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Bayesian statistical effort prediction models

for data-centred 4GL software development

C. van Koten 1 and A.R. Gray

Department of Information Science,University of Otago, P.O.Box 56, Dunedin,
New Zealand

Abstract

Constructing an accurate effort prediction model is a challenge in Software Engi-
neering. This paper presents three Bayesian statistical software effort prediction
models for database-oriented software systems, which are developed using a specific
4GL tool suite. The models consist of specification-based software size metrics and
development team’s productivity metric. The models are constructed based on the
subjective knowledge of human expert and calibrated using empirical data collected
from 17 software systems developed in the target environment. The models’ predic-
tive accuracy is evaluated using subsets of the same data, which were not used for
the models’ calibration. The results show that the models have achieved very good
predictive accuracy in terms of MMRE and pred measures. Hence it is confirmed
that the Bayesian statistical models can predict effort successfully in the target
environment. In comparison with commonly used multiple linear regression mod-
els, the Bayesian statistical models’ predictive accuracy is equivalent in general.
However, when the number of software systems used for the models’ calibration
becomes smaller than five, the predictive accuracy of the best Bayesian statistical
models are significantly better than the multiple linear regression model. This re-
sult suggests that the Bayesian statistical models would be a better choice when
software organizations/practitioners do not posses sufficient empirical data for the
models’ calibration. The authors expect those findings encourage more researchers
to investigate the use of Bayesian statistical models for predicting software effort.
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1 Introduction

Accurate effort prediction at an early stage is often an important factor for
successful software development. In order to predict software development ef-
fort, there exist a number of effort prediction models, including well-known
COCOMO [3] and models using Function Points (FP) [1]. However, these ex-
isting models are, in general, empirical models constructed using historical
data collected from a number of software systems developed in specific devel-
opment environments. As a consequence, the applicability of those models is
often limited to systems developed in those environments. On the other hand,
the increasing number of software development tools available today enables
software systems to be developed in very different environments. Some organi-
zations use a data-centred fourth-generation-language (4GL) software devel-
opment tool. Data-centred 4GL software development tools enable database-
oriented transaction processing systems (TPSs) and/or management informa-
tion systems (MISs) to be developed in a rapid manner. However, a number
of studies have showed that traditional effort prediction models are not able
to predict development effort accurately when a data-centred 4GL software
development tool is used [16,8].

The situation described above has prompted researchers to construct new ef-
fort prediction models for data-centred 4GL software development [24,26,18,9].
Those effort prediction models are a linear regression model that consists of
software size metrics collected in environments, where a specific development
tool was used. The software size metrics chosen for each of those models are
different but all specification-based, that is, derived from a software system’s
specifications such as Entity Relationship Diagrams (ERDs) and Function Hi-
erarchy Diagrams (FHDs). Those models achieved good predictive accuracy
in terms of mean magnitude of relative error (MMRE) and a measure called
pred. Both MMRE and pred are commonly used predictive accuracy measures
among researchers [11,20].

However, due to the very same reason as mentioned previously about empir-
ical effort prediction models in general, the applicability of the above new
effort prediction models is limited to a specific development environment in
each case. Consequently, it is necessary to construct a new effort prediction
model when a different development tool is used. The organization studied in
this paper started using a data-centred 4GL software development tool suite,
Oracle’s Designer 6i and Developer 6i, in 2002. This created the need for a
new effort prediction model and raised the following research question. How
can an accurate development effort prediction model be constructed for this
specific data-centred 4GL software development environment?

This paper presents three effort prediction models constructed using Bayesian

2



statistics. Bayesian statistics are based on Bayesian probability theory and
Bayesian inference [5]. Bayesian inference allows a predictive model to be con-
structed based on the subjective knowledge of human expert and calibrated
using empirical data. The models presented in this paper are calibrated using
subsets of data, which were collected from 17 software systems developed in
the target environment. The models’ predictive accuracy is evaluated using
magnitude of relative error (MRE), pred and measures related to the absolute
residuals. The models’ predictive accuracy is then, compared with multiple
linear regression models, since regression has been a popular and often a suc-
cessful technique for software effort prediction. The term predictive accuracy
in this paper means how well a predictive model constructed from known cases
can predict the outcome of an unknown case. Hence the models are calibrated
using subsets of the data and evaluated using other subsets, which do not
contain the data already used for the calibration.

An application of Bayesian statistics to Software Engineering is currently lim-
ited to a small number of studies of development effort prediction [2,4,21,23],
defect prediction [10,19] and maintainability prediction [25]. Those studies
used a technique known as Bayesian network [7,15]. Bayesian network is a
probabilistic network constructed based on the concepts of Bayesian statis-
tics. Hence Bayesian network models are a Bayesian statistical model. How-
ever, the existing Bayesian network models unfortunately have restrictions on
use of continuous probability density functions. Consequently those restric-
tions limit the use of the existing models to the cases that involve discrete
variables only. Hence in the above studies of development effort prediction,
Bayesian statistics were used only for classifying software projects according
to the various categorical attributes. However, use of Bayesian statistics in
software development effort prediction should not be limited to classifying
software projects, since Bayesian statistics are also capable of making nu-
merical prediction of continuous variables. Hence this paper applies Bayesian
statistics for making numerical prediction of software development effort in
the target environment, and evaluates the models’ predictive accuracy.

In comparison with other software effort prediction models, a Bayesian sta-
tistical effort prediction model is considered to have a unique advantage due
to the ability to incorporate existing human expert’s knowledge into empiri-
cal data. It is often the case that organizations and practitioners posses some
knowledge about their software development practices through experiences in
the past development. Hence it is only natural if this knowledge can be uti-
lized for constructing an effort prediction model and then, the model can be
calibrated using available empirical data. In addition, even when organizations
and practitioners do not posses sufficient empirical data for model calibration,
a Bayesian statistical model is still expected to predict effort better than the
existing models, since the Bayesian model makes use of not only empirical
data but also the expert’s knowledge, while the existing models only make use
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of empirical data. Hence in this study, the authors are particularly interested
in examining the predictive accuracy of the Bayesian statistical models when
they are calibrated using a very small amount of data. Because of this, the
Bayesian statistical models in this study are calibrated using four different
sized subsets, varying from the largest consisting of all the 17 systems to the
smallest consisting of only five systems.

