
Self-Adaptation and Dynamic Environment
Experiments with Evolvable Virtual Machines

Mariusz Nowostawski
Lucien Epiney
Martin Purvis

The Information Science
Discussion Paper Series

Number 2005/03
March 2005

ISSN 1177-455X



University of Otago

Department of Information Science

The Department of Information Science is one of seven departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/


Self-Adaptation and Dynamic Environment
Experiments with Evolvable Virtual Machines

Mariusz Nowostawski1 and Lucien Epiney2 and Martin Purvis1

1 Department Information Science
University of Otago, Dunedin, New Zealand

(mnowostawski,mpurvis)@infoscience.otago.ac.nz
2 Swiss Federal Institute of Technology

EPFL, Lausanne
lucien.epiney@epfl.ch

Abstract. Increasing complexity of software applications forces researchers to
look for automated ways of programming and adapting these systems. Self-adap-
ting, self-organising software system is one of the possible ways to tackle and
manage higher complexity. A set of small independent problem solvers, work-
ing together in a dynamic environment, solving multiple tasks, and dynamically
adapting to changing requirements is one way of achieving true self-adaptation in
software systems. Our work presents a dynamic multi-task environment and ex-
periments with a self-adapting software system. The Evolvable Virtual Machine
(EVM) architecture is a model for building complex hierarchically organised soft-
ware systems. The intrinsic properties of EVM allow the independent programs
to evolve into higher levels of complexity, in a way analogous to multi-level, or
hierarchical evolutionary processes. The EVM is designed to evolve structures of
self-maintaining, self-adapting ensembles, that are open-ended and hierarchically
organised. This article discusses the EVM architecture together with different
statistical exploration methods that can be used with it. Based on experimental
results, certain behaviours that exhibit self-adaptation in the EVM system are
discussed.

1 Introduction

Existing evolutionary computation techniques, such as genetic programming (GP) [3],
linear genetic algorithms (GAs) [13], and others [2], have proved to be successful in a
broad range of optimisation problems and applications. These methods, however, are
operating on a predefined, fixed fitness landscape and therefore are very difficult or
even impossible to be used in multi-task dynamical environments. In this article we
propose a new model of evolutionary computation that can be used in highly dynamic
environments. Moreover, our model can be used with traditional linear GA evolutionary
learning, with random search, and with many other stochastic search methods. Our
framework consists of a set of independent computing cells that compete for limited
resources. These computing cells are able to dynamically change their functionality
and functional dependency to meet changes in their environment. They form a web
of interacting computational agents that exhibit self-organisation and self-adaptability
without direct user interaction.

1



2 Computation and biological inspirations

Current research in EC emphasises information-centric methods that are inspired by
Darwinian theory of random mutations and natural selection. This is visible in well-
established computational optimisation methods, such as genetic algorithms (GA), ge-
netic programming (GP), and their variations, such as assorted artificial life systems.
Despite some successes, the typical simple single-layer evolutionary systems based on
random mutation and selection have been shown to be insufficient (in principle) to pro-
duce an open-ended evolutionary process with potential multiple levels of genetic ma-
terial translation [1; 17].

The Evolvable Virtual Machine architecture (EVM) is a novel model for building
complex hierarchically organised software systems. In this article we describe how the
original abstract EVM model [9] has been extended by the elements of symbiogenesis,
that allow independent computing elements to engage in symbiotic relationships.

From the biological perspective, the abstract EVM model is primarily based on Dar-
win’s principle of natural selection, which is widely used in current computational mod-
els of evolutionary systems for optimisation or simulation purposes, and in evolutionary
computation (EC) in general. Some authors regard natural selection as axiomatic, but
this assumption is not necessary. Natural selection is simply a consequence of the prop-
erties of population dynamics subjected to specified external constraints [1].

Our work proposes an evolutionary model inspired by the theory of hypercycles
[1], autopoiesis [7], and symbiogenesis [8]. A system which connects autocatalytic or
self-replicative units through a cyclic linkage is called ahypercycle. Compared with a
simple autocatalyst or a self-replicative unit (which we can consider here to be a “flat”
structure) a hypercycle is self-reproductive to a higher degree. This is because each of
the intermediaries can itself be an autocatalytic cycle.

