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Abstract— The immune system is a complex and distributed
system. It provides a multilayered form of defence, capable
of identifying and responding to harmful pathogens that it
does not recognise as “self”. The framework proposed in
this paper incorporates a number of immunological concepts
and principles, including the multilayered defence and the
cooperation between cells in the adaptive immune system. An
alternative model of positive selection is also presented. It is
suggested that the framework discussed here could lead to
reduced false positive responses in anomaly detection tasks, such
as intrusion detection, as well being extended to a population
of computational immune systems that are able to maintain
population diversity of recognition and response.

I. INTRODUCTION

Parallels have been drawn between the human immune
system and anomaly detection problem domains, particularly
with regards to intrusion detection systems (IDS) [1], [2], [3],
[4]. The human immune system, for the most part, success-
fully protects the body from harmful pathogens that come
in many varied forms. Each type of pathogen has a different
cellular structure, method of replication and mechanism for
entering the body. The immune system has evolved complex
structures and methods for identifying these pathogens and
removing or responding to the threat that they possess. The
widely held view in immunology is that the main function
of the immune system is to distinguish between “self” (cells
belonging to the individual) and “non-self” (pathogens) [5].
An alternative view is that of the “Danger theory” proposed
by Matzinger [6], [7] and discussed in relation to artificial
immune systems by Aickelin [8], [9]. However the self/non-
self theory still stands as the foundation view of immune
system function.

These parallels have lead to much development and re-
search in the area of artificial immune systems (AIS). While
the human immune system is complex in its methods and
systems, there are only a select few immunological principles
that are modelled in AIS. A recent report by Dasgupta and
Yu [10] cites 456 journal articles, conference papers and
technical reports in the field of AIS. Despite this volume of
work there are only a small number of immunological prin-
ciples that have been used in these models [11], [12]. If we
take a broader look at the immune system there are several
features that could provide a novel approach to developing an
artificial immune system for anomaly detection. In particular
the multilayered approach to detection and response afforded
by the human immune system is one in which has been
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previously modelled by Dasgupta [13], but could be explored
further. The negative selection algorithm initially presented
by Forrest [1] has been well researched, but the additional
process of positive selection which immature lymphocytes
are subject to in the adaptive immune system is not as well
researched.

In this paper a framework is presented that incorporates
principles from both innate immunity (the “built-in” defence
of the immune system) and adaptive immunity (the memory
and specific defence abilities). A multilayered approach is
taken and a method for positive selection is presented which
is modelled on an alternative immunological theory [14]. The
focus is on the development of a framework that is able to
adapt and evolve a diverse population of detectors which
can recognise and respond to known anomalous behaviour
(known as misuse in IDS), as well as previously unknown
anomalous behaviour. The framework provided in this paper
is expected to be applied in the area of host-based computer
intrusion detection, where each computer on a network
would have an individual computational immune system.
It is the intention that this framework will be extended to
allow the population (network) of individuals (computers)
to work together to maintain diversity of recognition and
response within the population. Methods of communication
and “vaccination” techniques to implement this are left for
future research and not discussed here. For the remainder
of this paper, the discussion refers to the development of a
computational immune system for a single individual within
the population.

The remainder of the paper is structured as follows. Sec-
tion 2 contains an overview of some immune system concepts
involved with the framework presented in this paper. Section
3 discusses two theories of positive selection in the immune
system and their implication for artificial immune systems.
Section 4 then introduces the framework and the components
are discussed in Section 5. Section 6 gives a description of
the three main phases involved in the framework. The paper
concludes in Section 7 with a discussion of future work.

II. IMMUNE SYSTEMS BACKGROUND

Humans and other vertebrates have a complex and so-
phisticated immune system that involves several layers of
defence. The first and most obvious level is that of the body’s
external defences. This includes the tissues that cover and
line the body, and the various physiological conditions that
are present in the body. For example, unbroken skin provides
a barrier from invading pathogens. Likewise, the mucous
membranes lining the respiratory tract stop pathogens from



entering the respiratory system [5]. The remainder of this
section gives an overview of some of the concepts and
principles involved in the second and third layers of this
defence system: namely innate and adaptive immunity.

