
The concept of autonomy in distributed computation
and multi-agent systems

Mariusz Nowostawski
Martin Purvis

Information Science Department
The University of Otago

PO BOX 56, Dunedin, New Zealand
MNowostawski,MPurvis@infoscience.otago.ac.nz

Abstract

The concept of autonomy is a central concept in dis-
tributed computational systems and in multi-agent systems
in particular. With diverse implications in philosophy and
despite frequent use in social sciences and the theory of
computation, autonomy remains somewhat a vague notion.
Most researchers do not discuss the details of this concept,
but rather assume a general, common-sense understanding
of autonomy in the context of computational multi-agent
systems. We will review the existing definitions and for-
malisms related to the notion of autonomy. We re-introduce
two concepts: relative autonomy and absolute autonomy.
We argue that even though the concept of absolute auton-
omy does not make sense in computational settings, it is
useful if treated as an assumed property of computational
units. For example, the concept of autonomous agents may
facilitate more flexible and robust abstract architectures. We
adopt and discuss a new formalism based on results from
the study of massively parallel multi-agent systems in the
context of evolvable virtual machines. We also present the
architecture for building such architectures based on our
multi-agent system KEA, where we use the extended no-
tion of dynamic linking. We augment our work with theo-
retical results from cham algebra for concurrent and asyn-
chronous information processing systems. We argue that for
open distributed systems, entities must be connected by mul-
tiple computational dependencies and a system as a whole
must be subjected to influence from external sources. How-
ever, the exact linkages are not directly known to the com-
putational entities themselves. This provides a useful notion
and the necessary means to establish an relative autonomy
in such systems.

1. Motivation

This work focuses on the general notion of autonomy
in multi-agent systems. We will initially define an abstract

concept of relative and absolute autonomy in the context
of a computational agent. We think that the concept of au-
tonomy must be always linked with the context and with
the reference to what a given notion is applied. Autonomy
means different things to various researchers, and it seems
necessary to provide appropriate context and qualification
of the term. Based on the notion of relative autonomy we re-
view some of the existing multi-agent systems. We will then
discuss the objectives of the research community and the
motivations regarding the concept of autonomy of a given
computational unit (an agent) in the context of open multi-
agent systems, adaptability and complexity growth. We ar-
gue that, to build an open and adaptable multi-agent system,
agents must be subjected to constant external influences.
These influences must (possibly indirectly) affect and con-
trol a given agent’s behaviour, and therefore negate the gen-
erally accepted requirement of agent’s absolute autonomy.
Based on our results with the experimental EVM framework
we draw conclusions that computational agents can never be
truly autonomous, or else the applicability of multi-agent
systems in solving complex problems in an open environ-
ment would be limited or even impossible. That means that
restrictions on autonomy imposed by the multi-agent sys-
tem designer are not only based on the pragmatic needs to
limit and manage general complexity of the system. These
restrictions come directly from an inherent property of the
dynamics of the MAS as a distributed asynchronous com-
putational system.

To demonstrate and discuss the issues related to auton-
omy we refer to the experimental framework called Evolv-
able Virtual Machines (EVM). This framework has been
used for modelling and analysis of meta-computational ar-
chitectures, meta-learning, self-organisation and adap-
tive computing. We present results related to a con-
temporary model of computation for massively paral-
lel open-ended evolutionary computations based on EVM
[Nowostawski et al., 2004]. The model has been used to in-
vestigate properties of asynchronously communicat-
ing agents in a massively parallel multi-agent system



[Nowostawski et al., 2005b]. In this context, we dis-
cuss the concept of computational complexity, evolution-
ary learning and adaptability [Nowostawski et al., 2005a].
We will show that with our computational evolutionary sys-
tem a constant flux of external information is necessary
to provide an open-ended increase of complexity of gen-
erated (discovered) computational programs. Our results
suggest that any closed (or fully autonomous) collec-
tion of computational agents would be limited in their abil-
ity to learn and adapt to new circumstances. Thus the notion
of autonomy should be revisited and used in a clearly spec-
ified context. Computational agents must be subjected
to direct or indirect external influences to allow continu-
ous learning and adaptation by the system as a whole.

2. Autonomy in MAS

Autonomy, from Greek: Auto-nomos: auto meaning self,
and nomos meaning law, refers to an entity that gives one-
self its own laws. In other words self-governance, freedom
from external influence and/or authority.

