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A Graphical Notation for
Physical Database Modelling

Abstract

In this paper we describe a graphical notation for physical data-
base modelling. This notation provides database administrators with
a means to model the physical structure of new and existing databa-
ses, thus enabling them to make more proactive and informed tuning
decisions, compared to existing database monitoring tools.

1 Introduction

As with most information systems, the design and implementation of a
database goes through several phases, including conceptual, logical and
physical modelling [6]. These three phases are of particular interest, as
they embody the progression from higher to lower levels of abstraction
[16]. Conceptual models are typically highly abstract, using techniques
such as entity-relationship modelling. Logical models represent the da-
tabase structure in a form that is closer to the physical representation, yet
still sufficiently abstract to isolate applications from the physical represen-
tation [7], and are expressed using formalisms such as the relational model.
A logical model for a database can be derived by transforming the corre-
sponding conceptual model.

Physical models represent the database structure in terms of the internal
physical storage implementation of a specific database management sys-
tem (DBMS) such as Oracle or DB2. A physical model for a database can be
derived by transforming the corresponding logical model [4, 8]. Because of
their low level of abstraction, physical level database models have tended
to not be expressed using graphical notations, unlike models at higher lev-
els of abstraction.

Physical level modelling, however, is equally as important as, if not
more important than the higher levels, because it is the physical level that
determines the performance of a database [6]. It is therefore somewhat sur-
prising that there have been relatively few attempts to devise a graphical
physical modelling notation, because such a notation can provide several
advantages [8, 5, 18]:
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• it can reduce complexity and thus improve understandability [17];

• it can provide a more complete and integrated display of performance
tuning techniques in a database;

• database developers can be more confident about the design deci-
sions that they make for the performance of the database;

• database performance problems are more easily visualised using a
graphical notation; and

• a specific methodology is developed and used, thus enabling devel-
opers to resolve physical performance issues more systematically.

These benefits are embodied in modern database performance monitor-
ing tools, which provide higher-level visualisations of a database’s inter-
nals in order to easily identify and highlight performance problems. Such
tools, however, are primarily monitoring tools rather than design tools. They
may therefore unintentionally encourage database administrators (DBAs)
into a reactive mode of continually “tweaking” the database to resolve per-
formance issues, rather than a proactive mode of anticipating and designing
for expected usage. It may also be difficult for a DBA using such tools to
gain a clear and comprehensive overview of all the tuning techniques that
are in use within a particular database [9].

In this paper we propose a graphical notation for physical database
modelling. In Section 2, we provide a brief overview of commonly used
physical tuning techniques. We then discuss in Section 3 two earlier ap-
proaches upon which our work is partially based. Section 4 introduces our
proposed notation, and Section 5 discusses possible future work. The paper
concludes in Section 6.

2 Physical tuning techniques

Database management is generally an I/O bound task, so the main per-
formance bottleneck in most databases will be the performance of tertiary
storage devices such as disk drives. Retrieving data from a hard disk is the-
oretically about six orders of magnitude slower than retrieving data from
RAM1. The aim of any physical tuning strategy must therefore be to min-
imise the impact of slow tertiary storage, either by directly reducing the
number of physical disk accesses required, or by parallelising access to disk
in order to reduce contention.

These considerations have led to the development of five general phys-
ical tuning techniques, which are implemented to various degrees by most
modern mainstream DBMS products:

1On the order of milliseconds (10−3) for disk versus nanoseconds (10−9) for RAM.
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Indexes reduce the number of physical disk accesses required to retrieve a
specific record [14], most typically by building a B+-tree [11] based on
some key value within the data. Without any indexes, a DBMS often
has little choice but to perform a sequential scan in order to locate
a specific record. If we assume one disk access per database block,
a sequential scan has average and worst case performance of K/2b
and (K − 1)/b disk accesses required, respectively, where K is the
number of records and b is the number of records per database block.
By comparison, a B+-tree has a worst case performance of logn/2(K)
[15], where n is the number of key values per index node.

Hashing is a method of quickly locating specific records by passing a key
value to a hash function. This function ideally returns a unique phys-
ical location of a hash bucket, which contains a pointer to the asso-
ciated physical record (check). Hashing schemes typically require
only one or two physical disk accesses to retrieve a specific record,
and perform best for exact key matches on very large tables. Hash-
ing generally performs poorly for queries that require the retrieval of
multiple records.

