in that language, instead of trying to
solve it in the original language of the base machine.



6.6 EVM and its expressiveness

We were inspired by the expressive power of a simple programming language designed
by Schmidthuber (31). However, we noted, that some of the recursive functional con-
structs he introduced in his language could be done more simply (i.e. making them
shorter) in our own language for EVM.

For example, in Schmidhuber’s language a recursive call to define and to calculate
the factorial ofN , assumingN is placed on top of the data stack, takes 14 instructions
and has the following form:

c1 c1 def up c1 ex rt0 del up dec topf dof mul ret

In our language it is only 8 instructions, and the program looks like this:

dup halt0 dup dec lpush_p mappend mlcall mul

Note, ourdup is equivalent to Schmidhuber’sex , halt0 is equivalent tort0 ,
mdepth to topf , mlcall to topf anddof executed together.lpush p copies the
current program list into the List, andmappend appends the newly defined program
from the List as a new primitive instruction to the base machine.mlcall executes
the last instruction from the current machine instruction list. Our program is shorter,
because (a) we do not need to define the number of arguments and result values, (b)
we do not need to explicitly callret , and (c) in our language defining a new program
based on the current program in the List takes one instruction, and based on the program
in the Program List, takes only two instructions.

Similarly, in the case of a context free grammar problem described by Schmidhuber
(31), his solution is 5 instructions long, and looks like this:

defnp c1 calltp c2 endnp

Our code takes only 3 instructions:

c1 rwhile c2

rwhile is a “recursive while” instruction, that works in the following way: it
checks the top of Data Stack; if there is value0, it halts, otherwise, it forks to a re-
cursive call back to the original program.

Because the EVM is more expressive, any search method, including Schmidhuber’s
optimal problem solver, should find the appropriate solutions faster.

6.7 Program ontogeny

Let us view a program input as a sequence of integers on the Data Stack, and consider
a single program loaded into the Program List in the Execution Frame. Both, the input,
and the program, can be divided into two subsequences indexed1 andn, in such a way,
that the first subsequence of a program,P1 (program with index1) reads all the data
from theD1 subsequence.P1 will produce some results on the Data Stack, and it can
also manipulate the program list itself. Hence, the remaining subsequence on the Data
Stack is now longer, and the remaining program on the program list may differ from



the original program list. If this process is repeated recursively, the final program, and
the final data that this program reads, will be remapped from whatever was originally
on the Data Stack, and inside the Program List. This process is referred to as Program
Ontogeny. It demonstrates the development of the final (mature) stage of a program
from some initial (larval) stage, through a sequence of transformation steps.

6.8 EVM and hypercycles

In the current implementation of the EVM architecture, we employ two initial designs
that facilitate the hypercyclic dependencies. One of them is based on the notion of self-
replication of the EVM programs. The other is based on the notion of cyclic data flow.
They each, in a way, complement each other. We will describe them below based on
simple examples.

Self-replication. If a given program produces an output, and this output is identi-
cal to the program that produced it, we have a self-replicating EVM program. In other
words, we have a program that can calculate (produce) itself. If a programP1 produces
another programP2, such thatP2 is not equivalent to the original programP1, but in
turn,P2 produces a programP1, than we have a a hypercycle. Depending on the com-
plexity of each of the individual programs, and their ontogeny, it may exhibit interesting
autopoietic dependencies.

Data flow cycles. Each program within a multi-EVM environment fulfills its func-
tion in a narrow spectrum of data inputs, and produces its outputs again, in relatively
narrow spectrum out of all possible outputs. For example a solver for “n-addition prob-
lem” cannot be given different input than it expects, otherwise it will not work as an
“n-addition” problem solver. However, if the output ofP1 is connected to the input of
P2, and the output ofP2 to the input ofP1, then we have a cycle. If the cycle keeps
the data flow within expected and desired ranges of values, we have an autocatalytic
hypercycle. Together with the actual programs they represent an autopoietic system.

7 Self-organisation by means of evolutionary computation

7.1 Requirements

There are some inherit properties that the self-adaptive and self-organising software
system may exhibit. These properties facilitate effective processes to help and guide
evolutionary mechanisms. Our current EVM implementation facilitates some of these
properties.

Split and splice.It is desirable that different individual functional units are freely ma-
nipulated. It means that one can put different components together, and then split
them apart, always producing valid functional units within the system. This is sup-
ported by the EVM. Each program can be cut in the middle, and the parts will
always form valid programs. Programs can be joined together, always producing
valid programs. Actually, any sequence of integers is a valid program in a EVM.