The findings of this study should be able to justify the use of Bayesian sta-
tistical models for predicting software effort. This should also encourage more
researchers to engage themselves in investigating the potential of Bayesian
statistical models further. The results from those further studies should reveal
the full potential of Bayesian statistical models. The authors expect Bayesian
statistical models to take a leading role among the other models due to the
above advantages. Software organizations and practitioners will benefit from
Bayesian statistical models particularly, since the models are applicable even
when the system of interest does not have sufficient historical data.

The structure of the reminder of this paper is as follows. Section 2 describes
data-centred 4GL software systems studied, software metrics chosen, and the
characteristics of data collected. Section 3 briefly explains Bayesian proba-
bility theory and Bayesian inference, which Bayesian statistical models are
based on. Section 4 describes the new Bayesian statistical software develop-
ment effort prediction models. This is followed by Section 5 that describes the
multiple linear regression models. Section 6 describes the predictive accuracy
measures used. Section 7 evaluates the Bayesian statistical models’ predic-
tive accuracy and compares them with the multiple linear regression models.
Finally Section 8 presents conclusions and a direction of future studies.

2 Data collection

2.1 Software systems

The empirical data was collected from a total of 17 small or medium sized TPSs
and/or MISs, which were developed using Oracle’s Designer 6i and Developer
6i. Each system was developed by a team of four developers, who were final
year undergraduate students taking computer and/or information science as
a major at a university in New Zealand. The development was undertaken as
the final part of their university course and the systems were built for business
clients outside the university in a manner similar to commercial development.
The development teams followed the same development methodology, which
was taught in the course.
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Metr ics Definit ions 
ENTI TYNUM Number of database entities in the ERD 
ATTNUM Total number of data attributes in the ERD 
FORMNUM Number of data entry forms in the FHD  
REPTNUM Number of  data summary reports in the FHD 
SUMNUM Sum of FORMNUM and REPTNUM 
ENTFORM Total  number of database enti ties accessed by al l data entry 

forms  
(The same entity is counted more than once if  accessed 
more than once) 

ENTREPT Total number of database entities accessed by all  data 
summary reports 
(The same enti ty is counted more than once if  accessed 
more than once) 

SUMENT Sum of ENTFORM and ENTREPT 
PRODUCT Average mark awarded to development team in a practical  

assessment, measured in %  
EFFORT Total hours spent by four developers in development team 

 

Table 1
Software Metrics

2.2 Software metrics

This paper uses specification-based software size metrics as predictor variables
for effort prediction. This is because specification-based software size metrics
are available at an early stage of development, and as was mentioned in Sec-
tion 1, the models consisting of those metrics have achieved good predictive
accuracy in other data-centred 4GL software development environments. The
software systems studied were built according to the specifications, which were
described in a form of ERD and FHD. The ERD was used to show the system’s
database entities and their relationships. Under the development methodology
employed, the FHD was specifically used to show the system’s user interface
structure, that is, what data entry forms and data summary reports are re-
quired for the system and how those forms and reports are organized.

Our study initially listed eight candidate specification-based software size met-
rics, which are shown in Table 1. However, some of those specification-based
software size metrics are clearly highly correlated with the other(s) and it is
known that multicollinearity causes a problem of a large standard error of
the predicted variable in multiple regression. Thus, we selected only the met-
rics that were expected not to be highly correlated. This resulted in using
four specification-based software size metrics as the final candidates. They are
FORMNUM, REPTNUM, ENTFORM and ENTREPT.
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We also use an additional predictor variable, PRODUCT. The PRODUCT met-
ric measures the productivity of a development team. It is measured as the
average mark of four developers in each team, which was awarded in a practi-
cal development skill assessment. The assessment was carried out at the time
of the development. In the assessment, each developer was required to built
an identical software system individually using the same development tool
suite within a specific time. The specifications of the system were given in a
form of ERD and FHD. This assessment environment was very similar to that
of the development. Hence, the PRODUCT metric is expected to reflect the
development team’s average productivity adequately. The PRODUCT metric
is expressed in % by taking the full mark of the assessment as 100%. The
inclusion of PRODUCT is expected to improve the effort prediction model’s
predictive accuracy, because it is known that the productivity of highly skilled
developers is up to 30 times higher than low-skilled developers [13].

The EFFORT metric measures the total effort spent by a development team
in hours. That is, the sum of the effort spent by four individual developers
in the team. The EFFORT data were collected from log books of individual
developers. Each developer was required to record their individual actual ef-
fort in hours each day into their own log book during the development. The
recorded individual effort was then checked by the team leader for accuracy.
The developer’s academic achievement in the course was not subject to the
amount of the recorded effort. Hence, we have a confidence in the accuracy of
the recorded EFFORT data.

2.3 Characteristics of data

As was mentioned in the previous subsection, the software metric data col-
lected in this study contains the PRODUCT metric, which is the average mark
of each four student developers from a practical assessment in a university
course. In order to protect those students’ privacy, the authors are not allowed
to publish the data. However, the data can be obtained from the authors by
request by making an agreement about the confidentiality.

The descriptive statistics of the data are shown in Table 2. Table 2 indicates
that all the variables are approximately normally distributed.

The Spearman’s rank correlation coefficients between each pair of the metric
variables are shown in Table 3. This paper presents the Spearman’s rank
correlation coefficients instead of the Pearson’s correlation coefficients. This
is because Pearson’s correlation coefficient may be unstable when the size of
data is as small as ours.

Table 3 shows that there is a significant bivariate correlation between EF-
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 Mean Median Std Dev M in Max Skewness Kurtosis 
FORMNUM 12.53 12 3.91 7 20      0.324 - 0.921 
REPTNUM 7.35 8 3.30 2 12 - 0.294 - 1.045 
ENTFORM 32.94 34 12.21 11 62      0.489      0.833 
ENTREPT 26.35 28 10.91 7 44 - 0.481 - 0.357 
PRODUCT 57.57 59.2 8.69 42.5 74.0      0.200 - 0.295 
EFFORT 398 359 92.9 258 569      0.557 - 0.702 

 

Table 2
Descriptive Statistics

 FORM-
NUM 

REPT- 
NUM 

ENT- 
FORM 

ENT- 
REPT 

PRODUCT 

FORMNUM -     
REPTNUM  - 0.300 -    
ENTFORM 0.579**  - 0.303 -   
ENTREPT  - 0.191 0.812**   - 0.236 -  
PRODUCT  - 0.370 0.702**     0.002     0.391 - 
EFFORT 0.591**  - 0.275 0.685**   - 0.068     - 0.348 

                    (* *  indicates a significant cor relation at the level of  0.01) 

Table 3
Correlations of the Metrics

FORT and some of the metric variables. This indicates that those variables
are possibly able to predict EFFORT.