The EVM system consists of an interconnected network of processing units (cells
or agents) that can only interact with their neighbours. These processing units are au-
tonomous, they do not have pre-assigned functions, can specialise in different tasks and
can utilise the processing structures of their neighbours. Initially, each single processing
unit potentially benefits from Universal Turing Machine (UTM) equivalent computing
capabilities. In time, some of the cells can specialise in tasks requiring different (lower)
computing power, i.e. specialisation of the virtual machines occurs. On the other hand,
each processing unit can make use of other processing units, via a symbiosis-like rela-
tionship, thus creating a web of interconnected machines.

2.1 Symbiogenesis and specialisation

Proponents of symbiogenesis argue that symbiosis is a primary source of biological
variation, and that acquisition and accumulation of random mutations alone are not suf-
ficient to develop high levels of complexity [5; 6]. K. Mereschkowsky [8] and I. Wallin
[14] were the first to propose that independent organisms merge (spontaneously) to
form composites (new cell organelles, new organs, species, etc). For example, impor-
tant organelles, such as plastid or mitochondria, are thought to have evolved from an
endosymbiosis between a Gram-negative bacterium and a pre-eukaryotic cell.

2



Another (less speculative) phenomenon that occurs at all levels of biological organ-
isation from molecules to populations, is specialisation. It is the process of setting apart
a particular sub-system (reducing its complexity) for the purpose of better performance
and/or efficiency of a particular function. Our working hypothesis is that specialisation,
together with symbiosis, is necessary to reach higher complexity levels.

Some recent work in incremental reinforcement learning methods also advocate the
retention of learnt structures (or learnt information) [10]. The sub-structures developed
or acquired during the course of the program self-improvement process are retained in
the program data-structures. It is therefore surprising that this general procedure has
not been exhibited by any of the (standard) evolutionary programming models, such
as GP or GAs [13]. Although these evolutionary programming models are inspired by
biological evolution, they do not share some significant aspects that are recognised in
current evolutionary biology, neither can they be used (directly) in an incremental self-
improvement fashion.

2.2 Abstract self-organising application architecture

Simplified, the model presented here can be depicted schematically as in Figure 1, with
inputs and outputs connected to the external environment. The environment consists of a
set of current tasks to be solved, with an appropriate resource pool associated with each
task. The environment also keeps track (via the tasks) of the current resource utilisation
for each given task. The user can dynamically plug-in new tasks, and remove existing
ones, at will. In Figure 1 the resource marked asR1, is utilised by 5 computational cells
(cells with same gray hue on the grid). Similarly, the other two resourcesR2 andR3 are
utilised by cells indicated by other matched shading types.

Fig. 1. EVM system from an end user point of view.

3 EVM – Evolvable Virtual Machines

The programming language used for search in EC plays an important role. Some lan-
guages are particularly suited for some, but not for all, problems. An appealing aspect
of a multi-level search process is that, in principle, it is possible to specify a new base

3



level and a new programming language that is specialised for a given task at that level.
We want the EVM to exploit this property.

In our work we deal with programs capable of universal computation (e.g. with
loops, recursion, etc.). In other words, the virtual machine running our programs must
be Universal Turing-machine equivalent.

Fig. 2. Schematic representation of two-level machine execution. The execution frame is execut-
ing the5th instruction of programP , that calls program3 of machineM1. The first instruction of
the3rd program ofM1 is the primitive instructionswap that will swap the two topmost elements
of the data stack.

None of the existing languages used in EC provides mechanisms to manipulate ma-
chine levels – a property needed for our EVM implementation. There are other features
we would like the base machine language to possess that none of the existing languages
have. For example, it is desirable that a language be capable of redefining itself. Thus the
primitive instruction set must allow the evolutionary process to restructure and redefine
that set. We would also like to have a programming language that is highly expressive,
that is, we want solution programs to typically encountered tasks to be expressible in
compact form. Moreover, we believe that there are efficiency and expressibility advan-
tages for a language with solution spaces that are highly recursive.