Generally in multi-agent systems there are two basic at-
tempts and formalisations of the concept of autonomy. The
internal and external views. The internal notion applies the
above definition of autonomy to the agent itself, and spec-
ifies a set of principles or architectural constraints that are
claimed for an autonomous operation of a given agent. The
external view takes a different approach. It does not pre-
scribe anything about internals of the agent or agent archi-
tecture itself. It is rather an assumption that other agents
are autonomous in an abstract sense and cannot be con-
trolled/influenced directly. Agent’s behaviour cannot be im-
posed by any other agent, hence the interactions and agents
collaboration must take into account various aspects of the
assumed participants autonomy. We discuss briefly these
two notions below.

The general notion of autonomy is invariant of the usual
architectural or behavioural interpretations. In the next sub-
sections we review proposals for the definition from inter-
nal and external point of view.

2.1. Internal autonomy

From a simple engineering perspective the con-
cept of autonomy has been used as one of the distin-
guishing features between traditional object-oriented
and agent-driven systems. See for example discus-
sion in [Franklin and Graesser, 1996, Castelfranchi, 1995].
It is important to note that the notion of autonomy in MAS
is often confused with the notion of automatic or inde-
pendent operation. We want to stress that autonomy does
not collapse to a mere independent operation. In com-
plex software systems it is a simple truism that many
complex inter-dependencies and influences must exist be-
tween various computational units. However, there is

always an element of choice. Indeterminacy is essen-
tial, from the external observer point of view, to be able to
talk of autonomous computing. As an example of the in-
ternal view of autonomy, consider the work of Luck and
d’Inverno [Luck and d’Inverno, 1995], who have postu-
lated that an agent’s motivation and the ability to its create
own goals is essential for autonomy. Using the Z spec-
ification language, they described a three-tiered hierar-
chy comprising objects, agents, and autonomous agents,
where agents are viewed as objects with goals, and au-
tonomous agents are agents with motivations. The ability to
create goals according to some internal hidden and change-
able agenda/motives is, according to their classification,
essential for achieving true autonomy.

2.2. External autonomy

In external autonomy, compared to internal autonomy,
we can turn the roles around. Instead of concentrating on
our own agent and its autonomy, we can insist on the as-
sumption that all entities and agents that our software agent
interacts with are autonomous in the abstract sense. How
this is achieved, or if it is possible at all, is not our con-
cern. What is important is the fact that no fixed assump-
tions can be made regarding the interactions, agents, goals
delegation, motives, environment, etc. The research com-
munity is somewhat divided into two roughly independent
groups. One follows a strict internal view of autonomy and
proposes ways to enhance and promote autonomy in vari-
ous agent architectures. The other group has moved away
from the strict internal requirements on agents autonomy,
towards more open, distributed systems that are driven by
interactions, dialogues, negotiations and collaborations of
multiple individual participants, which are to be assumed
autonomous from the external point of view. The role of au-
tonomy for individual agents thus became an external as-
sumption, rather than architectural requirement. The best
discussion on this is presented in the work of Weigand and
Dignum [Weigand and Dignum, 2003]. In their work, they
have argued that architectural requirements of autonomy on
agents are not as important as the expectations of autonomy
on behalf of other agents. The agents that a given software
agent interacts with must be assumed to be autonomous.
Agents must be prepared to deal with other agents auton-
omy, and participate and collaborate with supposedly au-
tonomous participants. This somewhat inverts the original
requirements from those that support autonomy directly
through elaborated architectures, into those that support fea-
tures that work with autonomous agents.

3. Computational autonomy in MAS

Most researchers base the definition of autonomy
on two primitives: self-governance and independence
(e.g. [Gouaich, 2003, Carabelea et al., 2003]). Self-
governance refers exclusively to the internals of the agent



and its architecture. As we pointed out, this is not neces-
sary in general discussion or in practical agent-oriented
software engineering directly. Both notions however seem
relevant when trying to formalise the concept of auton-
omy. One of the attempts to provide comprehensive defini-
tion is provided in Carabelea et al. [Carabelea et al., 2003]:

An agent X is autonomous with respect to Y
for p in the context C, if, in C, its behaviour re-
garding p is not imposed by Y .

The p in the above definition relates to the object of au-
tonomy, and emphasis is placed on the relational nature of
the concept of autonomy. There are however two main prob-
lems with the above definition. The first problem lies in the
fact that multiple vague concepts are being used: context,
property (or autonomy object) p and the notion of imposed.
The precise and formal meaning of these terms in the above
definition is not clear. Nevertheless, the above definition is
useful and conveys the common-sense understanding of the
concept of autonomy.