3 Bayesian inference

3.1 Joint probability

In the probability theory, the joint probability distribution of a set of random
variables X is defined as:

P (θ,X) = P (X | θ)P (θ) (1)

where θ denotes a set of parameters that describe the joint probability distri-
bution. The set of random variables X can include both predictor variables
and the variable(s) to be predicted. In Equation 1, P (θ) is called the prior
probability distribution of θ, and P (X | θ) is called the likelihood of data. The
likelihood of data is the amount proportional to the probability of observing a
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given set of data, which is a set of specific values of X. The likelihood of data
is calculated for the given prior probability distribution. Hence, Equation 1
shows that the joint probability distribution of X can be found by multiplying
the prior probability distribution of θ by the likelihood of data, provided that
the prior probability distribution of θ is known. If the joint probability distri-
bution of X is found, the marginal probability distribution of an individual
variable in the set X is also found, by integrating the joint probability distri-
bution function by the other variables in the set. For example, the marginal
probability distribution of X1 in the set X : X1, · · · , Xn is found by integrating
the joint probability distribution function by X2, · · · , Xn. The term marginal
means ’unconditional’. That is, the marginal probability of Xi is the prob-
ability of a value of Xi being observed regardless of the values of any other
variables in the set X.

3.2 Conditional probability and Bayes’ theorem

On the other hand, in Bayesian probability theory, a relationship of two events
X and Y is defined in the conditional probability, P (Y | X), which is the prob-
ability of event Y conditional on a given outcome of event X. The conditional
probability is calculated using Bayes’ Theorem:

P (Y | X) =
P (X | Y )P (Y )

P (X)
(2)

where P (X | Y ) is the conditional probability of event X given event Y, and
P (X) and P (Y ) are the marginal probability of events X and Y respectively.
In the Bayes’ Theorem, P (Y ) and P (Y | X) are also called the prior probabil-
ity distribution and the posterior probability distribution of a random variable
Y, respectively. This is because in the Bayes’ Theorem, P (Y ), the prior prob-
ability distribution of Y, is updated to P (Y | X), the posterior probability
distribution of Y, using the given information of P (X) and P (X | Y ).

Using the Bayes’ Theorem 2, it is shown that:

P (θ | X) =
P (X | θ)P (θ)

P (X)
(3)

Considering that P (X) is a constant for a given set of specific values of X,
the above Equation 3 means

P (θ | X) ∝ P (X | θ)P (θ) (4)
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That is, P (θ | X) is ’proportional to’ P (X | θ)P (θ). From Equation 1, this
means

Posterior distribution of θ ∝
Likelihood of data × Prior distribution of θ (5)

Hence the posterior distribution of θ is actually ’proportional to’ the likelihood
of data × the prior distribution of θ. Similarly,

P (θ | X) ∝ P (θ,X) (6)

Posterior distribution of θ ∝
Joint probability distribution of X (7)

That is, P (θ | X), the posterior distribution of θ is actually ’proportional
to’ P (θ,X), the joint probability distribution of a set of random variables X,
which is described by θ.

3.3 Prediction

The above relationships 5 and 7 provide the principle of Bayesian inference.
In Bayesian inference, the prior joint probability distribution of a set of ran-
dom variables X is specified and updated using the likelihood of the observed
data. Then the posterior marginal probability distribution of the variable of
interest in the set X is obtained by integrating the posterior joint probability
distribution of X by the other variables in the set. For prediction, both pre-
dictor variables and the variable(s) to be predicted are in X. Let us assume
that X consists of multiple predictor variables: X1, · · · , Xn and a single pre-
dicted variable, Y. Then, the posterior marginal probability distribution of Y
is obtained by integrating the posterior joint probability distribution of X by
X1, · · · , Xn.

When the prior joint probability distribution of X is specified based on the
subjective knowledge of human experts, Bayesian inference provides a frame-
work in which human experts’ knowledge can be incorporated into a predictive
model together with empirical data. Bayesian statistical models are based on
Bayesian inference. Hence Bayesian statistical models allow the subjective
knowledge of human experts, which is expressed as the prior joint probabil-
ity distribution, to be updated using empirical data. In addition, a Bayesian
statistical model can be re-calibrated every time additional data become avail-
able. Another characteristic of Bayesian statistical models is that they provide
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an interval estimate of the variable of interest, since Bayesian inference out-
puts its entire posterior marginal probability distribution. This would be an
advantage when an interval estimate is preferred to a point estimate. In the
case of software development effort prediction, an interval estimate would be
particularly useful for risk management. When a point estimate is required, an
appropriate summary statistic of the probability distribution should be used,
according to the need of the estimator. This study uses the mode statistic as
the predicted value, since the mode is the value of EFFORT having the highest
probability. In other words, the mode is the EFFORT value that most likely
occur. In the case of the Bayesian statistical models proposed in this paper,
the mode coincides with the mean of the distribution, which is usually more
convenient to calculate.