A. Innate immune system

The innate immune system consists of specialised cells
and molecules that are responsible for the initial response to
any pathogen which has entered the body. This is achieved
through pattern recognition receptors (PRRs) on the surface
of the innate immune system cells. PRRs recognise pathogen
associated molecular patterns (PAMPs) which are found on
the cell surface of invading pathogens and never on the
host [15]. These molecular patterns have been conserved
through evolution and are common to many pathogens. A
single cell can have multiple different PRRs present on
its cell surface. Each receptor is specialised towards the
recognition of a specific type of pathogen. For example some
of the types of PRRs known to be found on macrophages
(a type of innate immune system cell) include Mannose
receptors, Scavenger receptors, Tol-like receptors and CD14
receptors. The CD14 receptor for example, binds to a par-
ticular molecule (lipopolysaccharide–LPS) which is found
only in the cell wall of Gram-negative bacteria, e.g. E.coli,
Neisseria, Salmonella [16].

The pattern recognition receptors found on innate immune
system cells are germline encoded. Consequently the re-
sponses of the innate immune system are “built-in” from birth
and do not change with age or experience of infection [5].
The ability of the PRRs to recognise a broad range of
pathogens provides a non-specific defence for the immune
system and through signalling and communication mecha-
nisms, contributes to the induction of appropriate adaptive
immune system responses.

B. Adaptive immune system

As opposed to the innate immune system which is non-
specific in its defence against harmful pathogens, the adaptive
immune system initiates a response specific to the pathogen
that has entered the body. The adaptive immune system also
provides memory capabilities to the immune system. This
functionality is provided through a particular type of cell
found only in the adaptive immune system - the lymphocyte.
Table I describes the four main properties of lympohocytes
that make them distinct from other innate immune system
cells [5, pg 118]. These differences combine to maintain the
flexibility of the immune system.

Lymphocytes circulate through the blood and lymphatic
system waiting to encounter antigens (the foreign molecules
belonging to pathogens that invade the body). Each antigen
has a particular shape that is recognised by the receptor
present on the lymphocyte cell surface. The ability of the
immune system to recognise and respond to the millions of
different antigens that it encounters comes from the large
lymphocyte receptor repertoire. Millions of lymphocyte cells
are developed and selected in a way that the receptors on each

TABLE I

FOUR MAIN DIFFERENCES BETWEEN LYMPHOCYTES AND INNATE

IMMUNE CELLS, SUCH AS MACROPHAGES [5, PG 118].

1) They recirculate through the blood, tissues, and lymphoid
organs, waiting to encounter foreign molecules (or antigens).

2) They are individually specific for the antigens they recog-
nise. This is due to the possession of antigen-specific surface
receptors.

3) When they recognise ‘their’ antigen, they respond by pro-
liferating and switching on a particular function (e.g. cyto-
toxicity; secretion of antibody or cytokines).

4) Once they have functioned, some of them remain for years
as memory cells, with the capacity for faster and larger future
responses.

cell surface recognise different antigens, ensuring diversity
within the immune system.

The ability of the adaptive immune system to identify
new and previously unseen pathogens through recognition
of antigen by the lymphocytes is one of the underlying
principles behind the development of artificial immune sys-
tems [17]. In the adaptive immune system there are two types
of lymphocytes: B cells and T cells. These lymphocytes begin
as a stem cell found in the bone marrow and go through
a maturation process. B cells complete their maturation in
the bone marrow, while T cells move to the thymus to
complete maturation. Much of the research in AIS that
models lymphocyte development and behaviour incorporates
the main properties of B and T cells into the concept of a
generic detector.