Clustering minimises disk access by ensuring that related records (such as
an order header and its associated order lines) are physically adjacent
on disk. This usually means that related records will be stored in the
same database block, and can thus be retrieved with a single disk
access. Clustering can, however, be expensive to maintain in a high
update environment.

Partitioning provides parallel access paths to data by physically splitting a
table into disjoint parts (either vertically or horizontally) and placing
them on separate disks. This is particularly advantageous when mul-
tiple users wish to access different subsets of a set of records, because
it provides a separate physical access path to each of the partitions.
Partitioning can also reduce the number of disk accesses required, be-
cause there are fewer records to scan in each partition than if the table
were not partitioned.

Replication provides parallel access paths to data by making multiple co-
pies of the same records and placing them on separate disks. This
is particularly advantageous when multiple users need to access the
same sets of records, but is more complex to manage due to the need
to keep replicas synchronised.

These techniques are normally applied to different parts of a database
to achieve different effects. In order to choose an appropriate physical tun-
ing technique, the DBA must consider various factors that may benefit only

3



some users of the database, or may improve the performance of the data-
base as a whole. While most of the techniques can be combined to vary-
ing degrees, simply applying all techniques is usually not optimal, because
each technique excels under different conditions. That is, what are optimal
conditions for one technique may be the exact opposite for another, so the
DBA needs to be able to model all the available information in order to
develop an appropriate physical design.

3 Prior physical modelling techniques

To achieve an effective physical design requires a large amount of informa-
tion, particularly with regard to the predicted or actual volume and usage
of data within the database [6]. Incorporating this information into a graph-
ical model can provide a more concise and clearer overview of the physical
aspects of a database system. In this section we briefly discuss two previ-
ous efforts at modelling such information in a graphical manner.

3.1 Agile modelling (Ambler)

Ambler proposed a physical modelling notation based on the Unified Mod-
elling Language (UML), as part of a larger effort to produce a “traditional”
style data modelling profile for the UML [2, 3]. Ambler and others have
argued the need for such a profile for some time [1, 13].

Ambler’s notation focuses on the physical modelling of relational data-
bases. The notation uses class boxes without stereotypes to represent phys-
ical tables, while indexes are represented by class boxes with the stereotype
<<index>>, as illustrated in Figure 1. There appear to be no stereotypes for
other physical tuning techniques such as partitioning, although these could
be easily incorporated.

Ambler’s approach suffers from two serious disadvantages. First, the
notation is very limited in the types of symbol used. All physical level
constructs are represented by class boxes, which in a complex diagram
could make distinguishing them difficult. This limitation probably arises
from the constraints on developing a new notation within the existing UML
framework.

Second, his approach appears to consistently confuse the logical and
physical levels of abstraction: the same notations are used to represent not
only physical but also logical and conceptual elements [2]. This confusion is
illustrated by the inclusion of a view (a non-physical construct) in Figure 1.

In summary, while Ambler’s notation graphically models the physical
level of a database, the similarity of the graphical symbols and the evident
confusion between the physical and logical levels diminish its usefulness.
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Employee
Employee_POID: CHAR(16) <<PK>> <<Surrogate>>
Employee_Number: INT24 <<AK>> {key = AK-1}
Given_Name: VARCHAR(30)
Middle_Name: VARCHAR(30)
Surname: VARCHAR(40)
Preferred_Name: VARCHAR(40)
Start_Date: DATE
Social_Security_Number: CHAR(10) <<AK>> {key = AK-2}

Salary
{access rights = HR}

Salary_POID: CHAR(16) <<PK>>
Employee_POID: CHAR(16) <<FK>>
Amount: FLOAT
Start_Date: DATE
End_Date: DATE

earns1 1..*

Phone

Phone_POID: CHAR(16) <<PK>>
Employee_POID: CHAR(16) <<FK>>
Usage_Type_POID: CHAR(16) <<FK>>
Format_Type_POID: CHAR(16) <<FK>>
Phone_Number: INT24

has

1

1..*IEmployee1
<<Index>>

IEmployee2
<<Index>>

Employee_Number: INT24

IEmployee3
<<Index>>

VEmployee
<<View>> {read only}

Employee_Number: INT24 {ordered by}
Full_Name: VARCHAR(100)
Middle_Name: VARCHAR(30)
Social_Security_Number: CHAR(10)
Work_Phone: INT24
Cell_Phone: INT24

HR Database —
Employee Info

Last Updated: 14/08/2003

<<Physical Data Model>>

Figure 1: Ambler’s physical modelling notation (adapted from [2]).