Some existing languages possess some of these desired properties, but no single one
possesses all of them. For this reason we have designed our own specialised program-
ming language, called ’EVM assembly’. The principal objective of this programming
language is to facilitate searches for languages specialised for a given set of problems.

3.1 Implementation

Our current implementation of the EVM architecture is based on a stack-machine, such
as Forth, or the Java Virtual Machine (JVM). In fact, with small differences, it is com-

4



parable to an integer-based subset of the JVM. The implementation is written entirely
in Java, and developers can obtain it from CVS3.

The basic data unit for processing in our current implementation is a 32-bit signed
integer. The basic input/output and argument-passing capabilities are provided by the
operand stack, called herethe data stack, or for shortthe stack. The data stack is a
normal integer stack, just as in a JVM for example. All the operands for all the in-
structions are passed via the stack. The only exception is the instructionpush , which
takes its operand from theprogramitself. Unlike the JVM, our virtual machine does not
provide any operations for creating and manipulating arrays. Instead, EVM facilitates
operations on lists. There is a special stack, calledthe list stackfor storing integer-based
lists.

Execution frames are managed in a similar way to the JVM, via a special execution
frames stack. There is a lower-level machine handle attached to each of the execution
frames. This is a list of lists, where each individual list represents an implementation of
a single instruction for the given machine. In other words, the machine is a list of lists
of instructions, each of which implements a given machine instruction. Of course, if the
given instruction is not one of the Base Machine units (primitive instructions for that
machine), the sequence must be executed on another lower-level machine. The Base
Machine implements all the primitive instructions that are not reified further into more
primitive units.

Potentially, EVM programs can run indefinitely and therefore each thread of exe-
cution has an instruction time limit to constrain the time of each program in a multi-
EVM environment. Each execution thread (a single program) has a maximum number
of primitive instructions that it can execute. Once the limit is reached, the program
unconditionally halts.

The EVM offers unrestricted reflection and reification mechanisms. The computing
model is relatively fixed at the lowest-level, but it does provide the user with multiple
computing architectures to choose from. The model allows the programs to reify the
virtual machine on the lowest level. For example, programs are free to modify, add, and
remove instructions from or to the lowest level virtual machine. Also, programs can
construct higher-level machines and execute themselves on these newly created levels.
In addition, a running program can switch the context of the machine, to execute some
commands on the lower-level, or on the higher-level machine. All together it provides
near limitless flexibility and capabilities for reifying EVM execution.

3.2 Extensions

One possible way of extending current EVM implementation is by adopting bias-optimal
search primitives [4], or the incremental search methods [11]. To narrow the search, one
can combine several methods, for example it is possible to construct a generator of prob-
lem solver generators, and employ multiple meta-learning strategies. A more detailed
description of the abstract EVM architecture is given elswhere [9].

3 http://www.sf.net/projects/cirrus

5



4 Specialisation of an individual machine

Given an initial set of instructionsI, the specialisation mechanism will aim to find pro-
grams fromI∗ (the set of all possible sequences of instructions) that solve tasks defined
by the environment. We have tried, independently, three different search methods for
our EVM model: 1) random search; 2) GA with variable lengths of chromosomes; and
3) stochastic search based on a probability distribution of individual instructions.

For preliminary testing of these different search methods we used programs that
control an agent moving on a two-dimensional discrete grid. The cells on the grid may
contain rewards. Grids for experiments 1, 2, and 3 are depicted in Figure 3. In exper-
iments 1 and 2 the rewards are persistent on the grid. In experiment 3, the agent can
obtain each reward only once from a given cell (i.e. volatile rewards). This constraint
has been added to force the agent to follow a path. The initial position of the agent is
always the top left corner. Execution time is limited to 100 time steps for the first two
experiments. This means, the ideal program for experiment 1 would be 100 instructions
long, and will collect 100 reward units. For experiment 2, the perfect program would
be again 100 instructions long, and would collect 99 reward units. Note, that there is
a trade-off between the total number of rewards and the length of the program. For a
program of length 6 that utilizes loop, the total number of rewards for experiment 2 is
66. For third experiment the time limit is set to 12 time steps and the total number of
possible reward units collected is 12. The base instruction set has been extended with 4
special instructions:down, up , right , andleft to move the agent on the grid.

