
Verifying social expectations
by model checking truncated paths

Stephen Cranefield
Department of Information Science

University of Otago
Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

Michael Winikoff
School of Computer Science
and Information Technology

RMIT University
Melbourne, Australia

michael.winikoff@rmit.edu.au

ABSTRACT
One approach to moderating the behaviour of agents in open soci-
eties is the use of explicit languages for defining norms, conditional
commitments and/or social expectations, together with infrastruc-
ture supporting conformance checking and the identification and
possible punishment of anti-social agents. This paper presents a
logical account of the creation, fulfilment and violation of social
expectations modelled as conditional rules over a hybrid proposi-
tional temporal logic.

The semantics are designed to allow model checking over finite
histories to be used to check for fulfilment and violation of expecta-
tions in both online and offline modes. For online checking, expec-
tations are always considered at the last state in the history, but in
the offline mode expectations in previous states are also checked.
At each past state, the then active expectations must be checked
for fulfilment without recourse to information from later states: the
truth of a future-oriented temporal proposition φ at state s over the
full history does not imply the fulfilment at s of an expectation
with content φ. This issue is addressed by defining fulfilment and
violation in terms of an extension of Eisner et al.’s weak/strong
semantics for LTL over truncated paths.

The update of expectations from one state to the next is based
on formula progression and the approach has been implemented
by extending the MCLITE and MCFULL algorithms of the Hybrid
Logic Model Checker.

1. INTRODUCTION
An electronic institution [5] is an explicit model of the rules, or

norms, that govern the operation of an open multi agent system. A
given electronic institution provides rules that agents participating
in the institution are expected to follow. These rules can include
more traditional protocols (e.g. a request message comes first, fol-
lowed by either an accept or a refuse), as well as properties that are
expected to apply to complete interactions, for example, the norm
that any accepted request must be eventually fulfilled.

Since electronic institutions are open systems it is not possible
to assume any control over agents, nor is it reasonable to assume
that all agents will follow the rules applying to an interaction. In-
stead, the behaviour of participating agents needs to be monitored
and checked, with violations being detected and responded to in a
suitable way, such as “punishing” the agent by applying sanctions,
or reducing the agent’s reputation.

There is therefore a need for mechanisms for checking for the
fulfilment or violation of norms with respect to a (possibly par-
tial) execution trace. Furthermore, such a mechanism can also be
useful for rules of social interaction that are less authoritative than
centrally established norms, e.g. conditional rules of expectation
that an agent has established as its only personal norms, or rules
expressing regularities in the patterns of other agents’ behaviour,
learned through experience. Thus in this paper we focus on the
general concept of modelling social expectations and investigate

the use of model checking for detecting the fulfilment or violation
of such expectations. In particular, our approach has been imple-
mented by extending the MCLITE and MCFULL algorithms of the
Hybrid Logic Model Checker [7].

The theory underlying our approach is designed to apply equally
well to both online and offline monitoring of expectations. For on-
line monitoring, each state is added to the end of the history as
it occurs, and the monitoring algorithm works incrementally. The
underlying formalism can assume that expectations are always con-
sidered at the last state in the history. In contrast, in the offline
mode, expectations in previous states are also checked. At each
past state, the then active expectations must be checked for fulfil-
ment without recourse to information from later states: the truth
of a future-oriented temporal proposition φ at state s over the full
history does not imply the fulfilment at s of an expectation with
content φ1.

Our implemented solution currently addresses offline monitor-
ing, but it is designed to be able to be adapted to an incremental
online mode as a future development.

This paper is structured as followed. Section 2 outlines our intu-
itions about expectations, fulfilment and violation and sketches out
our logical representation of these concepts. Section 3 describes
the logic we use and the semantic mechanisms needed to express
fulfilment and violation of an expectation. In Section 4 we give a
brief description of formula progression, a technique used to ex-
press the evolution of an unfulfilled and non-violated expectation
from one state to the next. Section 5 then describes the Hybrid
Logics Model Checker that we have used in this work and the ex-
tensions we have made to it. An example conditional expectation
is presented in Section 6, together with the corresponding output
from the model checker for two input models. Finally we discuss
related work in Section 7 and summarise the paper and plans for
future work in Section 8.

2. FORMALISING EXPECTATIONS,
FULFILMENT AND VIOLATION

In this work we study the general notion of expectations. It is our
position that the base-level semantics of expectations with different
degrees of force (expectations inferred from experience, promises,
formal commitments, etc.) are the same. The differences between
these lie in the pragmatics of how they are created and propagated,
how their fulfilment and violation is handled, and the type of con-
textual information associated with them (e.g. the debtor and cred-
itors associated with a commitment).