3.2 Physical design using an entity model (Beynon-Davies)

Beynon-Davies proposed a method for analysing and modelling the phys-
ical usage patterns of a database [5]. In his method, various aspects of
the physical performance of a database are measured, such as the size and
expected growth rates of tables (volume analysis), the volatility of tables,
and the frequency of transactions (usage analysis). The data obtained from
these analyses are then used to annotate a logical level entity-relationship
diagram (ERD) of the database, producing what is known as a composite
usage map (see Figure 4 on page 9 for an example).

Beynon-Davies’ method provides a very good mechanism for repre-
senting the usage statistics of a database in a coherent manner, but is rather
complex and time-consuming to undertake without some form of automa-
tion. Our experience with teaching this method at undergraduate level
shows that even with a relatively small database, the designer can quickly
become overwhelmed by the sheer volume of usage data involved.

In addition, Beynon-Davies’ method does not produce any conclusions
as to which physical tuning methods should be implemented—rather it
summarises the information required to enable these decisions to be made.
Beynon-Davies’ method is thus more a notation for summarising the phys-
ical usage patterns of a database, rather than a notation for physical mod-
elling per se.
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4 A new physical notation

Both of the notations discussed in the previous sections are limited in their
ability to graphically model the physical level of a database. Ambler’s no-
tation lacks clarity and is thus potentially confusing, while Beynon-Davies’
notation only summarises the physical usage patterns of a database rather
than providing an actual physical level data model. We have therefore
adopted aspects from both approaches to devise a graphical notation that
enables database designers to graphically model the common physical da-
tabase tuning techniques discussed in Section 2.

The symbols that we have adopted for this notation are shown in Fig-
ure 2. Some of these are adapted from other notations, while some we have
created ourselves. The symbols have been chosen to be intuitive and sim-
ple to draw, so as to produce diagrams that are as clear and uncluttered
as possible. Physical models may be developed using this notation either
with or without a prior Beynon-Davies style analysis.

SUPPLIER
Supplier_ID
Name
Contact
…

(a) Physical table

STAFF
Staff_ID
Surname
Firstnames
…

(b) Indexes

ASSEMBLY
Product_Code
Component_Code
Quantity

H

(c) Hashing

CUSTOMER
Customer_ID
Name
Contact
Phone
… 3

(d) Replication

ORDER_HEAD
Order_Num*
Order_Date
Status
Staff_ID
Supplier_ID

ORDER_LINE
Component_Code
Order_Num*
Qty_Ordered
Qty_Received
Price

(e) Clustering

STAFF
Staff_ID
Surname
Firstnames
Phone
Address
Position
Salary

P1: Position = MGR
P2: Position = SUP
P3: Position = SEC

(f) Horizontal parti-
tioning

STAFF
P1:
Staff_ID
Surname
Firstnames
Phone
Address

P2:
Staff_ID
Position
Salary

(g) Vertical partition-
ing

Figure 2: Proposed symbols for physical tuning techniques.

A physical table is represented by a simple box, as shown in Figure 2(a).
This is similar to most logical and conceptual level ERD notations. The
fields of the physical table may be included, with or without physical data
types, as appropriate. It could be argued that a different symbol should be
used to avoid confusion between, for example, physical tables and concep-
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tual entities. However, because these constructs belong to different levels
of abstraction, they should not both appear on the same diagram, and so
there is no real potential for confusion.

B-tree indexes are represented by a small tree-like symbol within a ta-
ble, as shown in Figure 2(b). The index key is listed next to this symbol.
Composite keys are indicated by a grouping symbol. Hashing is repre-
sented in a similar way, but uses an “H” symbol instead of a tree symbol
(see Figure 2(c)). These notations could easily be extended to cater for other
types of index, such as bitmap or R-tree indexes.

Clustering is represented by nesting one table inside another, as shown
in Figure 2(e) (adapted from [5]). The cluster key is indicated by an asterisk
(*) attached to the appropriate field(s). Tables may be nested to as many
levels as required in order to represent more complex clustering schemes.
This notation is intuitive, and clearly indicates the field(s) on which the
records are clustered.

Partitioning is represented by splitting a table into either vertical or hor-
izontal partitions according to the style of partitioning, as shown in Fig-
ure 2(f) and 2(g) (adapted from [15]). Once again, the notation is intuitive,
and allows the partition definitions to be easily indicated.