Fig. 3. Grid configuration for experiments 1, 2, and 3 respectively (the actual size of the grid is
100x100 instead of 7x7). Dark cells contain rewards

4.1 Specialisation with the use of Random Search

Random search is the simplest mechanism to specialise a machine. For each single cell
it generates random programs. If one of the programs is successful, it will stay; and if it
is not successful, then a new program will be randomly generated and tested4. On one

4 In our implementation this is implemented by the following algorithm. First step: create a ma-
chine with a randomly selected program. On request return that program, and if that program
received a reward,freezeit, i.e. always return the same program to the evaluator. If the program

6



hand, random search cannot take advantage of regularities in the fitness landscape. But
on the other hand, it has no parameters, is fast, and needs very little memory.

For arithmetical problems, the landscape basically consists of one big peak with a
steep slope (rewards are either all or nothing). In such circumstances, random search is
appropriate and performs quite well when compared with other methods. Moreover, by
implementing the simplest possible search mechanism for every cell, it is possible to
focus on macroscopic behavioural patterns, i.e. how cells interact to compute a complex
solution.

In the general case, though, most problems (like the maze experiments) display
regularities in the fitness landscape. For that reason, we seek more complex search
mechanisms that can take advantage of these regularities.

4.2 Specialisation with the use of Genetic Algorihtms

For our implementation of the genetic algorithm (GA) module, chromosomes are rep-
resented as lists of integers. There is an extra mutation operator that inserts or deletes
individual instructions into the program, and for all the experimental runs the probabil-
ities of addition and removal were set to the same rate. The initial size of the program,
as well as all the other mutation and crossover probabilities, varied, so it was possible to
hand-tune the parameters for a given problem to achieve satisfactory GA performance.
For experiment 1 we used a population size of 1000 and up to 2000 generations, with
the probability of crossover set at 0.8 and the mutation rate set at 0.01 (the add/remove
probability was set at 0.05). The GA-based search did not have any trouble finding
suboptimal solutions that utilize loops, but it was unable to find a global optimum.

Trade-off between exploration and exploitation.The main drawback of the GA-
based search was that it does not dynamically adapt to different exploration strategies
for different environments. Exploration in GAs is basically performed by the mutation
operation. For example, in experiment 2, often a single run of GA-based search was un-
able to find any rewarded sequence for 3000 generations with 1000 individuals. Thus,
the success of the GA run depended purely on the initial randomly generated popula-
tion. If it was initialized without any goodbuilding blocks, the population was unable
to discover any useful subsequence purely by mutations alone5

Converging to suboptimal solutions.The GA-based search always prefers shorter
solutions to the longer ones, because shorter ones are statistically more stable. The
heavy use of loops prevents GA-based search from finding global optima (apart from
experiment 3, where GA-based search in half of the runs was able to find the global
solution).

Stable prefix and bloat of introns at the tail.GA-based search generated solutions
that are characterized by a relatively stable prefix, and a very long chaotic tail of introns.

solves a task, it will be rewarded and its cumulative rewards will be higher than zero. If the
program does not solves the task, subtract a fixed amount from the cumulative rewards. Return
the samefrozenprogram for each request, until the frozen program cumulative rewards are
zero, and the program is starving. Then, go back to the first step, and create different random
program.

5 The probability of such an event is around 0.0000000164: there are 78 instructions in total,
and the minimal length of a rewarded program is 2.

7



Introns are simply instructions that are either not executed at all, or, when executed do
not have any negative or positive side-effects for the program. Again, exploration of
the program space tends to concentrate on the end of the program structure. The closer
to the beginning, the more stable the instruction become. This is very similar to the
“freezing” mechanism discussed in the next section in regard to stochastic search.

4.3 Specialisation with the use of stochastic search

For the stochastic search we assumed that the number of instructions per program, and
the number of programs per machine were limited. The basic idea is that by limiting
the size of the machine we can assign a probability distribution to each instruction of
the machineM . For each instruction ofM , there is a probability distribution over its
possible values (Figure 4).