4 Bayesian statistical models

4.1 Model description

Three different Bayesian statistical effort prediction models are constructed in
this study. The first model is based on Bayesian linear regression [5]. We refer
to this model as the Bayesian regression model in the reminder of this paper.
A Bayesian linear regression model, in general, has a parametric form similar
to the linear regression counterpart. However, it is different since the Bayesian
model can specify the prior joint probability distribution of the variables, which
includes the prior marginal probability distributions of the linear regression
coefficient parameters. The Bayesian regression model is specified as follows:

EFFORT ∼ N (µ, τ) (8)

µ = β0 + β1(X1 − X̄1) + β2(X2 − X̄2)

+ · · ·+ βk(Xk − X̄k) (9)

β0 ∼ N (0, 0.0001) (10)

βj ∼ N (0, 0.001) for j = 1, · · · , k (11)

τ ∼ Gamma (0.001, 0.001) (12)

The notation 8 means that EFFORT has a normal distribution with mean µ
and variance 1/τ . In Equation 9 there are k predictor variables. The specific
value of k is set according to the number of predictor variables actually used.
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The notations 10, 11 and 12 specify the prior marginal probability distribu-
tions of the specific parameters in the model. These probability distributions
are also updated to the corresponding posterior distributions using the given
data in Bayesian inference. The notation 10 means that the linear regression
coefficient parameter β0 has a normal distribution initially with mean 0 and
variance 1/0.0001 = 10000. The initial mean is 0 because prior to calibration,
it is equally possible for this coefficient parameter to take either a positive or
negative value. On the other hand, for the initial variance, any number rela-
tively larger than the anticipated β0 would be sufficient. The value of 10000
is chosen in this study. Similarly the notation 11 means that each of the re-
maining linear regression coefficient parameter βj has a normal distribution
initially with mean 0 and variance 1/0.001 = 1000. The initial mean is 0
from the same reason as was mentioned above. Similarly the initial variance
of 1000 is chosen, although any relatively large number would be sufficient.
The notation 12 means that τ , which is the reciprocal of the variance of the
prior distribution of EFFORT, has a gamma distribution with scale parameter
1/0.001 = 1000 and shape parameter 0.001. These parameter values are of-
ten recommended by experienced researchers of Bayesian statistics [5]. Using
those specifications, the Bayesian regression model predicts EFFORT of the
software system of interest as follows:

EFFORTnew ∼ N (µnew, τ) (13)

µnew = β0 + β1(X1,new − X̄1) + β2(X2,new − X̄2)

+ · · ·+ βk(Xk,new − X̄k) (14)

where X1,new, · · · , Xk,new are the specific values of the k predictor variables,
which are observed in the system. That is, the Bayesian regression model
predicts EFFORT by taking the posterior marginal probability distribution of
EFFORTnew.

The second Bayesian statistical model uses a multivariate normal distribution,
which is a normal distribution defined under multiple variables. The mean of
the multivariate normal distribution is the set of the means of those multiple
variables, while the variance is the variance-covariance matrix of the variables.
We refer to this model as the Bayesian MVN model. The Bayesian MVN
model’s specifications are as follows:

EFFORT, X1, · · · , Xk ∼ MV N (µj, τjm)

for j = 1, · · · , k + 1

m = 1, · · · , k + 1 (15)
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µj ∼N (0, 0.000001) (16)

τjm∼Wishart (Cjm, k + 1)

where Cjm =

 1 if j = m

0 otherwise
(17)

The specification 15 means that EFFORT and k predictor variables X1, · · · , Xk

together form a multivariate normal distribution with mean = µ1, · · · , µk+1

and variance =:
1/τ1,1 · · · 1/τ1,k+1

...
. . .

...

1/τk+1,1 · · · 1/τk+1,k+1


where µ1 = the mean of EFFORT, and µ2, · · · , µk+1 = the mean of each of the
predictor variables X1, · · · , Xk respectively. The notations 16 and 17 specify
the prior marginal probability distributions of two specific parameters in the
model. The notation 16 means that each mean µj has a normal distribution
initially with mean 0 and variance 1/0.000001 = 1000000. The initial mean
is chosen to be 0, assuming that prior to calibration there is absolutely no
knowledge about the mean values of the variables. The initial variance is cho-
sen to be 1000000, although any number larger than the anticipated variances
of EFFORT and the k predictor variables would be sufficient. The notation 17
means that τjm has a Wishart distribution whose initial scale matrix is a
(k + 1) × (k + 1) identity matrix. Using those specifications, the Bayesian
MVN model predicts EFFORT by taking the posterior marginal probability
distribution of EFFORT.

The third Bayesian statistical model is a hybrid of the previous two Bayesian
statistical models. We refer to this model as the Bayesian MVN-R model. The
Bayesian MVN-R model’s specifications are as follows:

EFFORT ∼ N (µy, τy) (18)

X1 − X̄1, · · · , Xk − X̄k ∼ MV N (0, τxjm)

for j = 1, · · · , k
m = 1, · · · , k (19)

µy = β1(X1 − X̄1) + β2(X2 − X̄2)

+ · · ·+ βk(Xk − X̄k) (20)
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τy ∼Gamma (0.0001, 0.0001) (21)

βj ∼N (0, 0.0001) for j = 1, · · · , k (22)

τxjm∼Wishart (Cjm, k)

where Cjm =

 0.00001 if j = m

0 otherwise
(23)

The notation 18 means that EFFORT has a normal distribution with mean µy

and variance 1/τy. The notation 19 means that the variances of the k predictor
variables X1, · · · , Xk together form a multivariate normal distribution with
mean = 0, · · · , 0 and variance =:

1/τx,1,1 · · · 1/τx,1,k

...
. . .

...

1/τx,k,1 · · · 1/τx,k,k


The notations 21, 22 and 23 specify the prior marginal probability distri-
butions of some specific parameters in the model. The notation 21 means
that τy has a gamma distribution with scale parameter 1/0.0001 = 10000 and
shape parameter 0.0001, which are recommended by experienced researchers
of Bayesian statistics [5]. The notation 22 means that each of the linear regres-
sion coefficient parameter βj has a normal distribution initially with mean 0
and variance 1/0.0001 = 10000. The initial mean of 0 and the initial variance
of 10000 are chosen from the similar reasons to the Bayesian regression model.
The notation 23 means that τxjm has a Wishart distribution whose initial scale
matrix is a k × k diagonal matrix with the (i, i)− th element = 0.00001 for
i = 1, · · · , k. This value is also recommended by experienced researchers of
Bayesian statistics [5]. Using those specifications, the Bayesian MVN-R model
predicts EFFORT as follows:

EFFORTnew = µy + mean EFFORT (24)

where mean EFFORT is the average of the EFFORT values in the calibration
data. Hence, the Bayesian MVN-R model predicts EFFORT by taking the
posterior marginal probability distribution of EFFORTnew.