Our intuition behind expectations is that they are created in some
context which may depend on the current and recorded past states

1Of course offline monitoring can be implemented by applying an
online algorithm iteratively, but this is not necessarily the most nat-
ural approach theoretically or the most efficient approach in prac-
tice.



of an agent (including any representation it has of the external envi-
ronment), and that the created expectation is a constraint indicating
the expected future sequences of states. We model this by condi-
tional rules:

λ→ Exp ρ

where λ and ρ are linear temporal logic expressions with λ refer-
ring to the past and present and ρ encoding the constraint on the
future. The modality Exp is needed as it is not guaranteed that ρ
will hold, it will just be “expected” if the condition holds.

� � �

¬Fulfq ¬Fulfq Fulfq

q q q

Expq Expq Expq

p q

s1 s2 s3

Rule: p→ Expq

Figure 1: Offline monitoring

The question then arises of when an expectation should be con-
sidered to be fulfilled (denoted Fulf(φ)) or violated (Viol(φ)). Con-
sider Figure 1. This shows a history, as might be used in offline
monitoring of agents’ interactions (e.g. when analysing a trace pre-
sented as evidence by an agent to some authority). In this example
there is a rule stating that whenever p holds, it will then be expected
that from the next state of the world, q will eventually hold ( is
the “next state” operator and denotes “eventually”). In state s1,
p holds, so the rule is triggered and Expq holds. Assume that
q becomes true in state s3. Therefore, by the semantics of temporal
logic,q holds in all three states (not all true formulae are shown
in the figure) and, in particular, in s2. It follows thatq holds in
s1, the state in which this is an expectatation. However, we do not
want to conclude that Fulfq holds in s1 as an agent in this state
would not have access to the future states s2 and s3. The determi-
nation of fulfilment and violation must be made without recourse to
future information. Section 3 presents a temporal operator TruncS

that allows us to express this constraint. For now, we will assume
that we have suitable definitions of Fulf(φ) and Viol(φ), and move
on to consider how expectations evolve from one state to the next.

We assume that an expectation can be fulfilled or violated at most
once2 and that an expectation that is not fulfilled or violated in a
state should persist (in a possibly modified form) to the next state:

Expφ ∧ ¬Fulf φ ∧ ¬Viol φ→ Expψ

What should ψ be? Although at least one alternative approach ex-
ists (see Section 7), we believe that the most intuitive representation
of an expectation is for it to be expressed in terms of the current
state. Thus ψ should represent a change of viewpoint of the con-
straint represented by the expectation φ from the current state to
the next state. This can be seen in Figure 1 where Expq in s1
becomes Expq in s2 and then remains as Expq in s3 as q has
not yet held.

The transformation of φ into ψ should also take into account any
simplification of the expectation due to subformulae of φ that were
2This is true if expectations are treated purely logically, but it may
be useful for an agent to be notified of the continued fulfilment or
the repeated violation of an expectation expressing that something
should always hold.

true in the current state. Thus, Exp (p ∧q) should become Exp q
in the next state if p holds currently. This is precisely the notion
of formula progression through a state [2]. Formula progression
(which will be explained in more detail in Section 4) allows us to
complete our informal charaterisation of the evolution of expecta-
tions through time:

Expφ ∧ ¬Fulf φ ∧ ¬Viol φ ∧ Progress(φ,ψ) → Expψ

This conception of expectations, fulfilments and violations has
been implemented in a previous progression-based system using a
temporal logic combining future and past temporal operators with
the guarded fragment of first order logic, binders and a form of
nominal [6]. The logic allows the expression of temporally rich
conditional expectations such as “Once payment is made, the service-
providing agent is committed to sending a report to the customer
once a week for 52 weeks or until the customer cancels the order”.
However, although this system used a logical notation for condi-
tional rules of expectation, the detection of fulfilments and viola-
tions and the progression of expectations from one state to the next
were handled algorithmically, and there was not a logical account
of these notions. This paper provides such a logical account, elab-
orating on the intuition presented above, and demonstrates how to
build semantics corresponding to this intuition into a model checker
for detecting expectations and their fulfilment and violation.

3. FORMAL BACKGROUND
In this section we briefly present the logic that we use to express

expectations, and its formal semantics. This is followed by intro-
ducing a truncation operator, which is defined in terms of weak and
strong variants of the semantics. The truncation operator is needed
because determining whether an expectation is fulfilled or violated
needs to be done without any knowledge of future states, and this is
captured by truncating at the current state, so that future states are
no longer accessible.