Fig. 4. Every instruction of a machineM contains a probability distribution over its possible
values

To evaluate a machine, specific values are randomly picked representing the instruc-
tions ofM according to their probability distributions. The result is an instancem ofM ,
which will be used in an attempt to solve a problem. Programs ofm will then be exe-
cuted until a solution is found. Depending on their success, probabilities of programs of
m will be increased or decreased. Every time a rewardr is gained with a programp, the
probabilities ofp’s instructions are increased. On the other hand, ifp was not successful
(implying no reward), the probabilities of its instructions were decreased slightly.

In addition to finding the solution to a particular problem, this mechanism is aimed
at rememberingsolutions. The intent is to store these solutions in the machine’s list of
programs. For instance, a machineM can specialise in solving arithmetical operations.
The environment provides several arithmetical problems.M will more or less randomly
explore the space of possible programs until it starts finding the first solutions. Then by
solving the same tasks again and again, probabilities will increase, and solutions will
progressively be stored inM ’s programs.

Correlation between instructions.The primary drawback of the stochastic approach
(and to a certain extent GAs, as well) is that it does not take into account correlations

8



between instructions. The program’s measure of quality highly depends on all its in-
structions taken together. Changing one of them may disrupt the entire program and
penalize the other instructions, even if these are likely to be beneficial. Storing condi-
tional probabilities might be a potential solution to that problem. Ideally, we could store
successful subprograms’patternsof any length in a probability tree. It would then be
equivalent to a Markov-chain based stochastic search. Experiments are currently being
performed to evaluate this approach.

Freezing mechanism.Since instructions are randomly selected according to their
probability distributions, there is always a probability of not selecting an important
instructioni. To be surei is in the program, the search mechanism tends to increase
its probability in consecutive placeholders as well. Therefore, the search wound up
confined to local optima such as

right down right down down right down (3 reward units)

for experiments 1 and 2. This is especially disappointing, because during the evolu-
tionary process, the search mechanism does find some good solutions (up to 66 reward
units in the 2nd experiment) but fails to remember them. The search process can be
enhanced by introducing afreezing mechanismthat will progressively ”freeze” values
in a program’s instructions according to the following quasi-algorithm:

1. Assignn← 1 (start from the first instruction)
2. If the probability of then-th instruction has been almost maximal (within prede-

fined threshold) for the number of iterations (another predefined constant), set the
probability to 1 and don’t modify it anymore (freezeit). Setn← n+ 1

3. Reset all the probabilities of the tail of the program, i.e. for all the instructionsn+1
and above.

4. n← n+ 1 and return to step 2 until the entire program has been frozen.

The freezing mechanism has proved to be highly effective in many different prob-
lems we have tried, and it has always outperformed the stochastic search without freez-
ing. In experiments 1 and 2, indeed, the search converges to solutions containing a loop,
either with 2 or 4 agent movements instructions inside it (the more movement instruc-
tions, the higher the total reward). For instance, the second experiment produces these
solutions:

down right right left const 2 goto (50 reward units)
down right right down left up const 2 goto (66 reward units)

The first program moves the agent: down, right, right, then left. After that sequence,
a value of2 is placed on top of the stack (instructionconst 2, and instructiongoto
moves back to the third instruction in the program (right ). The sequence of agent
movements:right , left is executed indefinitely in the loop.

Long programs.Even with the help of the freezing mechanism, it becomes very
difficult to build up longer programs, especially when a shorter (yet less rewarded) one
is possible. The third experiment demonstrates this. Instead of finding the better 12-
instructions-long program, all of our search methods are more likely to attempt to find
a pattern to insert in a loop, e.g.:

9



right down right down down const 0 goto (7 reward units)

Since this program is shorter, it is more likely to be picked. It gets smaller rewards than
the best solution, but it gets them more often, and for this reason it dominates. Again,
this issue may be corrected by a probability tree.

5 Experiments with a web of interacting agents

Suppose that several machines lie on an n-dimensional grid (all executed asynchronously).
In addition to primitive instructions (likeadd , swap,. . . ), a machine can also access its
neighbours’ programs. There is no specific constraint on the grid’s topology. It can be
n-dimensional, and the neighbourhood can be as big as desired. In the extreme case, we
could imagine a grid or web in which every machine can access every other machine.
So far we have run experiments with two-dimensional grids with four neighbours, but
other experiments with different topologies are planned to investigate further the impact
of neighbourhood relation and locality.