4.2 Model construction

The above three models are constructed using a software tool called Win-
BUGS, the Windows version of BUGS (Bayesian analysis Using Gibbs Sam-
pling). A version of WinBUGS can be obtained from Imperial College and
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Medical Research Council in the U.K. under the license agreement. This study
used the version 1.4.1. WinBUGS is an implementation of a numerical method
of Bayesian inference. This tool allows users to build a complex Bayesian sta-
tistical model using a wide range of known distribution functions, including
the distributions appeared in the models’ specifications above. Then Bayesian
inference is made by approximating the posterior marginal probability distri-
bution of the variable(s) of interest, using a large number of random samples
drawn from the posterior joint probability distribution by the Gibbs sampler.
The Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm [14].

For the above three models, the effort estimation procedure works as follows.
The Gibbs sampler successively samples a value from the posterior marginal
probability distribution of interest, given the values of all the predictor vari-
ables, which are observed in the system of interest. After a number of iter-
ations, this sampling process is known to settle into a dynamic equilibrium,
in which the sampling distribution is exactly proportional to the posterior
marginal probability distribution. In other words, the sampling distribution
can approximate the posterior marginal probability distribution. Hence, once
the equilibrium is reached, the predicted value is obtained by calculating the
mean of the sampling distribution. The mean is used since our estimate of
EFFORT, the mode statistic, coincides with the mean for the three models.

The number of iterations required to reach the dynamic equilibrium generally
depends on the complexity of the model and the initial values chosen for the
sampling algorithm to start with. Hence setting appropriate initial values often
reduces the number of iterations. This study set the initial value of τ to 1 in
the Bayesian regression model. This study also set the initial values of τjm in
the Bayesian MVN model equal to those of a (k +1)× (k +1) identity matrix.
The initial values of µj were also set to the corresponding mean values, which
were calculated from the calibration data. Similarly, in the Bayesian MVN-
R model, the initial value of τy was set to 1, the initial values of βj’s were
set to 0, and the initial values of τxjm were set to the values equal to those
of a k × k identity matrix. As the result, it was observed that all the three
models reached the equilibrium almost instantly. However, in order to ensure
the equilibrium is reached, this study discarded the first 75000 samples and
used only the following 75000 samples to approximate the posterior marginal
probability distribution.

4.3 Model calibration

Calibration subsets

One of the difficulties in software effort prediction is that organizations and
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practitioners often have only a very small amount of available data when con-
structing an empirical model. Hence, the authors consider it particularly im-
portant that an accurate software effort prediction model can be constructed
using as a small amount of empirical data as possible. As was mentioned in
Section 1, Bayesian statistical models are expected to satisfy this requirement.
In order to examine if our Bayesian statistical models satisfy this requirement,
we calibrate the models using four different-sized subsets, which were sampled
from the original dataset consisting of the 17 systems. The first subset is the
original dataset. We refer to this as the original dataset in the reminder of
this paper. The second subset consists of data of 13 systems, which is approxi-
mately 75% of the original dataset. Those 13 systems were randomly sampled
from the original dataset without replacement, using a function provided in a
statistical software package SPSS 11.0. The sampling was repeated four times
and four different subsets were drawn. We refer to those subsets as the 75%
subsets. The third subset consists of data of nine systems, which is approxi-
mately 50% of the original dataset. Those nine systems were sampled in the
same way as the 75% subsets, resulting in four different subsets. We refer to
those as the 50% subsets. The forth subset consists of data of five systems,
which is approximately 25% of the original dataset. Those five systems were
also sampled in the same way as the previous subsets, resulting four different
subsets. We refer to those as the 25% subsets.

Calibration method

The three Bayesian statistical models are first calibrated using the original
dataset. The models consist of EFFORT and all the five predictor variables:
FORMNUM, REPTNUM, ENTFORM, ENTREPT and PRODUCT. We refer to
those models as the full models in the reminder of this paper. That is, they
are the full Bayesian regression model, the full Bayesian MVN model, and
the full Bayesian MVN-R model. Then, three other models, which consist of
EFFORT and only two predictor variables: ENTFORM and PRODUCT, are also
calibrated using the original dataset. We refer to those models as the reduced
models. That is, they are the reduced Bayesian regression model, the reduced
Bayesian MVN model, and the reduced Bayesian MVN-R model. The reduced
models are required since the variable selection procedures in multiple linear
regression have identified those two predictor variables alone can explain the
variation of EFFORT sufficiently. In other words, the other three predictor
variables are redundant. Including those redundant predictor variables into
the models often causes a larger standard error of the predicted value, in
addition to making the models more complicated and difficult to understand.
Another advantage of the reduced models is that they require less effort for
data collection.

The above three reduced models are also calibrated separately using the 75%,
50% and 25% subsets. The full models are not used here since the reduced
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models have the advantages mentioned above over the full models.

4.4 Model validation

This study uses a leave-one-out validation method in order to evaluate and
compare the models’ predictive accuracy. The leave-one-out method is com-
monly used when the size of data is as small as ours. In the method, one case
in data is reserved and a model is calibrated using the remaining cases. Then,
the model’s predictive accuracy is tested using the reserved case, which is un-
known to the model. This procedure is repeated until all cases in the data are
chosen to be the reserved case in turn.

In the case of the original dataset, the metric data from one of the 17 software
systems is reserved and a model is calibrated using the data from the remaining
16 systems. This procedure is repeated 17 times, by using a different system as
a test case in turn. Then, the model’s overall predictive accuracy is evaluated
by averaging the predictive accuracy of the 17 test cases.

In the case of the 75%, 50% and 25% subsets, the predictive accuracy of each
subset is first evaluated using the above leave-one-out method. Then, the
model’s overall predictive accuracy is evaluated by averaging the predictive
accuracy of the four subsets. That is, the model’s predictive accuracy is eval-
uated using four independent samples, which were randomly drawn from the
original dataset. Using four validation samples instead of one should reduce
the possibility of getting a result by chance.

5 Multiple linear regression models

For a comparison, a multiple linear regression model consisting of all the five
predictor variables is constructed using the original dataset. We refer to this
model as the full regression model in the reminder of this paper. In addi-
tion, other multiple linear regression models, which correspond to the reduced
Bayesian statistical models, are constructed using different variable selection
procedures. The software package used is SPSS 11.0.