Replication is indicated by placing a diagonal bar across the bottom-
right corner of the table to be replicated, along with the total number of
replicas, as shown in Figure 2(d). This is adapted from a similar notation
used in data flow diagrams [10]. This notation could also be used to indi-
cate replication of individual table partitions, for DBMSs that permit this
combination.

Consider the entity-relationship diagram shown in Figure 3, which uses
Martin notation [12] to depict a database for a consumer electronics manu-
facturer. A corresponding Beynon-Davies’ composite usage map based on
the fourteen most significant transactions (see the appendix on page 12) is
shown in Figure 4 on page 9. The arrows represent physical access paths,
while the number attached to each access path indicates the number of disk
accesses per hour along that path. The diagram clearly highlights some po-
tential performance problem areas in the database, for example:

• There are many disk accesses along the access paths between the
Sale_head/Sale_line and the Order_head/Order_line tables. Since each
pair of tables will normally be accessed together, both pairs could per-
haps be candidates for clustering (depending on the mix of update
versus read operations).

• There appear to be multiple transactions accessing the Staff table.
This could imply a need for partitioning.

• There is an extremely high access rate on the Customer table. Further
examination, however, reveals that this rate only occurs for a short
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CUSTOMER STAFF SUPPLIER

SALE_HEAD ORDER_HEAD

SALE_LINE ORDER_LINE

PRODUCT ASSEMBLY COMPONENT

receives

is sent to

has

is for

involves

is involved in

requires
is required foris defined by

defines

is involved in

involves

has

is for

requests

is requested by

is handled by

oversees places

is issued by

Figure 3: ERD of the example database.

period once per month, and that the transaction in question only re-
quires read access. Replication of the Customer table could therefore
be a suitable solution to ensure that this short, intense and intermit-
tent transaction does not interfere with normal day-to-day transac-
tion processing.

The suggestions above can be represented as a physical model using our
proposed modelling notation, as shown in Figure 5 (some details have been
omitted to save space). Note that we have placed indexes on all primary
keys as a matter of course.

5 Future research

The current notation, while it covers the major aspects of physical mod-
elling, is not complete and could be extended in various ways, for example:

• The current notation only caters for B-tree indexes and hashing. An
obvious extension is to define symbols for other types of index, such
as bitmap, reverse-key, R-trees, etc.

• There is currently no way to specify physical placement information,
for example, which devices different partitions should be placed on.
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CUSTOMER
Max 120.9 MB + 3 MB p.a.
Avg 58 MB + 1.45 MB p.a.

STAFF
Max 2.4 MB
Avg 1.25 MB

SUPPLIER
Max 10.1 KB
Avg 4.8 KB

SALE_HEAD
Avg +54.8 MB p.a.

ORDER_HEAD
Avg +1.96 MB p.a.

SALE_LINE
Avg +438.7 MB p.a.

ORDER_LINE
Avg +48 MB p.a.

PRODUCT
Avg 3.15 GB

ASSEMBLY
43.9 MB

COMPONENT
Max 8 MB
Avg 5.7 MB

15
..2

0

95
%

0..* 99.9%?2..500

90
.2

%

7.
.1

0

92.5%

≈7
 p

.a
.

10%

1%

803 605

99 167

746 650

1 750

1 750

17 500

35 000 33 998

5 850

71 460

4 800

80
80

1 600

3 653

3 000 3 000

Figure 4: Beynon-Davies composite usage map for the example database.

SALE_HEAD
Sale_Num*
Sale_Date
Status
Staff_ID
Customer_ID

PRODUCT
Product_Code
Description
Stock_Count
…

SALE_LINE
Product_Code
Sale_Num*
Quantity
Actual_Price

ASSEMBLY
Product_Code
Component_Code
Quantity

COMPONENT
Component_Code
Description
Stock_Count

ORDER_HEAD
Order_Num*
Order_Date
Status
Staff_ID
Customer_ID

ORDER_LINE
Component_Code
Order_Num*
Qty_Ordered
Qty_Received
Price

SUPPLIER
Supplier_ID
Name
…

CUSTOMER
Customer_ID
Name
… 2

P1: position=MGR
P2: position=SUP
P3: position=SEC
P4: etc…

STAFF
Staff_ID
Surname
Firstnames
Phone
Address
Position
Salary

Figure 5: Physical database model for the example database.
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• It may be useful to identify which replica or partition a particular
(physical) relationship applies to.