A program now can look like the following:

add dup program2ofLeftNeighbourmul program1ofRightNeighbour

Moreover, if a program gets a reward, it will share it with any neighbour’s program
used to compute the solution. Both of them will benefit from their relationship. In other
words, symbiotic relationships may appear between programs. This ability to access
neighbours’ programs has thus opened the door to complex hierarchical organization.
As a consequence, machines are now able to collaborate to solve complex problems.

Consider the following example. On the grid are some machines (agents) specialised
in list manipulation, and some specialised in recursion problems. The task is now to
solve a problem involving both list manipulation and recursion. Cells surrounded by
machines specialising for these two problems have the opportunity to find solutions
to the task by accessing programs of their neighbours. Some machines will specialise
in solving these simpler tasks and might be used by their neighbours to solve a more
difficult task. A simple case, with two simple arithmetic tasks (2x and3x) and one more
complicated (3x+ 2y), is depicted in Figure 5.

This computational model is thus well-suited for incremental problem solving. If
solutions (or some part thereof) to some tasks can be reused to solve more complex
ones, the EVM will take advantage of it. Indeed in such conditions, useful neighbours
are more likely to appear.

5.1 Environment

From a machine learning point of view, the environment consists of a set of tasks to
be solved (multitask learning). For the search process to be efficient, the model should
fulfill the following requirements:

1. All tasks must be solved (eventually).
2. Solving difficult tasks should lead to greater rewards than easy ones.

10



Fig. 5.Typical run exhibiting self assembly. After 5,000 iterations, several machines can solve the
two simple tasks (2x and3x). After 10,000 iterations, one machine (m1,3) uses its neighbours
to solve the hard task (3x + 2y), and all of the machines share the rewards (symbiosis). Shortly
afterwards, some of its neighbours take advantage of it: they simply solve the task by calling
m1,3 (parasitism). Finally, after 20,000 iterations, we can observe another cluster of solutions at
the bottom of the grid.

3. Computational resources (i.e. agents not currently solving any task) should focus
on unsolved tasks.

4. Solutions must not be forgotten, as long as they are useful.
5. Knowledge diffusion across the web of interacting machines should be facilitated.
6. Dynamic environments should be supported: tasks can be added and/or removed at

any time, dynamically.

From an artificial life point of view, one can view the environment as having to
manage foodresources, that are to be dispatched to the agents trying to consume them.
Every resource represents a task to be solved. Every resource has two attributes:quan-
tity and quality. Values for these attributes specify how much food (reward) will be
given to the cell that consumes from the given resource.

The parameterQUANTITY (capitalized to highlight its static nature) represents
the abundance of resources in the environment. This value is set as ana priori conjecture
by the modeller and is the same for each of the resources. It allows us to tune the amount
of agents that will be able to survive.

The resource’s quality has to reflect how difficult a task is. It facilitates a mecha-
nism to give more rewards for hard tasks (requirement 2). There are several ways of
measuring the difficulty of a task. Some area priori (using expert knowledge), but it is
more interesting to adjust it dynamically based on the observed difficulty. For example,
the resource’s quality may be set based on the observed average time it takes to solve it,
or on how many agents can solve it, etc. We decided to set the resource’s quality to the
current minimal number of cells required to solve the task. It will reflect dynamically
the task’s complexity without depending on randomness and without the use of extra
parameter that would need to be tuned for the search process.

When a cell consumes a resource, it gets the following amount of food:

food =
QUANTITY quality

consumers
,

11



whereconsumers is the number of agents eating the resource. Moreover, a cell has to
share its food with all the neighbours it used to solve the task. Every cell used will get
the same share of food6.

At every iteration, a cell needs to eat a certain amount of food:FNEEDED. If it eats
more, it can makes provisions by storing it. On the other hand, if it eats less it will die
from starvation once its provisions are empty.

provisiont = provisiont−1 + food− FNEEDED

5.2 Parameters and their impact

The two main parameters: the resource’s quantity and the food needed for a cell to
survive can be represented as one parameterDENSITY .