The logic is a hybrid temporal logic that is an extension of the
one implemented by the Hybrid Logic Model Checker [7], and is
described by the following grammar:

φ ::= � | p | ¬φ | φ1 ∧ φ2

| φ | φ | φ1 Uφ2 | φ1 Sφ2

| x | n | @tφ | ↓xφ | E φ

where � represents true, p is a proposition, is the standard tem-
poral “next” operator,  is the standard temporal “previous”, U
is the standard temporal “until”, and S (“since”) is a backwards-
looking version of until. As is often done, we define a number of
convenient abbreviations: “false” (⊥ ≡ ¬�), the derived opera-
tors “eventually φ” (φ ≡ trueUφ), and “always φ” (φ ≡
¬¬φ), and similar backwards-looking versionsφ ≡ trueSφ
andφ ≡ ¬¬φ. In some literature is denoted by F, by G,
 by F− and  by G−.

The remaining cases are standard in hybrid logic [4]: we have so-
called state variables, with typical element x, which can be bound
to nominals, and we have nominals n. A nominal is viewed as a
logical proposition that is true in exactly one state, i.e. the state
“designated” by the nominal. The operator @tφ, where t is either
a state variable or a nominal, shifts to the state t and can be read as
“φ holds in state t”. The downarrow operator (↓xφ) binds the state
variable x to the current state. Finally, the existential modality E φ
says that there exists a state in which φ holds, and its dual is the
universal modality A.

The formal semantics for this logic is given in Figure 2 with
respect to a hybrid Kripke structure M which consists of of an
infinite sequence3 of states 〈m1,m2 . . .〉, and a valuation function

3We are only concerned with a sequence of states, and so build this
directly in to the model, rather than by using a relation R which
simply creates a sequence indirectly.



M, g, i |= p ⇐⇒ mi ∈ V (p)

M, g, i |= ¬φ ⇐⇒ M, g, i �|= φ

M, g, i |= φ1 ∧ φ2 ⇐⇒ M, g, i |= φ1 and M, g, i |= φ2

M, g, i |= φ ⇐⇒ M, g, i+ 1 |= φ

M, g, i |= φ ⇐⇒ M, g, i− 1 |= φ

M, g, i |= φ1 Uφ2 ⇐⇒ ∃k ≥ i : M, g, k |= φ2 and

∀j such that i ≤ j < k : M, g, j |= φ1

M, g, i |= φ1 Sφ2 ⇐⇒ ∃k ≤ i : M, g, k |= φ2 and

∀j such that i ≥ j > k : M, g, j |= φ1

M, g, i |= x ⇐⇒ mi = g(x)

M, g, i |= n ⇐⇒ V (n) = {mi}
M, g, i |= @tφ ⇐⇒ M, g, j |= φ

where V (t) = {mj} if t is a nominal

and mj = g(t) if t is a state variable.

M, g, i |= ↓xφ ⇐⇒ M, g[x �→ mi], i |= φ

M, g, i |= Eφ ⇐⇒ there exists j s.t. mj ∈ M and

M, g, j |= φ

Figure 2: Semantics of the logic

V which maps propositions and nominals to the set of states in
which they hold, i.e. M = 〈〈m1 . . .mn〉, V 〉. We use the index i
to refer to statemi. The function g maps state variables x to states,
and we write g[x �→ mi] to denote the function that maps x to mi

and otherwise behaves like g. Note that the rules of Figure 2 only
apply for i ≥ 1.

When evaluating whether an expectation (or any other formula)
holds in a given state mi we want to not only determine whether
the formula holds, but also whether an agent in state mi is able
to conclude that the formula holds. For example, if p is true in
m2, then even through p holds in m1, an agent in m1 would not
normally be able to conclude this, since it cannot see into the future.

