
Facilitating collaboration in a distributed software
development environment using P2P architecture

Maryam Purvis, Martin Purvis, Bastin Tony Roy Savarimuthu

University of Otago, P O Box 56
Dunedin, New Zealand

{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes efforts to facilitate collaborative work in a dis-
tributed environment by providing infrastructure that facilitates the understand-
ing of inter-connected processes involved and how they interact. In this work
we describe how our agent-based framework supports these. This distributed
work environment makes use of both P2P and client-server architectures. Us-
ing an example of developing an open source software system, we explain how
a collaborative work environment can be achieved. In particular we address
how the support for coordination, collaboration and communication are pro-
vided using our framework.

1 Introduction

Distributed software teams are becoming more common in today’s software projects,
because the teams are based on skill pools that are available in the global community
rather than being constrained with local resources. Distributed software development
[1, 3] involves collaboration of people from distributed geographical locations. This
presents challenges in day-today activities in areas, such as co-ordination, collabora-
tion and communication [2, 3]. Co-ordination and collaboration can be facilitated by
the provision of flexible communication mechanisms. In the context of collaborative
work, an important factor that impacts the success of the final outcome is how effec-
tively any issues associated with the shared objective are communicated and resolved.
Such communication can be direct, such as face-to-face interactions, telephone con-
versations, interactions by means of chat tools, email, etc; or they can be indirect
through common artifacts associated with the final outcome. In the context of devel-
oping an open source software system, the artifacts associated with the final product
comprise documents, process models, source code etc. A mechanism is needed that
ensures these constantly evolving artifacts are easily accessible to the collaborating
partners. So there is a need for a system that provides infrastructural support for the
smooth functioning of a collaborative work environment.

We will assume that in a context of an open source software development, a distrib-
uted team working on a particular project is composed of a few sub-systems. For

example in the development of an operating system, the sub-systems can be develop-
ing the kernel, I/O and file system, mail system, networking, a set of tools etc. A
number of interested people work towards the development of each sub-system. In
this environment the following elements can be useful:

• A model that represents the functional and behavioral aspects of the project

• A model that represents the sub-system level activities

• A model of the communication protocol (Interaction Protocol) between vari-

ous collaborators

In this paper we describe how these capabilities are incorporated into the collabora-
tive work environment. Using various scenarios we also explain how these features
are utilized.

To achieve a collaborative work environment and provide communication mechanism
between interacting collaborators we use the agent based system OPAL [4]. Using
this system we can model each collaborator as a software agent. The Coloured Petri
net [5] formalism is used to model the activities of the collaborators as well as the
communication protocols. These models are presented in more detail in the example
scenario section.

2 Background

To develop the infrastructure needed for collaborative work environments we have
used Coloured Petri nets to represent process models and software agents as the build-
ing block for providing P2P support. This section provides a brief overview of fea-
tures offered by these technologies.

2.1 Coloured Petri nets

We use Coloured Petri nets (CPN) as a formalism to model workflows in our system.
The mathematical foundation behind the Coloured Petri nets makes it a useful tool
for modeling distributed systems. A detailed description of CPNs can be found in [5].

2.2 Agents

Some commonly accepted characteristics of an “agent” (listed by Bradshaw [10]) are
reactivity, collaborative behaviour, communication ability, adaptivity and mobility.
An important benefit is that multiagent systems offer a distributed and open architec-
ture. Such a system can be adaptable and is robust under conditions of local failures
and changing environmental conditions.

The next section describes an open source software development scenario and ex-
plains how p2p networks are used.

3 Collaborative work in Open Source Software Development

3.1 An overview of collaborative work

In this section we describe the collaborative work associated with an open source
software development environment. Figure 1 shows how several collaborators resid-
ing in one location (e.g Dunedin), can communicate with other collaborators in an-
other location (e.g Wellington). Collaborators A, B, C, and D may be involved in the
development of one sub-system (such as a kernel sub-system), while collaborators B
and E working on another sub-system (such as a networking sub-system). For each of
these sub-systems there exists a server to which the sub-system members may commit
their internally developed local artifacts. The sub-system servers periodically update
their stable releases to the project server.