In multiple linear regression, a variable selection procedure enables only im-
portant predictor variables to be included in the model. Two commonly used
variable selection procedures are backward elimination and stepwise selection.
Backward elimination eliminates predictor variables whose contribution is less
significant according to a specified criterion, while stepwise selection enters
predictor variables whose contribution is more significant. In addition, step-
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wise selection re-assesses the contribution of the variables that were already
entered, every time a new variable is entered. The re-assessment is performed
in the same way as backward elimination using a specified elimination cri-
terion. Backward elimination and stepwise selection often produce different
models. Hence, we construct one model using backward elimination and the
other using stepwise selection. The elimination criterion used in backward
elimination is the p-value of the F statistic being larger than or equal to 0.1.
The entering criterion used in stepwise selection is the p-value of the F statistic
being smaller than or equal to 0.05. The eliminating criterion used in stepwise
selection is the same as the one used in backward elimination.

In our study, the stepwise selection has produced the same model as the back-
ward elimination for the original dataset. The model consists of only two
predictor variable: ENTFORM and PRODUCT. Both parameter coefficients
are significant as indicated by the associated p-values smaller than 0.05. The
residual plots of the model show no sign of violation of the assumptions in lin-
ear regression. We refer to this model as the reduced regression model. Other
reduced regression models are constructed for the 75%, 50% and 25% subsets.

6 Predictive accuracy measures

This paper evaluates and compares the software effort prediction models quan-
titatively, using the following predictive accuracy measures: absolute residual
(Ab.Res.), the magnitude of relative error (MRE) and pred measures.

The Ab.Res. is the absolute value of residual given by:

Ab.Res. =| actual value− predicted value | (25)

In this paper, the sum of the absolute residuals (Sum Ab.Res.), the median
of the absolute residuals (Med.Ab.Res.) and the standard deviation of the
absolute residuals (SD Ab.Res.) are used. The Sum Ab.Res. measures the total
residuals over the dataset. The Med.Ab.Res. measures the central tendency
of the residual distribution. The Med.Ab.Res. is chosen to be a measure of
the central tendency because the residual distribution is usually skewed in
software datasets. The SD Ab.Res. measures the dispersion of the residual
distribution.

MRE is a normalized measure of the discrepancy between actual values and
predicted values, given by [17]:

MRE =
| actual value− predicted value |

actual value
(26)
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In this paper, the maximum value of MRE (Max.MRE) is used. The Max.MRE
measures the maximum relative discrepancy, which is equivalent to the maxi-
mum error relative to the actual effort in the prediction. The mean of MRE,
the mean magnitude of relative error (MMRE):

MMRE =
1

n

i=n∑
i=1

MREi (27)

is also used. MMRE measures the average relative discrepancy, which is equiv-
alent to the average error relative to the actual effort in the prediction. Some-
times MMRE is expressed in %. However, this paper follows the difinition
given in Equation 27 and does not express MMRE in %.

Pred is a measure of what proportion of the predicted values have MRE less
than or equal to a specified value, given by [11]:

Pred(q) =
k

n
(28)

where q is the specified value, k is the number of cases whose MRE is less
than or equal to q, and n is the total number of cases in the dataset. In this
paper, pred(0.25) and pred(0.30) are used because those two pred measures
are commonly used in the software effort prediction literature.

In order for an effort prediction model to be considered accurate, MMRE ≤
0.25 [6] and/or either pred(0.25) ≥ 0.75 [6] or pred(0.30) ≥ 0.70 [18] is sug-
gested in the literature. On the other hand, there is a concern about MRE
because MRE is biased [22] and not always reliable as a predictive accuracy
measure [12]. However, MRE has been the de facto standard in the software
effort prediction literature and no alternative standard exists at present. Thus,
we still use MRE in this paper. However, in addition to MRE, we also use the
absolute residual measures because it has shown that the absolute residual
measures, in particular the SD Ab.Res., are a better measure than MRE for
model comparison [12].

7 Model evaluation and comparison

7.1 Results from the original dataset

Table 4 shows the values of the predictive accuracy measures achieved by
each of the effort prediction models for the original dataset. The values in

18



Model  Max. 
MRE 

M MRE Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Full 
Bayesian 
regression  

0.354 0.144 0.706 0.824 939.2 42.6 46.6 

Full 
Bayesian 
MVN 

0.382 0.148 0.765 0.824 941.5 49.0 47.7 

Full 
Bayesian 
MVN-R  

0.359 0.147 0.824 0.824 945.1 54.0 45.9 

Full 
regression 

0.393 0.148 0.765 0.824 943.7 47.1 48.4 

Reduced 
Bayesian 
regression 

0.372 0.135 0.882 0.882 865.2 36.4 37.9 

Reduced 
Bayesian 
MVN 

0.404 0.136 0.882 0.941 861.1 42.4 37.1 

Reduced 
Bayesian 
MVN-R 

0.415 0.134 0.882 0.941 845.4 46.2 38.0 

Reduced 
regression 

0.405 0.136 0.882 0.941 861.1 42.6 37.0 

 

Table 4
Predictive accuracy for the original dataset

this table are obtained using the leave-one-out validation method described
in Section 4. Table 4 shows that the three full Bayesian models have achieved
the MMRE values of 0.144, 0.148 and 0.147. This means that the average
discrepancy between actual EFFORT and predicted EFFORT of the models
is within 14.4 and 14.8% of actual EFFORT. Those MMRE values satisfy
the suggested criterion of MMRE for an accurate model, that is, MMRE ≤
0.25. Table 4 also shows that the three full Bayesian models have achieved
the pred(0.25) values of 0.706, 0.765 and 0.824, and the pred(0.30) value of
0.824. This means that more than 70% of the systems in the original dataset
has a MRE value less than or equal to 0.25, and 82.4% has a MRE value
less than or equal to 0.30. The pred(0.25) values of the full Bayesian MVN
model and MVN-R model satisfy the suggested criterion of pred(0.25), that
is, pred(0.25) ≥ 0.75, while the pred(0.30) values of all the three full Bayesian
models satisfy the criterion of pred(0.30), that is, pred(0.30) ≥ 0.70. Those
MMRE and pred values are indeed very good. Hence, it is concluded that each
full Bayesian model is able to predict software development effort in the target
environment quite successfully.
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When comparing the models, Table 4 shows that the values achieved by the
three full Bayesian models are similar to each other, and similar to those of the
full regression model. In order to test if there is a significant difference between
those four models, the Wilcoxon signed-rank tests are performed both on the
MRE values and the absolute residuals. The results have confirmed no evidence
of a significant difference between the four models. Hence, it is concluded that
each full Bayesian model is able to predict software development effort in the
target environment equally well to the others and the full regression model.