3.1. Formal definition

To make the above definition less ambiguous we pro-
pose to base the definition on a formal notion of computa-
tion. Let us assume computation C to mean the universal
Turing machine transformation of input data from the in-
put tape into output data on an output tape (we assume here
a two-tape setup, with a read-only input tape and a write-
only output tape)1. We will denote computation C from in-
put X into output Y as: X C−→ Y . Let us assume data D to
be a particular mapping of symbols into an input tape for
the universal Turing machine. Let us assume that a compu-
tational agent A has access to a particular collection of data
sources Di ∈ E, where E stands for environment, or con-
text. In other words, agent A is capable of performing uni-
versal Turing machine computation on a set of data accessi-
ble from its Environment. The data can be represented as se-
quence of symbols from a particular alphabet, e.g. 0,1, as in
the original work of Turing [Turing, 6 7]. Without any loss
of generality, let us assume the following properties:

• data decomposition: ∃Dm = ∅, ∀Dk,∃Di, Dj : Dk =
Di +Dj .

• data composition: ∀Di, Dj + Dk = Di : Di −Dj =
Dk and Di −Dk = Dj .

• computational composition, ∀Di, Di → Di+1 and
Di+1 → Di+2 : Di → Di+2

Data composition and decomposition simply capture the
fact that data can be combined or split, without any loss
of information. The computational composition ensures that

1 For more details and formal introduction to Turing-machine
computational models see for example [Lynch and Tuttle, 1989,
Hopcroft and Ullman, 1979].

computations do not have any side-effects. Note, that data
can be read from or written to by various agents, and there
is no distinction for input or output data. During the actual
computation, a single data source can only be used as in-
put or output (exclusive or).

Agent A is not autonomous with respect to agent B in
the context Es, and Agent B is said to control agent A, if:

∀Di ∈ Es,∃Dy
agentB−−−−−→ Di : Di

agentA−−−−−→ Dx. (1)

If no such agent B exist, than we say, that Agent A is
relatively autonomous in the context Es:

∃Di ∈ Es : ∀Di
agentA−−−−−→ Dx, ∀Dy

agentB−−−−−→ Dk, Dk 6= Di.
(2)

The agent A is absolutely autonomous in the context Es,
if:

∃Di ∈ Es : ∀Di
agentA−−−−−→ Dx, ∀Dy → Dk, Di 6= Dk. (3)

3.2. Discussion of the definition

The above model provides the following intuitive inter-
pretations:

1. If Agent A uses a particular subset of its environment
Es ∈ E with data sourcesDi ∈ Es to perform its com-
putation CEs , and there exists an agent B that can out-
put into all of Di sources, we say that agent A is not
autonomous in respect to agent B in the context Es.
Agent B is said to control agent A.

2. If no such agent B exist, than we say, that Agent A is
relatively autonomous in context Es.

3. If there is no set of agents that can collectively output
to all of the Di ∈ Es, then we say that agent A is ab-
solutely autonomous in the context of Es.

Based on the above definition we propose the following
general autonomy classes in Multi-Agent Systems (MAS).
The three general classes below are often informally dis-
cussed in MAS literature, and these are now straightforward
to define formally:

• User autonomy. Agent A is said to be autonomous
with respect to a user, if the user does not provide all
the data inputs that control agent A. In such a case,
users cannot impose on the agent’s behaviour directly;
hence, we talk about agent’s relative autonomy with re-
spect to the user.

• Interactions autonomy (social autonomy). Agent A is
autonomous socially, if it not only takes its inputs
from other agents through interactions, but uses other
sources of input at the same time, that are not bound
to social interactions (for example, user input). This
means that agents cannot simply impose any goals or
behaviour directly on other agents, because interac-
tions are not enough to “drive” agent’s computations.



• Organisational autonomy (norm autonomy). Organisa-
tional and institutional norms modelled as data sources
cannot be used to impose a behaviour of agents di-
rectly. Agents use various data-sources that influence
their behaviour and computational choices.