 There are both inter-group and intra-group communications in the collaborative work
environment. However, the inter-group communications may be more frequent, due
to a possibly higher level of dependencies between the various components involved.
Due to frequent changes in modules during development and the need to integrate the
related modules, it is possible that members of a group will access a particular module
even when it is not quite suitable for final release. For example, one member may
want to obtain the API of a module, or the supporting document such as the specifica-
tion, associated test cases and so on. In these circumstances the members can obtain a
pre-release module for preliminary testing from the module developer directly using
P2P communication. The members can thus publish pre-release modules that can be
accessed by another module for integration and testing purpose. If there are any con-
flicts in terms of the expected interface and the current interface, it can be sent as a
comment or feedback to the developer of that particular module.

The functionalities provided by each agent are indicated inside the callout box at the
top of Figure 1. The agents can perform various software engineering activities such
as displaying process models, showing API and source code, downloading source
code and test cases. The agents can then provide notifications on updates and feed-
back on the artifacts developed.

Fig. 1. An agent based collaborative software development environment

3.2 Scenario description

In the following scenarios we demonstrate how coordination is achieved by inter -
connecting the overall process models with the sub-system process model in scenarios
1 and 2. Similarly in scenario 3, we describe how agent interaction protocol and the
model associated with each of the transitions are linked.

Group collaboration is described in scenarios 4, 5 and 6 where the participating agents
can make the project artifacts available to each other and make certain requests. Co-
ordination and collaboration are realized through agent-based peer to peer mechanism
provided by our agent-based framework.

Scenario 1: Sharing a common understanding of the overall process model of the
project.

All collaborative partners should share a common understanding of the project that
they are working on. To facilitate this common understanding we use Coloured Petri
nets to represent the overall structure and behaviour of the project. The project mod-
erator develops the process model (through discussion with related resources).

The project manager sends an XML-based process model via agent based communi-
cation modes to all the participants. The participant agents can then display the proc-
ess model. The collaborators can then modify the process models and send the result
to the moderator agent. The moderator agent collates various process models and
sends the models again to all the participants for choosing the suitable process model
(perhaps by consensus).

For example the model shown in Figure 2 describes the overall project structure and
the dependencies between various components. This model shows that the project is
partitioned into three sub-systems, s1, s2 and s3. It can be observed that s1 and s2 can
be performed concurrently. The diagram also shows that s3 depends on s1 and s2.

Project

Spec

Partition the project

Sub-sys

1
Sub-sys

2

Sub-sys

3

Develop sub-sys 1 Develop sub-sys 2

Use sub-sys 1 and 2

and

Develop sub-sys 3

Project

Done

Sub-sys

1 and 2

done

Fig. 2. Process model describing the overall structure of the project.

Scenario 2: The process associated with sub-system’s participation in the overall
process model

Similar to the overall process model, the sub-system moderator design a process
model that describes various tasks associated with that particular sub-system and
make it available to the all the participants. The process model associated with a
particular sub-system (say s1) could be represented as shown in Figure 3.

Start

Do task 1

task

1

done

task

2

done

Integrate tasks

1 and 2

End

Do task 2

Fig. 3. Process model associated with each sub-system.

The process model shown in Figure 3 depicts the task represented by s1 in Figure 2.
This implies that to implement sub-system 1, tasks 1 and 2 should be implemented
and integrated.

A robust software development methodology should allow for changes to be made at
any point in software development lifecycle. So, the process models associated with
the overall project and those of the sub-systems can change, which enables the system
to be capable of adapting to changes.

Scenario 3: The process associated with the communication between agents

The generic process model describing how agents communicate with each other is
given in Figure 4. Note that the interaction between collaborating members of the
software development team are represented in the model by interactions between

software agents, representing those team members. Each model can be executed by a
collaborator agent [8] which makes use of JFern [6], a Petri net engine. The collabo-
rator agent performs the following operations:

• Receive and parse the requests coming from other collaborator agents
• Send results to other collaborator agents

There exists a message dispatcher in the agent based framework that dispatches mes-
sages that reach the “out” node shown in Figure 4. All messages coming to a particu-
lar agent will be accumulated in the “in” node of that agent and out-going message
will be placed in the “out” node of that agent [11].