We plan to evaluate the efficacy of the proposed notation by using the
notation with undergraduate students in an advanced database course. We
will then compare this with using Beynon-Davies’ method alone.

6 Conclusion

In this paper we have described a graphical notation for physical database
modelling, which enables database administrators (DBAs) to model the
physical structure of new and existing databases in a more abstract man-
ner. This will enable them to make more proactive and informed tuning
decisions, compared to existing database monitoring tools, which tend to
encourage a more reactive approach to database tuning. The notation uses
simple and intuitive symbols to represent major physical database struc-
tures, and can easily represent complex physical schemas.

The notation is to be evaluated with undergraduate students in an ad-
vanced database course; the results of this evaluation will be compared
with other physical modelling methods.
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Appendix: Significant transactions in the example da-
tabase

The following transactions represent the fourteen most significant in the ex-
ample database, where “most significant” is determined by the impact the
transaction has on the database. Transactions that have negligible impact
on the database (e.g., they occur less than once per day and do not involve
a large number of accesses) are excluded from the list, as are transactions
whose frequency is unknown. The transactions are listed in no particular
order. Transaction volume calculations are based on an assumption of 250
working days per year and eight working hours per day. Note that the term
“reference” in this context represents a potential physical disk access.

Add or change a customer: About 10 000 customers are added per year,
which implies about 10 000/250/8 = 5 added per hour. About 500
updates per working day implies 62.5 per hour. There are no deletes.
This gives a total of 67.5 transactions per hour. Each transaction in-
volves two table references, giving a total of 135 references per hour.

Enter new sale: On average there are about about 7 000 new sales per day,
but the peak rate is 14 000 per day, which implies 1 750 transactions
per hour. Each transaction involves 43 table references, giving a total
of 75 250 references per hour.

Enter new order: On average there are about 320 new orders per day, but
the peak rate is 640 per day, which implies 80 transactions per hour.
Each transaction involves 63 table references, giving a total of 5 040
references per hour.

Change sale status: Assuming the same as for entering new sales implies
a peak rate of 1 750 transactions per hour. Each transaction involves
two table references, giving a total of 3 500 references per hour.

Change order status: Assuming the same as for entering new orders im-
plies a peak rate of 80 transactions per hour. Each transaction in-
volves two table references, giving a total of 160 references per hour.

Generate product catalogue: One hour once per month for all 16 492 prod-
ucts implies a peak access rate of 16 492 references per hour. (If we
average it across a whole month we get a rate of about 0.006 transac-
tions or 103 references per hour, which does not really reflect the true
impact that this transaction has on the database.)

Receive order shipment: Shipments arrive at the same rate as outgoing
orders, which implies a peak rate of 80 transactions per hour. Each
transaction involves 81 table references, giving a total of 6 480 refer-
ences per hour.
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Download assembly details: Frequency varies, but probably no more than
fifty per day (each transaction represents one product). This implies a
peak rate of about 6 transactions per hour. Each product has between
two and a few hundred components. For argument’s sake, we will
say that no product has more than 500 components. Each transaction
thus involves 1 001 table references, giving a total of 6 006 references
per hour.

Generate salaries: 2.5 hours once per month for all 9 000 staff implies a
peak access rate of 3 600 references per hour. (If we average it across
a whole month we get a rate of about 0.016 transactions or 22.5 refer-
ences per hour.)

Special deals mail merge: Fifteen minutes once per week for 100 000 reg-
ular customers implies an effective peak access rate of 400 000 refer-
ences per hour. (If we average it across a whole month we get a rate
of about 0.002 transactions or 2 500 references per hour.)

Product catalogue mail merge: One hour once per month for all 400 000
customers implies a peak access rate of 400 000 references per hour.
(If we average it across a whole month we get a rate of about 0.006
transactions or 2 500 references per hour.)

Look up product details: Assuming the same as for entering new sales im-
plies a peak rate of 1 750 transactions per hour. Each transaction in-
volves at most table references, giving a total of at most 17 500 refer-
ences per hour.

Generate monthly accounts: Four hours once per month for 9 000 staff (as-
suming that salaries are included in the outgoings), maximum 291 667
sales, and maximum 13 333 orders. Assuming that accesses are spread
evenly across the four hours for all tables (not very realistic, but it en-
ables us to make a reasonable calculation in the absence of further
detail) implies peak access rates of 2 250, 72 917 and 3 333 references
per hour, respectively. (If we average it across a whole month we get
a rate of about 0.025 transactions or 491 references per hour.)

13