Some authors, in particular [Carabelea et al., 2003], pos-
tulate also a notion of environmental autonomy. In our def-
inition of computational agents, the environment encom-
passes all the possible input data sources for a given agent:
user input, other agents, static data, norms, and any other.
Therefore, there is no possibility of an agent to perform
any other computational mapping than Einput → Eoutput.
An agent is, by definition, just a computational function
from the input environment, to the output environment. The
concept of environmental autonomy, in our setup, does not
make sense. To discuss environmental autonomy one would
need to establish a partitioning of E into sub-environments,
one exclusively called environment, and other subsets la-
belled differently. We believe that the partitioning of E
into such disjoint classes is questionable in a general sense,
although it might be useful for certain aspects of MAS,
namely user interactions, social interactions and organisa-
tional interactions. If we model a closed system, where all
data sources are in some way dependent upon agents’ in-
teractions and computations, then each single agent cannot
be absolutely autonomous. To have a meaningful concept
of absolute autonomy we have to deal with open systems,
where some of the data sources are beyond the scope of the
MAS itself2.

4. Indeterminacy as autonomy

Our definition of autonomy as presented above rests en-
tirely on the formal and intuitive notions of indeterminacy.
Let us consider a case of two simple homoeostatic pro-
cesses: one performed by a thermostat, and one performed
by a bacterium. We intuitively feel that there is some dif-
ference between these two with respect to how autonomous
they are. In the case of thermostat, even though it operates
completely automatically and independently and we do not
know or cannot predict exactly when it will switch from
state to state, the degrees of freedom are quite limited. The
thermostat is usually embedded in a well-insulated environ-
ment, where the temperature reacts almost exclusively to
the heater/cooler system controlled by the thermostat itself.
In the case of bacterium, even though the performed func-
tions are sometimes as simple as those of the thermostat,
the actual degrees of freedom seems to be larger. This is
mostly due to the fact that in the case of a thermostat, the
environment is almost exclusively controlled by the thermo-
stat itself – the thermostat can make the ambient tempera-
ture to go up, or down. The environment, to a certain ex-
tend, is simple and reactive. In the case of bacterium, there

2 In that case, we may talk about a stream of randomness (or indetermi-
nacy) that comes from outside of the system itself.

is no direct control over the environment as such. The inter-
actions with the environment are of a different type. Bacte-
ria must operate continuously in highly unpredictable envi-
ronments. We will not argue if there is any categorical dis-
tinction between these two autonomy classes. We just want
to point out, that the main distinguishing feature from au-
tonomous and non-autonomous processes lies in the inde-
terminacy and predictability of the environment. If there is
a process that is entirely deterministic and predictable from
a given observer’s point of view, then we say that there is
no autonomy within that process. The process is simply de-
termined as a function of its environment. If the process is
not entirely predictable, then we talk about autonomy, and
about a choice – the process can choose one or the other tra-
jectory for its evolution.

Let us consider a multi-agent system within a for-
malism of the Chemical Abstract Machine (cham)
[Berry and Boudol, 1989]. Cham has been success-
fully used as a modelling formalism for other process
calculi and process algebras, most notably for Mil-
ner’s CCS [Milner, 1989], and Nicola-Hennessy TCCS
[Nicola and Hennessy, 1987]. It is possible to model many
asynchronous computational systems within the cham
formalism. The observations within cham can be ex-
tended to any other process calculi. In cham the state
of a system is modelled as solutions consisting of float-
ing data-structures (molecules) that can interact with
each other according to reaction rules. These datastruc-
tures can be of any type: primitive, such as numbers and
strings, complex objects, or agents. There is a mecha-
nism that “stirs” the solution, allowing for possible contacts
between molecules. Note that the solution transforma-
tion process is inherently parallel. Any number of reac-
tions can be performed at the same time, assuming that each
molecule participates only in a single reaction. Assum-
ing that the data-structures are individual agents, and the in-
teractions are equivalent to reactions in cham, we can talk
about two aspects with respect to autonomy (and indeter-
minacy):

• interactions are random or not. They are not pre-
ordered or pre-specified by the system design, and

• reaction rules may or may not be followed by the indi-
vidual agents3.

Now, let us consider a particular system (example in-
spired from [Banâtre et al., 1988]), consisting of n agents
named 2 . . . n+ 1 and a reaction rule (interaction) between
agents, such as if Ai, Ai∗j where i, j ∈ [2, n + 1] then
Ai∗j annihilates itself. That means that if two agents meet,
and one of the agents has a name that is a multiple of an-
other agent, the agent with a name that is an multiplication
of another name will annihilate itself. From the initial so-
lution of all n agents, after some time, there will be only

3 Note, that in the original CHAM formalism all the reaction rules must
be strictly followed by the system.



agents named with prime numbers left. This is assuming
both, autonomy in the interaction choices and autonomy in
the adoption of the general annihilation rule.