When an agent recognizes a message in its “in” node, it evaluates which transition
should be invoked based on information received. Each of these top-level transitions
may be considered abstraction for a more detailed sub-model Petri net that represents
a refinement of the top-level abstraction. For example the processRequest transition
expands to a sub-model where the decision regarding which type of request is handled
(such as show API or download source code activity) can be invoked. Once the activ-
ity is performed, the control may be thought of as returning to the parent process
model’s transition.

Interaction Protocol model

for agent communication
In

Send Request Return result

Out

Process Request

Sub-process Model

Start

Show API
Run test

cases

End

Download

src code

Provide

feedback

Fig. 4. Model associated with message handling (communication) in each agent.

Scenario 4: Group configuration

In our agent based framework, for each project, a moderator agent is created. Our
framework uses OPAL's JXTA implementation [12, 13] to facilitate (peer to peer
communication) which allows for agent discovery, joining and leaving.

Collaborator agents can join a given project by searching the projects listed in the
directory service of the system. In doing so, the collaborator agents interact with the
moderator (such as finding details about the overall process model). Similarly, a sub-
system can be formed when one of the collaborator agents itself, chooses to become a
moderator. The newly joining agents can then decide to join this specific group to
implement a particular sub-system. It is also possible that one collaborator agent can
be a part of two sub-systems.

When changes are made to the artifacts produced by each sub-system, its members
are notified. Also the changes will be published to other sub-system members that
have subscribed to receive these changes.

Scenario 5: Making artifacts available to the collaborators

Development team members working on each sub-system can publish their require-
ment specifications, API’s, source code, test cases, test results etc. using a Web Serv-
ice. The collaborator agents are notified of any changes made to these services. When
need arises an agent can connect to a Web Service and retrieve required information
[9]. For example agent A, who is interested in updates from agent B and C, receives
the notification of updates from B and C. When needed, agent A can make use of that
information.

Scenario 6: Details associated with accomplishing different types of requests

Recall that Figure 1 shows that each collaborator agent can perform various services
such as display process model, show API, download source code, run test cases etc.
Here we describe how a collaborator agent can run test cases in a distributed envi-
ronment.

Figure 5 shows the interaction between three agents belonging to three different sub-
groups. The tester agent A, requests permission to test the system developed by
agents B and C. Agent A receives the API documentation from both B and C. Agent
A tests the modules developed by B and C which are exposed as a Web Service and
sends the results (bug report) to B and C. B and C can resolve the issues raised by A.
Here we are assuming that B and C have not made any changes to their interfaces. If
B has changed the interface for the module that is being developed, then A should
modify the test cases and B should incorporate the changes in the Web Service that is
exposed for A to test.

Fig. 5. Sequence diagram of agent interactions in a collaborative testing scenario.

3.3 Infrastructural components

In our framework the communication between agents takes place by using the infra-
structure provided by the OPAL framework. Each collaborative worker in our system
is represented by an agent. Each of these agents is made up of micro-agents [7]. Each
micro-agent can assume certain roles. These roles could be displaying the user inter-
face (UI micro-gent), providing communication (communications micro-agent) and
process information (process micro-agent).

The agents send each other messages, the contents of which are usually text-based. In
our system we also use agents to execute process models. The process models will be
executed on workstation or use Web Services that are run on servers. When the user
uses a device, such as a PDA, the execution of the process model may take place on
another machine in the P2P network, for which request will be sent by the PDA.

This approach is open and expandable, since new participants may easily join the
collaboration environment by registering themselves with the project moderator. The
newly joined participants can interact with other team members as long as they use
the agent-based infrastructure.

4 Conclusion and future work

In this paper we have described how an agent-based system can be used to facilitate a
collaborative P2P work environment. Using different scenarios, we have demon-
strated how agents can be used to coordinate, collaborate, and communicate with each
other in the context of a distributed software development environment, such as an
open source project.

This paper reports work in progress. We acknowledge that not all possible scenarios
in distributed work environment have been accommodated. In the future we plan to
port the system, so that it can make use of PDAs while keeping in mind the limited
capabilities of smaller devices [13].