Cyclic behaviour.All individual components of the software system must carry out
their activities in a cyclic manner. That means that the functionality is organised
in such a way that tasks are repeated over and over again so that tuning, self-
organisation, and adaptability can take place. If a given task were to be designed to
be performed only once, there would be no room for improvement, since the given
component would only have a single opportunity to perform.

Many agents on many levels.There are benefits from having many independent inter-
active components acting on many different levels. Reflection and recursion among
components can facilitate shorter and more robust solutions to given tasks per-
formed by components of the system. Some components will just perform tasks,
some will monitor others performing tasks and provide necessary feedback for im-
provement, and others will improve the “improvers”, etc.

The system must be open to external signals.This simply means that the system has to
interact with the “outside”. A software system which does not exchange any infor-
mation with the environment “outside” the system itself cannot evolve into a more
complex system than the original one. Without being exposed to new information
the system can only refine itself, and is unable to acquire new capabilities. Such
information must be provided from the outside environment.

7.2 Evolving recursive virtual machines

The field of evolutionary computation is mainly based on experimentation, and so far it
is primarily a trial and error approach. In light of all the advances in theoretical com-
puter science and given the conceptual framework of recursive virtual machines, it is
now possible to introduce a more systematic approach. Within EVM, each different
evolutionary system is an example of a virtual machine, each language is an example
of a different search space, and each system is an example of the interplay between
different aspects of the hierarchical organisation.

Probably one of the closest existing systems using the concept of a virtual machine
in the form of a hierarchy is the grammatical evolution system (28). In this system, a
top-level search is performed on strings of integers. A string containing integers is fed
into a particular machine to produce a computer program coded in a particular language
as output. This code is then fed as input to yet another machine, which in turn returns a
final result. Each of the levels is relative to the level below it; this relativity means that
the same top-level string of integers will produce a completely different result when
used in combination with another machine. The top-level machine accepting the strings
of integers is designed in such a way that it can “plug-in” to any possible second-
level machine, and the model will still work. This is a human designed feature, but
it is inspired by many naturally occurring phenomena. The multiple levels of indirect
influences seems to be the most powerful mechanism at work here.

Instead of designing such machines, and all the indirection levels, by hand, we be-
lieve that with our approach this process can be automated, and the virtual machine
suitable for a particular class of problems can be discovered automatically.



7.3 Seeds and solution growing

Let us take a grammatical evolution system (28) as an example of the solution growing
concept. The solution for a problem at hand is effectively a proper hierarchy of ma-
chines (in this case a BNF-encoded language grammar) and a string of integers as a
symbolically encoded solution, which we refer to as aseed. In the case of a grammat-
ical evolution system, the hierarchy of machines is designed by a human programmer
before the search for the proper seed is started. However, the hierarchy of machines
needs to be discovered as well. sought-after solution itself.

In general, the solution to the problem (finding a computer program) will be a hierar-
chy of machines together with the seed. The actual computer program is then generated
by feeding the seed through the system. In the case of grammatical evolution, speaking
informally, the generation process is (in order): feeding the string of integers, generat-
ing the program listing, running the program for the given input, and then obtaining the
final solution. The given input in this case depends on the “outer-level” virtual machine.

It is, however, possible to change or modify the machine hierarchy just before gen-
erating the computer program. If the hierarchy of machines, their connections and the
initial states are subject to change, we refer to the process of generating a final solu-
tion assolution growing. In the case of searching for code, one can use the termcode
growing instead. It is possible, by varying the hierarchy of machines, to grow a valid
solution from the same seed for a certain variation of the original problem. By simple
re-mapping, one can achieve exactly the same result by varying the structure of the
seed itself. This opens a new window of opportunities not yet used by the automatic
code generation techniques. Again, it is a very commonly occurring phenomenon in
nature.

Formally the idea ofcode growingis based on the notions ofbootstrappingandself-
application. This is analogous to more traditional compiler/interpreter bootstrapping
and self-application (13).

8 Summary

An architecture of dynamic hierarchically organised virtual machines as a self-organising
computing model has been presented. It builds on Turing-machine-based traditional
models of computation. The model provides some of the necessary facilities for open-
ended evolutionary processes in self-organising software systems. It allows stacking
machines (vertical decomposition) in addition to more traditional functional hierarchi-
cal decomposition models. It can be used as a more systematic approach to different
code generation techniques and self-adaptable software. Unlike existing models, the
emerging levels of organisation can be either modelled directly as individual machines
or can be indirectly captured for a formal analysis as a state of an individual machine.

Applications using the proposed architecture are possible and are planned as future
work. Also, the formal model presented here allows for the preparation of an opera-
tional definition of a living system. However, further formalization of the framework is
necessary, and is currently under investigation by the authors.
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