The above example demonstrates that in some circum-
stances, global coherent behaviour can be obtained in sys-
tems where autonomy is present on some of the underlying
levels of abstraction. However, this is not always the case
with all the systems. In some systems, autonomy must be
restricted for the system to achieve a desirable stable point.
For example in the case of CHAM it is not easy to devise au-
tonomous rules that would lead the system to calculate fac-
torial. We will discuss this in more details in the context
of our EVM model. In the next section, we will briefly in-
troduce the notion of autonomy in our multi-agent system
KEA.

5. Multi-agent system KEA

The aim of the KEA project [Nowostawski et al., 2001]
is to provide a modular agent platform with an enterprise-
level backend. The architecture supports the use of agent-
oriented ideas at multiple levels of abstraction. At the low-
est level are micro-agents, which are robust and efficient
implementations of agents that can be used for many con-
ventional programming tasks. Agents with more sophisti-
cated functionality can be constructed by combining these
micro-agents into more complicated agents. Consequently
the system supports the consistent use of agent-based ideas
throughout the software engineering process, since higher
level agents may be hierarchically refined into more de-
tailed agent implementations. This enables scalability, flex-
ibility and robustness of the platform, providing at the same
time uniform modelling and programming paradigm.

The main distinguishing feature of KEA architecture as
compared with traditional software engineering techniques
is the autonomous dynamic linking facility. In traditional
statically linked code, the function call is statically linked
with appropriate library during compilation time. In dy-
namic linking, the function call is not linked with an appro-
priate implementation until the runtime. Then, the code is
dynamically linked. The dynamic linkage with the library is
unconditional (the library cannot refuse the linkage). Once
the linkage has been made, it (usually) lasts till the end of
the execution of the runtime system.

In KEA, the concept of dynamic linking has been ex-
tended further. The association between agents (or function
calls if using the traditional programming nomenclature) is
postponed till the very time when it is needed. At that time,
the linkage is initiated, and may or may not be established.
The participating party may refuse participation, in which
case, the caller will have to deal with this situation by try-
ing alternatives. In case of successful association (when the
linkage has been established), it will only lasts till the end
of the current task (or function). After that, a new dynamic
linkage must be initiated and established again.

Such a model promotes high-levels of autonomy, be-
cause no fixed assumption can be made upon available par-
ticipants. Agents must be prepared to deal with situations
where given functionality may not be immediately avail-
able, and alternatives means of achieving one’s goals must
be undertaken. More details about KEA platform can be
found in [Nowostawski et al., 2001].

6. Evolvable Virtual Machines (EVM)

6.1. Overview

There has been research conducted regarding au-
tonomous asynchronously-interacting computations pur-
sued in diverse areas of theoretical computer science. Cer-
tain properties investigated in those settings have been
found to be invariant and shared between different com-
plex systems. Our original desire was to integrate the re-
cent advances from various fields onto a single coherent
theoretical model, together with an experimental computa-
tional framework which could be used for practical inves-
tigations on massively parallel computational framework.
Originally designed as an artificial evolution modelling
tool [Nowostawski et al., 2005b], the EVM architecture is a
model for autonomously interacting, evolving, complex and
hierarchically organised software system. The EVM archi-
tecture stems from recent advances in evolutionary biology
and utilises notions such as specialisation, symbiogenesis
[Margulis, 1981], and exaptation [Gould and Vrba, 1982].
From the computational perspective it is a massively dis-
tributed asynchronous collection of interactive agents that
utilises computational reflection. The EVM framework has
been used for multi-task learning and meta-learning. Hence
computational reflection and reification, on one hand, pro-
vide compact and expressive way to deal with complex
computations, and on the other hand, provide ways of ex-
panding a computations on a given level via the meta-levels
and meta-computations.

Symbiogenesis researchers argue that symbiosis and co-
operation are primary sources of biological variation, and
that acquisition and accumulation of random mutations
alone is not sufficient to develop high levels of complexity
[Margulis, 1970, Margulis, 1981]. Other opponents of the
traditional biological gradualism suggest that evolutionary
change may happen in different ways, most notably through
exaptation [Gould and Vrba, 1982], i.e. a process whereby
a structure evolved for one purpose that has come to be used
for another, unrelated purpose (or function).