5 References

1. Carl Gutwin , Reagan Penner , Kevin Schneider, Group awareness in distributed
software development, Proceedings of the 2004 ACM conference on Computer sup-
ported cooperative work, November 06-10, 2004, Chicago, Illinois, USA

2. Jon Froehlich , Paul Dourish, Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams, Proceedings of the 26th International
Conference on Software Engineering, p.387-396, May 23-28, 2004

3. Randy Guck, Managing Distributed Software Develop-
ment,http://www.stickyminds.com/sitewide.asp?ObjectId=6002&Function=DETAIL
BROWSE&ObjectType=ART, accessed on 20th January 2006

4. Martin K. Purvis, Stephen Cranefield, Mariusz Nowostawski, and Dan Carter, ‘Opal:
A multi-level infrastructure for agent-oriented software development’, The informa-
tion science discussion paper series no 2002/01, Department of Information Science,
University of Otago, Dunedin, New Zealand, (2002).

5. Jensen, K., Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, Vol. 1: Basic Concepts. EATCS Monographs on Theoretical Computer Science.
1992, Heidelberg, Berlin: Springer Verlag GmbH. 1-234.

6. Mariusz Nowostawski. JFern – Java based Petri Net framework, 2003.
7. Nowostawski, M., Purvis, M. and Cranefield, S, "KEA - Multi-Level Agent Infra-

structure", Proceedings 2nd International Workshop of Central and Eastern Europe on
Multi-Agent Systems (CEEMAS 2001), Krakow, Poland (2001) 355-362.

8. Ehrler, L., Fleurke, M., Purvis, M. A. and Savarimuthu, B.T.R., “Agent-Based
Workflow Management Systems(Wfmss) : JBees- A Distributed and Adaptive
WFMS with Monitoring and Controlling Capabilities”, Journal of Information Sys-
tems and e-Business , ISSN: 1617-9846, Journal no. 10257, Volume 4, Springer, Ber-
lin (2005), pp 5-22.

9. Savarimuthu, B.T.R., Purvis, M.A., Purvis, M.K. and Cranefield, S., “Integrating
Web Services with Agent Based Workflow Management System (WfMS)”, Proceed-
ings of IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005),
A. Skowron, J. Barthes, L. Jain, P. Morizet-Mahoudeaux, J. Liu, and N. Zhong,
(eds.), ISBN 0-7695-2415-X, IEEE Press, Los Alamitos, CA (2005) 471-474.

10. Bradshaw, J., An Introduction to Software Agents, in Software Agents, J. Bradshaw,
Editor. 1997, MIT Press: Cambridge. p. 3-46.

11. Purvis, M. A., Purvis, M. K., Haidar, A., and Savarimuthu, B. T. R., “A Distributed
Workflow System with Autonomous Components”, Intelligent Agents and Multi-
Agent Systems: 7th Pacific Rim International Workshop on Multi-Agents, Barley, M.
W. and Kasabov, N. (eds.) ISSN: 0302-9743, Lecture Notes in Computer Science,
vol. 3371, Springer-Verlag, ISBN: 3-540-25340-8 Berlin (2005) 193-205.

12. Wang, M., Wolf, H., Purvis, M. K., and Purvis, M., “An Agent-based Collaborative
Framework for Mobile P2P Applications”, Proceedings of the Fourth International
Workshop on Agents and Peer-to-Peer Computing (AP2PC’05), Fourth International
Joint Conference on Autonomous Agents & Multi Agent Systems, Despotovic, Z.,
Joseph, S., and Sartori, C. (eds.), Utrecht, The Netherlands (2005) 140-151.

13. Purvis, M., Garside, N., Cranefield, S., Nowostawski, M., and De Oliveira, M.,
“Multi-agent System Technology for P2P Applications on Small Portable Devices”,
Agents and Peer-to-Peer Computing: Third International Workshop, AP2PC 2004,
New York, NY, USA, July 19, 2004, Revised and Invited Papers, G. Moro, S. Ber-
gamaschi, K. Aberer (eds.) ISBN: 3-540-29755-3, Lecture Notes in Computer Sci-
ence, vol. 3601, ISSN: 0302-9743, Springer-Verlag, Heidelber (2005) 153-160.