One of the important processes that lymphocytes undergo
is that of central tolerance. This involves the elimination
of lymphocytes that recognise self antigens and would oth-
erwise initiate an immune response to self. This provides
immunological tolerance towards self and has been widely
modelled in artificial immune systems– implemented as
the negative selection algorithm [1]. It is suggested here
that, by ignoring the differences between B and T cells,
several potentially useful properties for developing an AIS
are ignored. For this reason we investigate the differences
and in particular a way to model the additional process of
positive selection that T cells undergo. The immunological
processes underlying positive selection of T cells is discussed
in the following section.

III. POSITIVE SELECTION

The T cell receptor (TCR) is similar to that of the B cell,
except that it is not secreted as antibody and does not bind
directly to antigens. Rather it binds to peptides (small frag-
ments of protein broken down from the pathogen) presented
in a complex with a specialised self molecule called the
Major Histocompatibility Complex (MHC). Recognition of
the self-MHC:peptide complex means that T cells undergo a
slightly different process to B cells. While T cells are selected



for their lack of recognition of self (negative selection as in
B cells), they must also be able to recognise the self MHC
molecule.

MHC is a specialised complex involved in regulating
the T cell response in the immune system [16]. MHC is
highly polymorphic, with an estimated 1013 possible com-
binations [15]. Humans inherit genes for about six different
MHC molecules, promoting diversity within the population.
The widely held view of the reason behind this difference
between the MHC of individuals is that this ensures the
immune systems of all individuals do not react in the same
way to pathogens. It could be envisaged that if all members
of a population respond in the same way, a new pathogen
would be able to destroy the entire population [5].

Positive selection is an area in immunology where there
are contrasting views. This arises around the ability of
positive and negative selection to work together to both retain
cells that recognise the self-MHC:peptide complex, while
also removing cells that recognise any self peptides [18].
There are two theories regarding this issue: first that the
interactions required for positive and negative selection are
similar and receptor affinities drive the two processes (avidity
hypothesis); and second that the interactions required are
different, with different signals inducing different responses
for positive and negative selection (differential signalling
hypothesis) [15], [14].

A. Avidity hypothesis

According to the avidity hypothesis (AvH) the avidity 1

with which the TCR binds to the self-MHC:peptide complex
will determine whether the cell is positively or negatively
selected. T cells are transported from the bone marrow
to the thymus where, during positive selection, those cells
that demonstrate a relatively weak avidity for the self-
MHC:peptide complex presented by epithelial cells are in-
duced to die. This results in the removal of cells that
are unable to recognise the self-MHC molecule. During
negative selection, T cells with a strong avidity for the
self-MHC:peptide complex presented by dendritic cells are
also induced to die. The result of this positive and negative
selection is a repertoire of T cells with receptors that can
be considered to have a “medium” avidity for the self-
MHC:peptide complexes presented to them.

Several studies in the area of AIS have used the concept
of positive selection to model the generation of detectors [2],
[22]. The positive selection algorithm used in these papers
is essentially the inverse of the negative selection algorithm
described by Forrest [1]. Instead of removing detectors that
match self strings, detectors that do not match self strings
above a given affinity threshold are removed. This results in
a set of detectors that describe the self space rather than the
nonself space as with the negative selection algorithm [19].
When combined with the negative selection algorithm in a
manner that models the avidity hypothesis, affinity thresholds

1the sum total of the strength of binding of two molecules or cells to one
another at multiple sites - distinct from affinity [15, pg. 685]

are used to restrict which detectors should and should not be
removed. The result from such a process is a set of detectors
whose affinity is not too high when matched to self (negative
selection) and also not too low (positive selection).