The EVM architecture follows the biological models of:
symbiogenesis, exaptation and specialisation. EVM allows
independent computing elements to engage in symbiotic re-
lationships, same as in CHAM, where independent agents
are engaged in relationships through reaction rules and the
concept of a membrane, that limits interactions only to lo-
cal data within a membrane. In the case of EVM the interac-
tions are not only 2-way – they may involve arbitrary num-



ber of participants. EVM allows a given agent to specialise
in specific tasks, or to evolve towards new, more complex,
tasks, similarly to the specialisation principle from biology.
EVM also allows agents to be used in different contexts than
originally designed for, similar to the exaptation principle.

The EVM architecture can be also seen as a compu-
tational model that combines the features of a trial-and-
error machine [Bringsjord and Zenzen, 2003] and the multi
asynchronously-interacting machines paradigm. The trial-
and-error behaviour is achieved through continuous loop-
ing of different hypotheses and their re-evaluation until the
desired precision of the hypothesis is achieved.

The EVM model is similar to the one of CHAM. There
are however some main differences. In CHAM reaction rules
are (typically) written between two agents in the solution. In
EVM the interactions can happen between more than pair of
agents. Also, in CHAM, the reaction rules are written be-
forehand, and not changed during the abstract machine ex-
ecution. This is not the case for EVM. In EVM, the ini-
tial machines executed can modify the rules. It is beyond
the scope of this article to analyse the exact formal equiva-
lence and relationship between these two models – we leave
it for future work.

In the following subsection we will present the details of
the EVM implementation, and discuss the experimental

6.2. Implementation

Our current implementation of the EVM architecture is
based on a stack-machine. With small differences, the EVM
implementation is comparable to an integer-based subset of
the Java Virtual Machine (JVM). There are two indepen-
dent but compliant implementations: one is written entirely
in Java and the second one in C. Developers and researchers
can obtain the sources from CVS http://www.sf.net-
/projects/cirrus. The basic data unit for process-
ing in our current implementation is a 64-bit signed inte-
ger4. The basic input/output and argument-passing capabili-
ties are provided by the operand stack, called the data stack,
which is a normal integer stack. At the moment only integer-
based computations are supported. All the operands for all
the instructions are passed via the stack. The only excep-
tion is the instruction push, which takes its operand from
the program list itself. Unlike other virtual machines (such
as the JVM), our virtual machine does not provide any oper-
ations for creating and manipulating arrays. Instead, the ar-
chitecture facilitates operations on lists. There is a special
stack, called the list stack for storing integer-based lists.

Execution frames are managed in a similar way to the
JVM, via a special execution frames stack. There is a lower-
level machine handle attached to each of the execution frames.
Machine is a list of lists, where each individual list repre-
sents an implementation of a single instruction for the given

4 This somewhat arbitrary constraint is dictated by practical and effi-
cient implementation on contemporary computing devices.

machine. In other words, the machine is a list of lists of in-
structions, each of which implements a given machine in-
struction. If a given instruction is not one of the primitive
Base Machine units, i.e. primitive instructions for that ma-
chine, then the instruction sequence must be executed on an-
other, lower-level machine. The Base Machine implements
all the primitive instructions that are not reified further into
more primitive units. To distinguish those primitive instruc-
tions that are executed on the Base Machine we refer to
them as operations.

Potentially, EVM programs can run indefinitely, and there-
fore, for practical reasons, each thread of execution has a
special limit to constrain the number of instructions each
program can execute. This is especially crucial in a multi-
EVM environment. Once the limit is reached a given pro-
gram will unconditionally halt.

The EVM offers rich reflection and reification mecha-
nisms. The computing model is relatively fixed at the lowest-
level, but it does provide the machines with multiple com-
puting architectures to choose from. The model allows the
programs to reify the virtual machine on the lowest level.
For example, programs are free to modify, add, and remove
instructions from or to the lowest level virtual machine, as
well as any other level. Also, programs can construct higher-
level machines and execute themselves on these newly cre-
ated levels. In addition, a running program can switch the
context of the machine, to execute some commands on the
lower-level, or on the higher-level machine. Altogether, the
EVM provides limitless flexibility and capabilities for reify-
ing individual EVM executions. Due to this high level of
flexibility, there have been no attempts to formalise the full
EVM model in any of the existing process calculi or other
computational algebras. We have only attempted partial for-
malisations of the model.