With regard to the reduced models, Table 4 shows that the three reduced
Bayesian models have achieved the MMRE, pred(0.25) and pred(0.30) values
even better than the full models. However, the Wilcoxon signed-rank tests
have found no evidence of a significant difference between the reduced and full
Bayesian models. Hence, it is concluded that each reduced Bayesian model is
able to predict software development effort in the target environment at least
equally well to the full model. Although this finding does not confirm the
expectation that removing redundant predictor variables would achieve better
predictive accuracy, considering that the reduced models require less effort for
data collection, we regard the reduced Bayesian models preferable for practical
use.

When comparing the reduced models, Table 4 also shows that the values
achieved by each reduced Bayesian model are very similar to the others, and
similar to those of the reduced regression model. The results from the Wilcoxon
signed-rank tests have confirmed no evidence of a significant difference between
those four models. Hence, it is concluded that each reduced Bayesian model is
able to predict software development effort in the target environment equally
well to the others and the reduced regression model.

7.2 Results from the 75% subsets

Table 5 shows the results of the four reduced models obtained from the 75%
subsets. The values in this table are the average of the four different subsets,
which were randomly sampled from the original dataset in Section 4. Table 5
shows that the three reduced Bayesian models still have achieved good MMRE,
pred(0.25) and pred(0.30) values, although they are not as good as those of
the reduced models obtained from the original dataset. Hence, it is concluded
that each reduced Bayesian model is able to predict software development
effort in the target environment quite successfully even when the data from
only 12 systems has been used for calibration.

Table 5 also shows that all the four models have very similar values, and
the Wilcoxon signed-rank tests have confirmed no evidence of a significant
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Model  Max. 
MRE 

M MRE Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Reduced 
Bayesian 
regression  

0.332 0.140 0.846 0.885 698.5 47.1 40.1 

Reduced 
Bayesian 
MVN 

0.357 0.140 0.846 0.904 679.9 45.9 39.0 

Reduced 
Bayesian 
MVN-R 

0.366 0.137 0.865 0.923 667.6 46.4 38.8 

Reduced 
regression 

0.358 0.140 0.846 0.904 679.7 46.4 39.0 

 

Table 5
Predictive accuracy for the 75% subsets

difference. Hence, it is concluded that each reduced Bayesian model is able to
predict software development effort in the target environment equally well to
the others and the reduced regression model, even when the data from only
12 systems has been used for calibration.

7.3 Results from the 50% subsets

Table 6 shows the results of the four reduced models obtained from the 50%
subsets. Those are again the average values of the four different subsets. Ta-
ble 6 shows that the three reduced Bayesian models still have achieved good
MMRE, pred(0.25) and pred(0.30) values, although they are not as good as
those obtained from the original dataset and the 75% subsets. In addition, sim-
ilar to the previous results, no significant differences between the four models
are observed here and confirmed in the Wilcoxon signed-rank tests. Hence, it
is concluded that each reduced Bayesian model is still able to predict software
development effort in the target environment quite successfully, and equally
well to the others and the reduced regression model, even when the data from
only eight systems has been used for calibration.

7.4 Results from the 25% subsets

Table 7 shows the results of the four reduced models obtained from the 25%
subsets. Those are again the average values of the four different subsets. Ta-
ble 7 shows that the reduced Bayesian MVN-R model still satisfies the sug-
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Model  Max. 
MRE 

M MRE Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Reduced 
Bayesian 
regression  

0.348 0.167 0.750 0.806 599.8 66.3 45.6 

Reduced 
Bayesian 
MVN 

0.357 0.147 0.778 0.861 489.9 53.7 37.6 

Reduced 
Bayesian 
MVN-R 

0.376 0.145 0.778 0.889 489.2 47.8 37.2 

Reduced 
regression 

0.358 0.147 0.778 0.861 489.8 54.2 37.7 

 

Table 6
Predictive accuracy for the 50% subsets

Model  Max. 
MRE 

M MRE Pred 
(0.25) 

Pred 
(0.30) 

Sum 
Ab.Res. 

Med. 
Ab.Res. 

SD 
Ab.Res. 

Reduced 
Bayesian 
regression  

0.896 0.716 0.050 0.050 1401.9 288.0 84.2 

Reduced 
Bayesian 
MVN 

0.553 0.258 0.550 0.600 563.0 86.3 108.3 

Reduced 
Bayesian 
MVN-R 

0.448 0.204 0.650 0.750 416.8 72.9 79.4 

Reduced 
regression 

0.622 0.274 0.550 0.600 597.4 86.4 119.2 

 

Table 7
Predictive accuracy for the 25% subsets

gested criteria of MMRE and pred(0.30). In addition, the reduced Bayesian
MVN model also seems to perform well enough for practical use. On the other
hand, the reduced Bayesian regression model performs poorly.

Table 7 also shows that the values of the three Bayesian models are different.
Table 8 shows the p-values obtained from the Wilcoxon signed-rank tests for
each pair-wise comparison. With regard to the reduced Bayesian regression
model, Table 8 has confirmed strong evidence of a significant difference from
the three other models as indicated by the p-values close to 0.000. Hence, it is
concluded that the reduced Bayesian regression model is not able to predict
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Reduced Bayesian 
regression 

Reduced Bayesian 
MVN 

Reduced Bayesian 
MVN-R Model  

Ab.Res. MRE Ab.Res. MRE Ab.Res. MRE 
Reduced  
regression  

0.000 0.000 0.015 0.011 0.048 0.086 

Reduced 
Bayesian 
regression 

- - 0.000 0.000 0.000 0.000 

Reduced 
Bayesian 
MVN 

0.000 0.000 - - 0.067 0.108 

Reduced 
Bayesian 
MVN-R 

0.000 0.000 0.067 0.108 - - 

 

Table 8
Significance test results on the differences in Table 7

effort as accurately as the three other models when only four systems have
been used for calibration.