Aicklen and Cayzer [8] compare positive and negative
selection and show that the effectiveness of their use de-
pends on the nature of the problem domain. Using positive
selection, in which the detector set represents the self space,
a new string that was non-self would have to be compared
with all detectors to confirm it was in fact non-self. However,
if the new string was self it would only have to match one
detector in order to confirm it was a self string. In the case
of negative selection this is reversed and a non-self string
would only have to match one of the detectors that covers
the non-self space. It follows that with a new self string,
using negative selection a comparison would have to be made
with all detectors to confirm the string was self. This implies
that the choice of positive or negative selection using these
methods, is dependent on the self/non-self distribution of the
problem domain.

B. Differential signalling hypothesis

The alternative view of the differential signalling hypothe-
sis (DSH) assumes that the interactions required for positive
and negative selection are different. Cohn discusses this
theory and asserts that “restrictive recognition of peptide
(P) by the TCR requires both allele-specific recognition
of the MHC-encoded restricting element (R) and specific
recognition of the peptide bound to it” [14, pg. 375]. This
suggests that there must be two different structures which
combine to make up the T cell receptor, as opposed to the
single structure implied by the avidity hypothesis. Figure 1
gives a simplified view of the components of such a T cell
receptor according to the differential signalling hypothesis.
The two structures, or paratopes, of the receptor are anti-R,
which is germline encoded and anti-P, which is somatically
encoded.

self MHC
(R)

anti-R

anti-P

T cell

T cell receptor
(TCR)

peptide
(P)

Fig. 1. Simplified view of TCR according to the differential signalling
hypothesis.

The differences between these two hypotheses for pos-
itive selection and their implications for TCR structure is
described by Cohn [21] as a ‘singly recognitive multiple
receptor’ in the avidity hypothesis and as a ‘multiple recogni-
tive single receptor’ in the differential signalling hypothesis.
This means that the TCR in the AvH recognises a single



paratope– the MHC:peptide complex (singly recognitive) and
the avidity of this match determines what type of signal is
sent to the T cell, resulting in different outcomes– positive
or negative selection (multiple receptor). Alternatively in the
DSH the TCR is thought to be comprised of two different
paratopes which recognise R and P respectively (multiple
recognitive). Where the TCR could send different signals in
the AvH, here the TCR can only deliver a single signal and
the stage of development that the T cell is in will determine
how that signal is interpreted (single receptor).

As far as the author is aware, the differential signalling
process has not been used previously in artificial immune
systems.

IV. COMMUNICATION BETWEEN CELLS IN THE IMMUNE

SYSTEM

One of the key functions of the immune system is commu-
nication and there are many aspects to this communication.
The majority of cells in the immune system act under the
influence of signals that they receive from the cells [5]. These
signals direct the function of the cells and can be delivered
either: 1) through direct contact between cells, or 2) through
specialised molecules called cytokines.

While the innate and adaptive components of the human
immune system have quite distinct functions, there is a lot
of communication and interaction that occurs between the
cells of each component. Cytokines are responsible for most
of this type of communication. Communication, in the form
of costimulatory signals and cell-cell interaction also occurs
within the components of the immune system. For example,
in the adaptive immune system these communication mech-
anisms determine how the cells will respond.

In the adaptive immune system there are two ways in
which a response can be initiated: 1) antibody-mediated
or humoral response, or 2) cell-mediated response. The
humoral response is driven by direct B cell interaction with
antigen and defends against extracellular pathogens. The
cell-mediated response is driven by indirect activation of
T cells through recognition of the MHC:peptide complex
and defends against intracellular pathogens. There are many
points in these response pathways at which communication
and signalling occurs.

This communication and signalling helps in achieving
peripheral tolerance in the immune system. It is possible
that some cells which are able to survive the central tol-
erance processes could then incorrectly respond to self. A
mechanism to stop this harmful process is required, and this
is achieved by the requirement of a signal from another
cell [16]. For example T cells require costimulatory cells
from antigen presenting cells before a response is initiated.
“By requiring that helper T cells only recognise presented
antigen, Mother Nature guarantees that the decision to deploy
the deadly adaptive immune system is not made by a single
cell” [18, pg. 51].