A possible way of instantiating part of the computational
environment for the architectural framework is by adapt-
ing bias-optimal search primitives [Levin, 1973], or the in-
cremental search methods [Schmidhuber, 2004]. To narrow
the search, one can combine several methods together. For
example, it is possible to construct a generator of prob-
lem solver generators, and employ multiple meta-learning
strategies for a given computational task at hand. A more
detailed description of the abstract EVM architecture is given
in [Nowostawski et al., 2004]. The experimental results are
described in details in [Nowostawski et al., 2005a].

7. Conclusions

In this article we have discussed the notion of auton-
omy in multi-agent systems. We have reviewed the existing
definitions and formalisation attempts. We have proposed
our own formalisation based on the notion of universal Tur-
ing machines computational agents, with the abstract notion
of data sources and data transformations. Based on the as-
sumed notions of computation, the concept of relative and
absolute autonomy for a given computational agents have



been presented. We compared our definition to existing in-
tuitive definitions in multi-agent literature. We have pro-
vided also a comparison of general autonomy classes in
MAS, with intuitive and formal notions of autonomy.

In the context of autonomy in MAS we have presented
details of two multi-agent systems: KEA and EVM. These
frameworks tackle the challenges of autonomous comput-
ing in various ways. In both the emphasis is placed on the
central notion of unsecured and unreliable inter-process (or
inter-agent) communication. The KEA framework is using
the notion of autonomous dynamic linking between agents.
The EVM system is using the notion of unstructured self-
assembly and dynamic aggregation of computational com-
ponents.

Based on the literature review and our own investiga-
tions, we have concluded that the autonomy is directly linked
with the concept of indeterminacy in a sense of Turing-
computability. In that context, it is easier to understand why
autonomy is a subject of continuous restrictions from vari-
ous angles within MAS community. From one hand, unlim-
ited autonomy makes it extremely hard to design, program
and analyse MAS systems. Therefore, restricting autonomy
is one way of dealing with the complexities of MAS design.
On the other hand, restricting autonomy is an inherently
needed property to achieve global coherent behaviour, that
may otherwise be unattainable. We have discussed EVM-
based experiments which show that only through limiting
individual agents autonomy and restricting the freedoms of
choice, a more complex computational structures can be
achieved. This seems to be an inherent property of any com-
plex systems composed of a large number of autonomously
interacting entities. This phenomenon is called enslavement
in synergetics [Haken, 1983].

References

[Banâtre et al., 1988] Banâtre, J., Coutant, A., and Le Metayer,
D. (1988). A parallel machine for multiset transformation and
its programming style. Future Generation Computer Systems,
4(2):133–144.

[Berry and Boudol, 1989] Berry, G. and Boudol, G. (1989). The
chemical abstract machine. ACM Press, NY, USA.

[Bringsjord and Zenzen, 2003] Bringsjord, S. and Zenzen, M.
(2003). Superminds: People Harness Hypercomputation, and
More. Studies in Cognitive Systems Volume 29. Kluwer Aca-
demic Publishers. Cen BF 311 B 4867.

[Carabelea et al., 2003] Carabelea, C., Boissier, O., and Florea,
A. (2003). Autonomy in multi-agent systems: A classification
attempt. In [Nickles et al., 2004], pages 103–113.

[Castelfranchi, 1995] Castelfranchi, C. (1995). Guarantees for
autonomy in cognitive agent architecture. In Proceedings of
the workshop on agent theories, architectures, and languages,
ATAL’94, volume 890 of LNAI, pages 56–70. Springer-Verlag,
NY, USA.

[Franklin and Graesser, 1996] Franklin, S. and Graesser, A.
(1996). Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. Proceedings of the Third International

Workshop on Agent Theories, Architectures, and Languages,
pages 21–36.

[Gouaich, 2003] Gouaich, A. (2003). Requirements for achieving
software agents autonomy and defining their responsibility. In
[Nickles et al., 2004], pages 128–139.

[Gould and Vrba, 1982] Gould, S. J. and Vrba, E. (1982). Exap-
tation – a missing term in the science of form. Paleobiology,
8:4–15.

[Haken, 1983] Haken, H. (1983). Synergetics, An Introduction:
Nonequilibrium Phase Transitions and Self-Organization in
Physics, Chemistry, and Biology. Springer-Verlag, Berlin, 3rd

revised and enlarged edition edition.
[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D.

(1979). Introduction to automata theory, languages, and com-
putation. Addison-Wesley Publishing Company, USA.

[Levin, 1973] Levin, L. A. (1973). Universal sequential search
problems. Problems of Information Transmission, 9(3):265–
266.