We deal with this by using a simplified form of the operator
TruncS from Eisner et al. [8]. A formula TruncS φ is true at a
given state in a model if and only if φ can be shown to hold without
any knowledge of future states. We define this formally as:

M, g, i |= TruncS φ ⇐⇒ Mi, g, i |=+ φ

where |=+ represents the use of the strong semantics of Eisner et
al. (defined below), and Mi is defined as follows. Let M =
〈〈m1 . . .mi . . .mn〉, V 〉. We define V i(p) = V (p)\{mi+1 . . .mn},
that is, V i gives the same results as V , but without states mj

for j > i. We then define Mi = 〈〈m1 . . .mi〉, V i〉. We write
i > |M| to test for states that have been pruned, i.e. if i > |M|
then there is no mi in M. We write i ≤ |M| to test for states that
do exist, i.e. if i ≤ |M| then mi ∈M (where M = 〈M,V 〉). We
need to use the strong semantics (|=+) as the standard semantics is
defined over infinite sequences of states and does not provide any
way to disregard information from future states. The strong seman-
tics is skeptical: it concludes that M, g, i |=+ φ only when there
is enough evidence so far to definitely conclude that φ holds. To
define negation, we also need its weak counterpart, |=−. The weak
semantics is generous: it concludes that M, g, i |=− φ whenever
there is no evidence against φ so far.

Figure 3 defines the weak and strong semantics for the cases
where they differ from the standard semantics. For rules for the
operators that aren’t shown in Figure 3, refer to Figure 2, but re-
place |= consistently with |=− for the weak semantics and with |=+

for the strong semantics. For example the rule for is M, g, i |=−

φ ⇐⇒ M, g, i+ 1 |=− φ (and similarly for |=+).

M, g, i |=− p ⇐⇒ i > |M| or mi ∈ V (p)

M, g, i |=+ ¬φ ⇐⇒ M, g, i �|=− φ

M, g, i |=− ¬φ ⇐⇒ M, g, i �|=+ φ

M, g, i |=+ φ ⇐⇒ i+ 1 ≤ |M| and M, g, i+ 1 |=+ φ

M, g, i |=+ x ⇐⇒ i ≤ |M| and mi = g(x)

M, g, i |=− x ⇐⇒ i > |M| or mi = g(x)

M, g, i |=− n ⇐⇒ i > |M| or V (n) = {mi}
M, g, i |=− @tφ ⇐⇒ j > |M| or M, g, j |=− φ

where V (t) = {mj} if t is a nominal

and mj = g(t) if t is a state variable.

Figure 3: Weak and Strong semantics

Note that the rules for negation switch between the strong and
weak semantics: we can conclude strongly (respectively weakly)
that ¬φ holds iff we can conclude weakly (respectively strongly)
that φ does not hold.

A key intuition in the rules of Figure 3 is that for states that
have been pruned, the strong semantics will not conclude that any
formula φ holds (i.e. for all φ we have M, g, i �|=+ φ ifmi has been
pruned). On the other hand, in this case the weak semantics will
conclude that any formula holds (i.e. for all φ we have M, g, i |=−

φ if mi has been pruned).
The rules for p state that p can be concluded to hold under the

strong semantics if the current state mi ∈ V (p), recall that when
we truncate we update V so it no longer includes states that have
been truncated. In the weak semantics p holds either if mi ∈ V (p)
as in the other semantics, or if mi has been truncated (i.e. it is not
in the sequence of states M ).

The |=+ rule for requires that the next state must not have been
pruned, otherwise we cannot conclude thatφ holds in the strong
semantics.

For state variables to hold in the strong semantics we require that
mi = g(x), but also that mi is in the sequence of states. For state
variables to hold in the weak semantics we require that mi = g(x)
or that i > |M|. This definition is in line with the key intuition
discussed earlier. Similarly, for a nominal to hold in the weak se-
quence we require that V (n) = {mi} or that the current state has
been pruned (i > |M|). Similarly, for @t we allow for this to hold
in the weak semantics if the state being shifted to has been pruned.

We can now use the TruncS operator to define fulfilment and
violation:

Fulf φ⇐⇒ Expφ ∧ TruncS φ

Viol φ⇐⇒ Expφ ∧ TruncS ¬φ

4. FORMULA PROGRESSION
As outlined in Section 2, we use the notion of formula progres-

sion to describe how an unfulfilled and non-violated expectation
evolves from one state to the next. Formula progression was intro-
duced in the TLPlan planner to allow “temporally extended goals”
to be used to control the system’s search for a plan. Rather than
just describing the desired goal state for the plan to bring about,
TLPlan used a linear temporal logic formula to constrain the path
of states that could be followed while executing the plan. As plan-
ning proceeds, whenever a new action is appended to the end of
the plan, this formula must be “progressed” to represent the resid-
ual constraint left once planning continues from the state resulting
from executing that action.