In anomaly detection problem domains a common issue
is that normal behaviour is often classified incorrectly and
the system continuously raises alarms. The cooperation and

costimulation between cells in the immune system ensures
that an immune response is not initiated unnecessarily, thus
providing some regulation to that response. Implementing
an error-checking process provided by cooperation between
layers or types of detectors could reduce the level of false
positive alerts in an anomaly detection system.

The relevance of internal communication mechanisms,
such as costimulation has been acknowledged in the area
of artificial immune systems. One method that has been de-
scribed to achieve this is through the use of human interaction
to provide the costimulation signal [20]. If a detector raised
an alarm, the user has a certain length of time to decide if
the alarm was a true alert. If the detector does not receive
this costimulation it is destroyed. Otherwise it becomes
a memory detector with an indefinite lifetime. While this
models costimulation, it still requires user intervention and
could interfere with normal user activities if the user is
prompted too often to stimulate the system.

In [24] costimulation is achieved in an AIS for intrusion
detection within a network of computers by a check to
determine whether other systems in the network have also
raised an alarm. This costimulation is intended to reduce the
number of false alarms, but it may lead to an increase in the
number of missed attacks, as all detected packets must be
costimulated.

The following section describes how the immune concepts
presented in the previous sections could be modelled in an
AIS.

V. FRAMEWORK FOR MULTILAYER ARTIFICIAL IMMUNE

SYSTEM

The aim of the framework presented in this section is to
develop a multilayered detection system that can be used to
create a population of individuals which are able to identify
a variety of known and unknown anomalous behaviour. This
multilayered approach is designed to provide a form of
internal costimulation, similar to peripheral tolerance, and
reduce the number of false positive responses from the
system.

The framework consists of several components which
comprise a multilayered system of detection. These com-
ponents (MHC, Antigen Presenting Detectors, T and B de-
tectors) are described in the following section. Sections VII–
VIII then outline the three phases of the system: initialisation,
incremental learning and adaptation, and identification.

VI. REPRESENTATION

In this framework ‘self’ is defined as background knowl-
edge of normal data. In an IDS application, for example, this
would be normal system behaviour modelled by a number
of features or attributes relating to the type of behaviour of
interest. ‘Nonself’ is therefore any data that is not self, or
abnormal. In the IDS application, nonself would be anoma-
lous behaviour. Knowledge of existing anomalous behaviour
(misuse or attack information) is also used in the framework,
incorporating the concept of a ‘built-in” knowledge of non-
self that the innate immune system provides.



A. MHC

As discussed in Section III, the Major Histocompatibility
Complex (MHC) promotes diversity of recognition and re-
sponse within a population of individuals. One method of
modelling MHC is presented by Hofmeyr [23]. A permu-
tation mask is created for each detector set, which when
applied causes identical detectors to match data examples
in different ways. This creates diverse recognition abilities
within a population that contain similar detector sets.

An alternative method of modelling MHC is presented
by Kim [25] whereby MHC is modelled as a set of rules
extracted from a ‘self’ knowledge base using the Apriori rule
mining algorithm. An immature T detector is then generated
in the form of an “If-Then” rule that contradicts the rules in
the MHC set. These rules are filtered using a rule confidence
threshold in a process analogous to the avidity hypothesis for
positive selection.

In this work as we are attempting to model the mul-
tilayered detection of the immune system the MHC is
represented as a set of binary string feature masks which
are highly specific to known types of anomalous behaviour.
MHC is involved in the positive selection process of T
cell development. When antigen presenting cells break down
pathogens the MHC presents the peptide fragments on the
antigen-presenting cell surface. This is analogous to a feature
selection process where the MHC presents feature subsets of
the pathogen that it knows T cells will be able to recognise.
As there are a large but finite population of MHC in the
human immune system and each individual has a small
subset of these, a global MHC set is generated for the
population and a local MHC set is extracted from this for
each individual.