[Luck and d’Inverno, 1995] Luck, M. and d’Inverno, M. (1995).
A formal framework fo agency and autonomy. In Proceedings
of Frist International Conference On Multi-Agent Systems (IC-
MAS), pages 254–260.

[Lynch and Tuttle, 1989] Lynch, N. and Tuttle, M. R. (1989).
An introduction to input/output automata. CWI Quarterly,
2(3):219–246.

[Margulis, 1970] Margulis, L. (1970). Origin of Eukaryotic Cells.
University Press, New Haven.

[Margulis, 1981] Margulis, L. (1981). Symbiosis in Cell Evolu-
tion. Freeman & Co., San Francisco.

[Milner, 1989] Milner, R. (1989). Communication and concur-
rency. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

[Nickles et al., 2004] Nickles, M., Rovatsos, M., and Weiß, G.,
editors (2004). Agents and Computational Autonomy - Po-
tential, Risks, and Solutions - Postproceedings of the 1st In-
ternational Workshop on Computational Autonomy - Potential,
Risks, Solutions (AUTONOMY 2003), held at the 2nd Interna-
tional Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2003), July 14, 2003, Melbourne, Australia,
volume 2969 of Lecture Notes in Computer Science. Springer.

[Nicola and Hennessy, 1987] Nicola, R. D. and Hennessy, M.
(1987). CCS without tau’s. Proceedings of the International
Joint Conference on Theory and Practice of Software Develop-
ment, Volume 1: Advanced Seminar on Foundations of Innova-
tive Software Development I and Colloquium on Trees in Alge-
bra and Programming, pages 138–152.

[Nowostawski et al., 2005a] Nowostawski, M., Epiney, L., and
Purvis, M. (2005a). Self-Adaptation and Dynamic Envi-
ronment Experiments with Evolvable Virtual Machines. In
S.Brueckner, Serugendo, G. M., D.Hales, and F.Zambonelli,
editors, Proceedings of the Third International Workshop on
Engineering Self-Organizing Applications (ESOA 2005), pages
46–60. Springer Verlag.

[Nowostawski et al., 2005b] Nowostawski, M., Epiney, L., and
Purvis, M. (2005b). Self-adaptation and dynamic environ-
ment experiments with evolvable virtual machines. In Proceed-
ings of the Third International Workshop on Engineering Self-
Organizing Applications (ESOA 2005), pages 46–60, Utrech,
The Netherlands. Fourth International Joint Conference on Au-
tonomous Agents & Multi Agent Systems.



[Nowostawski et al., 2001] Nowostawski, M., Purvis, M., and
Cranefield, S. (2001). Kea – multi-level agent infrastructure.
In Proceedings of the 2nd International Workshop of Central
and Eastern Europe on Multi-Agent Systems (CEEMAS 2001),
pages 355–362, Kraków, Poland. Department of Computer Sci-
ence, University of Mining and Metallurgy.

[Nowostawski et al., 2004] Nowostawski, M., Purvis, M., and
Cranefield, S. (2004). An architecture for self-organising evolv-
able virtual machines. In Brueckner, S., Serugendo, G. D. M.,
Karageorgos, A., and Nagpal, R., editors, Engineering Self
Organising Sytems: Methodologies and Applications, number
3464 in Lecture Notes in Artificial Intelligence. Springer Ver-
lag.

[Ray, 1991] Ray, T. S. (1991). An approach to the synthesis
of life. In Langton, C., Taylor, C., Farmer, J. D., and Ras-
mussen, S., editors, Artificial Life II, volume XI of Santa Fe
Institute Studies in the Sciences of Complexity, pages 371–408.
Addison-Wesley, Redwood City, CA.

[Schmidhuber, 2004] Schmidhuber, J. (2004). Optimal ordered
problem solver. Machine Learning, 54:211–254.

[Turing, 6 7] Turing, A. M. (1936–7). On computable numbers
with an application to the entscheidungsproblem. Proceedings
of the London Mathematical Society, 42(2):230–265. also 43,
pp. 544-546, 1937.

[Weigand and Dignum, 2003] Weigand, H. and Dignum, V.
(2003). I am autonomous, you are autonomous. In
[Nickles et al., 2004], pages 227–236.

[Witkowski and Stathis, 2003] Witkowski, M. and Stathis, K.
(2003). A dialectic architecture for computational autonomy.
In [Nickles et al., 2004], pages 261–274.