DENSITY =
QUANTITY

FNEEDED SIZE
,

whereSIZE is the total number of cells. This simplifies the model, because only the
respective ratio is really important.DENSITY controls the utilisation of the cells on
the web. Figure 6 depicts two different settings for that parameter.

Fig. 6. Two different settings for theDENSITY parameter (left: 10%; right: 30%).

Equilibrum/stabilityAnother parameter,PROV ISIONMAX , has been added. It
sets a maximal bound for provisions stored by a cell. Its value drastically affects the
dynamism of the web. IfPROV ISIONMAX is high, most of the cells are stable and
only a few appear and disappear (scenario A). IfPROV ISIONMAX is low, we ob-
serve much more dynamic structural patterns on the web, with cyclic episodes similar
to a kind ofcatastrophescenario [12]. Good solutions spontaneously appear in the web,
and after a while there are too many cells competing for the same resource. As a conse-
quence, the quantity of the resource they are consuming decrease below theFNEEDED
threshold. Since they don’t have enough provisions, they will soon almost all disappear.
New cells can then start a new cycle (scenario B).

6 For these early experiments, we have chosen a very simple reward mechanism. More compli-
cated models will be investigated in our future work.

12



There seems to be no smooth transition between these two dramatically different
scenarios. Scenario A represents a stable and fixed solid state, similar to Wolfram’s class
1 of cellular automata (CA) classification [15]. Scenario B represents a cyclic state, and
is similar to Wolfram’s CA class 2. Wolfram’s Classes 3 and 4 can be achieved by tuning
theFNEEDED parameter.

Knowledge diffusion.There is another interesting behaviour of interacting machines
that can be observed. When a cellCs solves a difficult task for the first time, the solu-
tion is almost immediately parasited by its neighbours. That phenomenon (see Figure
7) enables to diffuse a solution around the successful cellCs, thus rendering this so-
lution accessible to an increasing number of agents. Since some agents may need this
solution to compute a more difficult problem, knowledge diffusion is highly desirable.
Competition between parasites is very intense. They usually appear, survive a couple
of iterations, disappear, after a while appear again, and so on. The dynamism exhibited
looks likeCs is trying to reach something in its neighbourhood. For instance, if the
diffusion manages to reach the neighbourhood of a cellC1 that needs it, it will be used
and thus the whole chain of parasites fromCs to C1 will receive a lot of rewards and
survive.

Fig. 7. Knowledge diffusion.

Once some other cells in the web solve the same task asCs by their own (without
parasiting), it becomes more and more difficult for the parasites ofCs to survive (as they
always have to share their food with the cells they use). As a consequence, knowledge
diffusion will progressively decrease.

6 Film analysis vs. quantitative studies

The study so far was mainly based on running simulations and preparing (off-line) the
2D movies (animation sequences) of the dynamics of the evolving web of cells. Once
the movie has been generated, it has been observed and analysed by the researchers.

13



Most of the observed phenomena would be very difficult to be discovered by any other
means. Of course, observations performed by the movie technique are very subjective,
and do not represent statistically meaningful results. This is, however, the first step.
Once certain phenomena are identified, then it is possible to prepare experiments and
collect enough statistical data to confirm the initial observations. For the initial inves-
tigations, where some of the phenomena are not really expected or even completely
unknown, the movie technique proved to be very successful.

It is our believe that utilisation of video sequences in this study is a valuable and
essential element. It is one of the ways, if not the only way, to capture complex spatio-
temporal aspects of certain phenomena, that cannot be predicted in advance. This tech-
nique has been used with great success in the field of cellular automata e.g. [16]. For
1D cellular automata the spatio-temporal aspect can be captured by a 2D image of the
evolution of the single line of cells. However, for 2D almost all the studies must be done
with video sequences (on-line or off-line).

7 Summary

An architecture of dynamic hierarchically organised virtual machines as a self-organising
computing model has been presented. It builds on the Turing-machine-based traditional
model of computation. The model provides some of the necessary facilities for open-
ended evolutionary processes in self-organising software systems. The EVM system
exhibits self-adaptation and self-maintenance. The EVM components are autonomous,
they are executed asynchronously, they have no assigned specific function and can in-
teract with the local neighbours. The EVM system exhibits emerging properties and hi-
erarchical organisation via selection mechanisms, and symbiotic relationships between
components.