The global set of MHC are formed through feature ex-
traction from a base of background knowledge. A method
that could be used to perform this feature extraction is
information gain (IG). Features would be ranked and those
features with an IG ratio above a threshold are used to
create a set of feature masks. The threshold is selected
experimentally and is used instead of a feature count cut-
off to allow the creation of different length feature masks.

B. Antigen Presenting Detectors

Foreign pathogens are presented to T cells by Antigen
Presenting Cells (APC). There are different types of cells that
can act as APCs, including cells from both the innate immune
system (for example macrophages) and adaptive immune
system (for example B cells). These APCs identify pathogens
through their receptors and break down the pathogen into
peptides which are presented in a complex with MHC. This is
analogous to a set of detectors that are developed to recognise
conserved patterns in anomalous behaviour.

In this framework antigen presenting detectors (APD)
are modelled by rules mined from existing background
knowledge of ‘normal’ and ‘anomalous’ behaviour. The rules
relating to anomalous behaviour are extracted and added to
a local APD rule list for an individual. In a population of

systems, each individual would have a localised domain of
background knowledge and would develop a personalised list
of APD rules specific to behaviour they have encountered in
the past.

From this local APD rule set a population of APDs is
constructed for the local system. An APD consists of the
random pairing of an APD rule and a MHC mask. This
is analogous to the APC, which recognises a particular
pathogen and the MHC, which presents a particular peptide
fragment to T cells.

As with the APCs in the innate immune system which
these detectors are modelled on, this knowledge is “built-in”
from initial generation. However, unlike in the innate immune
system, where this base of knowledge does not change with
age or experience of infection, in the computational immune
system it is desirable for the set of APDs evolve over time.
This evolution would involve the expansion of the APD
set to incorporate new knowledge of anomalous behaviour–
either through the addition by the user of preformed rules,
or through communication with other computational immune
systems in the population.

C. T detectors

The T cells of the adaptive immune system are used in
the framework to develop a set of detectors that can regulate
the systems recognition and response. In the immune system
central tolerance is achieved through negative and positive
selection. Peripheral tolerance is also achieved, ensuring the
immune system components do not respond against self, by
the requirement of T cells for a costimulatory signal from an
APC.

In this framework the differential signalling hypothesis is
modelled and as such we take the view that the T detector
is comprised of two parts: a rule (the T cell recognition
receptor) and an MHC feature mask (recognising the MHC
that is presented by the antigen presenting cell). The MHC
mask is randomly generated and compared with the masks
in the local MHC set. If the average affinity between the T
detector MHC mask and the MHC set masks is above a given
threshold (ThrPS) the T detector is positively selected and
the development of the detector continues. If the T detector
MHC mask does not match above the ThrPS, the T detector
is removed and a new T detector is generated. The value for
ThrPS is selected experimentally.

After the positive selection process, a random rule is
generated for the new T detector. This rule is masked by
the T detectors MHC mask, and is subjected to a negative
selection process. Local background knowledge of normal
behaviour is used to match a randomly generated rule. If the
affinity, or strength, of the match between the rule and any
data example in this ‘normal’ data is above a given affinity
threshold (ThrNS) it is removed and another T detector is
generated. The value for ThrNS is selected experimentally.
A modified Euclidean distance measure is used to determine
affinity, where the affinity is high if the Euclidean distance
is low and conversely the affinity is low if the Euclidean
distance is high.



When a T detector passes both the positive and negative
selection processes it is added to the local T detector set.

D. B detectors

The final component in the framework is a set of B de-
tectors analogous to B cells in the adaptive immune system.
These are similar to generic detectors modelled in other AIS.
They undergo the same process of negative selection as T
detectors, but are not subjected to positive selection against
the local MHC set. This leads to a set of detectors that are
selected for their difference to known normal behaviour, but
they are not restricted by the feature masks of the MHC.
Consequently the B detector set adds a more general form
of detectors for anomaly detection to the framework.