With regard to the reduced Bayesian MVN model, the tests have confirmed
evidence of a significant difference from the reduced regression model as indi-
cated by the p-values less than 0.05. Hence, it is concluded that the reduced
Bayesian MVN model can predict effort better than the regression model when
only four systems have been used for calibration.

With regard to the reduced Bayesian MVN-R model, the test has confirmed
evidence of a significant difference in the absolute residuals from the reduced
regression model as indicated by a p-value less than 0.05. Another test has
also confirmed weak evidence in the MRE values as indicated by the p-value
of 0.086, which is not far from 0.05. Hence, it is concluded that the reduced
Bayesian MVN-R model can predict effort better than the regression model
when only four systems have been used for calibration. In comparison with
the reduced Bayesian MVN model, the difference in the absolute residuals is
weakly significant as indicated by the p-value of 0.067, while the difference
in the MRE values is not significant as indicated by the p-value of 0.108.
Considering that the absolute residuals seem to be a better measure for model
comparison than MRE according to other studies, it is concluded that the
reduced Bayesian MVN-R model can predict effort better than the reduced
Bayesian MVN model when only four systems have been used for calibration.

When summarizing the results from those pair-wise comparisons, it is also
concluded that the Bayesian MVN-R model is the best among the four models
when only four systems have been used for calibration.
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7.5 Discussion

For the original dataset and the 75% and 50% subsets, the three Bayesian sta-
tistical effort prediction models have achieved predictive accuracy that satisfy
the suggested criteria for an accurate model in the literature, with an only
exception of the pred(0.25) of the full Bayesian regression model. Although
those criteria are based on MRE and MRE is not always a reliable measure,
we still consider those models’ predictive accuracy are very good, certainly
appropriate for practical use. For the 25% subsets, the Bayesian MVN and
MVN-R models still have achieved good predictive accuracy. Those findings
confirm our expectation that Bayesian statistical models can achieve good
predictive accuracy even when only a very small amount of empirical data is
used for calibration.

In comparison with the multiple linear regression model, the accuracy of the
three Bayesian statistical models are equivalent in general. However, when
the calibration subsets consist of only four software systems, the accuracy of
the Bayesian MVN and MVN-R models are significantly better. This finding
suggests that those two models, in particular the Bayesian MVN-R model
would be a better choice in the target environment, particularly when only a
very small amount of historical data is available for calibration.

8 Conclusions

8.1 Summary

Three new Bayesian statistical software development effort prediction models
are constructed for database-oriented software systems, which are developed
using a 4GL development tool suite, Oracle’s Designer 6i and Developer 6i.
They are a Bayesian regression model, a Bayesian multivariate normal dis-
tribution (MVN) model, and a model named Bayesian MVN-R since it is
a hybrid of the previous two models. The models use four specification-based
software size metrics and development team’s productivity metric as predictor
variables. The full models consist of all those five predictor variables, while the
reduced models consist of only two, which are the total number of database
entities accessed by all the data entry forms, and productivity metric. Both
full and reduced models are first calibrated using the original dataset, which
consists of data from 17 software systems developed in the target environ-
ment. Then, the reduced models are calibrated using smaller-sized subsets,
which were randomly sampled from the original dataset, in order to examine
if the predictive accuracy still remains good as the calibration subsets become
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smaller.

The models’ predictive accuracy are evaluated using MRE, pred(0.25), pred(0.30)
and the absolute residuals. The results show that each of the three Bayesian
statistical models is able to predict software development effort in the target
environment very successfully, and equally well to the other two models, as
well as to the corresponding multiple linear regression model. In addition, the
reduced models seem to be a better choice than the full models since they
require less effort for data collection. However, when the calibration subsets
become smaller than five systems, the Bayesian MVN and MVN-R models sig-
nificantly outperform the Bayesian regression and multiple linear regression
models. Overall, it is concluded that the reduced Bayesian MVN-R model is
the best choice for predicting effort in the target environment. Those results
confirm the authors’ expectation that Bayesian statistical models can pre-
dict software development effort accurately in the target environment, even
when only a very small amount of historical data is available for the models’
calibration. Those results also should justify the use of Bayesian statistical
models in software effort prediction and encourage other researchers to inves-
tigate the models further, so that the Bayesian statistical models’ full potential
in software effort prediction can be revealed and software organizations and
practitioners can benefit from it.

8.2 Limitation of the study

All the models in this study were calibrated using the empirical data col-
lected from software systems developed by non-professional, university under-
graduate developers. This may imply that the applicability of the models to
industrial settings would be limited. However, the authors consider the mod-
els still can achieve good predictive accuracy in industrial settings, provided
that they are calibrated using historical data collected in the target setting.
This is because our Bayesian statistical models’ predictive accuracy mainly
depend on the shapes of the probability distributions of the variables. And
those shapes are expected to be not significantly different between an indus-
trial setting and our setting, although the central tendency and variance could
be different. However, the applicability of empirical effort prediction models
is, in general, subject to the specific environment where the models’ historical
data were collected. Given that, the models presented in this paper would
not be exempted from such limitations. This means that the models require
separate calibration for each new environment, which includes choosing a new
set of appropriate predictor variables when necessary.

Another limitation is that the results presented in this paper were obtained
from a limited number of independent random samples drawn from a single
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dataset. This implies that the results would be different if a different number of
samples were drawn and/or if more than one dataset were used. Although the
authors are confident of the appropriateness of the statistical procedures per-
formed in this study, our models would not be exempted from this limitation,
either.

8.3 Future directions

One of the authors is currently investigating predictive accuracy of the Bayesian
statistical models using the International Software Benchmarking Standards
Group dataset, which contains data collected from a wide range of software
systems developed in various industrial settings. The results from this investi-
gation are expected to provide more information about predictive accuracy of
the Bayesian statistical effort prediction models in general. The authors also
expect more researchers to engage themselves in carrying out similar studies,
since Bayesian statistical models can provide a significant benefit to software
organizations and practitioners due to the better predictive accuracy than re-
gression models, when the system of interest has only a very limited amount
of historical data. The results from those future studies should reveal Bayesian
statistical software effort prediction models’ full potential and contribute to-
ward the models taking a leading role among other effort prediction models.
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