The EVM architecture is particularly effective when applied to problems with an
inherently well-organised structure. The results obtained so far suggest (although much
more extensive experimentation is needed) that it can outperform random search, GA
and Markov-chain based search techniques, for problems that exhibit well organised
structural patterns, and when the problem search can be split into subspaces that can be
explored independently/incrementally by the EVM web of agents. In general, it appears
to perform as well as a bias-optimal search techniques (and as well as standard GA).
During our experiments, for specific problems, with well-defined incremental subprob-
lems, it outperformed both GAs and stochastic search.

More experimental data needs to be collected, and more formal comparisons with
existing program search techniques is planned for the future. We also plan to investigate
different topological environments, environments with resource locality, and investigat-
ing the influence of introducing mobility of cells, to boost diffusion.

Nevertheless, we believe that this computational mechanism can be successfully
applied to a broad range of tasks, and through its inherent hierarchical organisation,
can prove to be well suited for managing highly complex computational systems. Com-
bined with existing evolutionary search techniques, like GAs, it offers unique ability
of collapsing abstraction levels and managing dynamically interdependencies between
computing agents.

14



Bibliography

[1] Manfred Eigen and Peter Schuster.The Hypercycle: A Principle of Natural Self-
Organization. Springer-Verlag, 1979.

[2] David B. Fogel, editor.Evolutionary Computation – The Fossil Record. IEEE
Press, New York, USA, 1998.

[3] John R. Koza, Forrest H. Bennett, David Andre, and Martin A. Keane.Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann
Publishers, 1999.

[4] Leonid A. Levin. Universal sequential search problems.Problems of Information
Transmission, 9(3):265–266, 1973.

[5] Lynn Margulis.Origin of Eukaryotic Cells. University Press, New Haven, 1970.
[6] Lynn Margulis. Symbiosis in Cell Evolution. Freeman & Co., San Francisco,

1981.
[7] Humberto R. Maturana and Francisco J. Varela. Autopoiesis: The organization

of the living. In Robert S. Cohen and Marx W. Wartofsky, editors,Autopoiesis
and Cognition: The Realization of the Living, volume 42 ofBoston Studies in the
Philosophy of Science. D. Reidel Publishing Company, Dordrech, Holland, 1980.

[8] Konstantin Sergeivich Mereschkowsky.̈Uber Natur und Ursprung der Chro-
matophoren im Pflanzenreiche.Biol. Zentralbl., 25:593–604, 1905.

[9] Mariusz Nowostawski, Martin Purvis, and Stephen Cranefield. An architecture
for self-organising evolvable virtual machines. In Sven Brueckner, Giovanna
Di Marzo Serugendo, Anthony Karageorgos, and Radhika Nagpal, editors,En-
gineering Self Organising Sytems: Methodologies and Applications, number 3464
in Lecture Notes in Artificial Intelligence. Springer Verlag, 2004.

[10] Juergen Schmidhuber. A general method for incremental self-improvement and
multiagent learning. In X. Yao, editor,Evolutionary Computation: Theory and
Applications, chapter 3, pages 81–123. Scientific Publishers Co., Singapore, 1999.

[11] Juergen Schmidhuber. Optimal ordered problem solver.Machine Learning,
54:211–254, 2004.

[12] Reńe Thom.Structural stability and morphogenesis. Benjamin Addison Wesley,
New York, 1975.

[13] Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory. A
Bradford Book, MIT Press, Cambridge, Massachusetts/London, England, 1999.

[14] Ivan Wallin. Symbionticism and the Origin of Species. Williams & Wilkins,
Baltimore, 1927.

[15] Stephen Wolfram. Universality and complexity in cellular automata.Physica D,
10:1–35, 1984.

[16] Stephen Wolfram.A New Kind of Science. Wolfram Media, Inc., first edition,
May 2002.

[17] Sewall Wright. Evolution in mendelian populations.Genetics, 16(3):97–159,
March 1931.

15