VII. INITIALISATION PHASE

There are three main phases described in the framework.
The first of these is the initialisation phase. This involves
the generation of each of the four sets described above for
a local system. The initial number in each set is arbitrary.
The number in the local MHC set will be proportionally
small according to the number of MHC masks in the global
MHC mask list. This global list is generated for each subtype
in the anomalous behaviour space. For this reason this
framework is more suited to complex problem domains,
such as intrusion detection. In intrusion detection there is
normal behaviour and behaviour that constitutes anomalous
behaviour. However anomalous behaviour can be subdivided
into different types of attacks. For example SYN flood, Ping
of Death, Perl, Imap, or Ipsweep attacks [26]. Therefore the
global MHC list will contain a feature mask for each of these
subtypes and the number depends on how many are present
in the global background knowledge. The local MHC set will
have a small random subset of these global MHC.

The size of the APD set depends on the number of rules in
the APD rule list. The number of APDs should be selected
so that the probability of duplication amongst the APD set
is minimised. As for T and B detectors, the size is set
according to the computational cost involved with generating
the detectors. All sets are continuously adapted during the
lifecycle of the system and therefore the detector set sizes
could be expanded to improve detection if necessary.

VIII. IDENTIFICATION PHASE

The objective of the framework is to develop a system
that is able to detect anomalous behaviour. This is achieved
through the identification phase. A data example presented
to the system is subjected to the multilayered identification
process of the system. This data example is first matched to
the rules of the local APD set. This is analogous to the innate
APCs in the human immune system recognising conserved
patterns in pathogens.

For each APD that matches the data example, the MHC
mask associated with the APD is matched to the MHC
masks in the local T detector set. This step models the way
in which antigen presenting cells present the MHC:peptide
complex and T cells recognise first the MHC part of the

complex. It also provides some regulation to the system,
in that confirmation of the anomalous nature of the data
example is required from the T detectors. This is similar
to the way in which T cells require the costimulatory signal
from APCs to achieve peripheral tolerance.

If there is a match between the APD MHC mask and a T
detector MHC mask, the data example and T detector rules
are filtered using the APD MHC mask. The affinity of the
match between the data example and the detector rule is then
measured and if it is above a given threshold ThrAFF the
data example is identified as anomalous.

At each point if there is no match, the data example is
matched to the rules in the B detector set. This allows a
general detection by cells that have developed according to
their dissimilarity to normal behaviour.

IX. INCREMENTAL LEARNING AND ADAPTATION PHASE

As in the immune system, the initial detector sets are
developed so that they should be able to identify anomalous
behaviour. However the immune system is adaptive and
allows the cells to die, new cells to develop, and cells that
are good at detecting harmful pathogens proliferate and are
mutated to become even better detectors. This is modelled
in the incremental learning and adaptation phase of this
framework.

After initialisation, a further traning set of labelled data is
passed through the framework for identification (as described
above). For each T detector involved in a true positive
detection (anomalous data example correctly classified as
anomalous), the associated APDs and data examples are
found. Each T detector rule and mask are cloned several
times. Each clone is mutated and the fittest clone is found
and replaces the original T detector. A fitter clone is one that
can perform better across all data examples. The objective
of this process is to produce a clone that is able to identify
more similar anomalous data examples in the future.

During this phase underperforming detectors are removed
and replaced with new ones. Any detectors that have not
been involved in a detection in time period t are removed and
replaced with a new detector. This is an ongoing adaptation
process to ensure the system does not get overwhelmed by
detectors that are unable to assist in the identification of
anaomalous behaviour.

X. CONCLUSIONS

This paper has presented an initial overview of a frame-
work for a multilevel artificial immune system. This frame-
work has combined serval immune principles, including
using positive and negative selection in the generation of
detector sets. The motivating idea behind this framework is to
reduce the false positive rates in anomaly detection problem
domains, for example in an intrusion detection system. The
focus now is to implement and test this framework using a
benchmark intrusion detection dataset.
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