M, g, i |= Progress(�,�)

M, g, i |= Progress(p,ψ) where

{
ψ = � if p ∈ V (mi)

ψ = ⊥ otherwise

M, g, i |= Progress(φ1 ∧ φ2, ψ1 ∧ ψ2) ⇐⇒ M, g, i |= Progress(φ1, ψ1) and M, g, i |= Progress(φ2, ψ2)

M, g, i |= Progress(¬φ,¬ψ) ⇐⇒ M, g, i |= Progress(φ, ψ)

M, g, i |= Progress(φ,φ)

M, g, i |= Progress(φ1 Uφ2, ψ2 ∨ (ψ1 ∧ (φ1 Uφ2))) ⇐⇒ M, g, i |= Progress(φ1, ψ1) and M, g, i |= Progress(φ2, ψ2)

M, g, i |= Progress(φ,φ)

M, g, i |= Progress(φ1 Sφ2,(φ1 Sφ2))

M, g, i |= Progress(x,ψ) where

{
ψ = � if mi = g(x)

ψ = ⊥ otherwise

M, g, i |= Progress(n, ψ) where

{
ψ = � if V (n) = {mi}
ψ = ⊥ otherwise

M, g, i |= Progress(↓xφ,ψ) ⇐⇒ M, g, i |= Progress(φ[x/n], ψ)

where V (n) = {mi}
M, g, i |= Progress(@tφ,@tφ)

M, g, i |= Progress(Eφ,Eφ)

Figure 4: Recursive evaluation of the progression operator

Bacchus and Kabanza considered progression as a function map-
ping a formula and state to another formula, and defined this func-
tion inductively on the structure of formulae in their logic LT —a
first-order version of LTL. They proved the following theorem.

Theorem (Bacchus and Kabanza [2]) LetM = 〈w0, w1, . . .〉 be
any LT model. Then, we have for any LT formula f in which all
quantification is bounded, 〈M,wi〉 |= f if and only if 〈M,wi+1〉 |=
Progress(f, wi).

In this theorem, Progress(f, wi) is a meta-logical function. We
wish to define progression as an operator within the logic, and so
adapt the above theorem to provide a definition of the modal oper-
ator Progress(φ,ψ):

M, g, i |= Progress(φ, ψ)

iff ∀M′ ∈ M(i), M′, g, i |= φ⇐⇒ M′, g, i+1 |= ψ

where M(i) is the set of all possible infinite models that are exten-
sions of Mi (M truncated at i) and which preserve all the nominals
in M (including those at indices past i). Apart from the require-
ment to agree on nominals, the models of M(i) need not agree
with M on the truth of propositions for state indices j > i.

We can then obtain the theorems of Figure 4, which define an in-
ductive procedure for evaluating progression, in conjunction with
the use of Boolean simplification to eliminate ⊥ and � as subfor-
mulae. This procedure is similar to the function of Bacchus and
Kabanza, but extended to account for the hybrid features of our
logic. The theorem for the binder operator requires there to be a
nominal naming the state mi (φ[x/n] denotes subsitution of the
nominal n for the free occurrences of x); however, for our model
checking application, this can be easily ensured by preprocessing
the model to add nominals for states that lack them.

5. APPLYING MODEL CHECKING TO EX-
PECTATION MONITORING

Model checking is the problem of determining for a particular
model of a logical language whether a given formula holds in that
model. Thus it differs from logical inference mechanisms which
make deductions based on rules that are valid in all possible mod-
els. This makes model checking more tractable in general than

deduction.
Model checking is commonly used for checking that models of

dynamic systems, encoded as finite state machines, satisfy proper-
ties expressed in a temporal logic. However, the problem of model
checking a path (a finite or ultimately periodic sequence of states)
has also been studied and “can usually be solved efficiently, and
profit from specialized algorithms” [11]. We have therefore inves-
tigated the applicability of model checking as a way of checking
for expectations, fulfilments and violations over a linear history of
observed states. This was done by extending an existing model
checker, described in the next section.

5.1 The Hybrid Logics Model Checker
The Hybrid Logics Model Checker (HLMC) [7] implements the

MCLITE and MCFULL labelling algorithms of Franceschet and de
Rijke [10]. HLMC reads a model encoded in XML and a formula
given in a textual notation, and uses the selected labelling algorithm
to determine the label, true (�) or false (⊥), for the input formula
in each state of the model. It then reports to the user all the states
in which the formula is true (i.e. it is a global model checker).

The two labelling algorithms are defined over a propositional
temporal logic with the Tense Logic operators F (“some time in the
future”), P (“some time in the past”), the binary temporal operators
U (until) and S (since), the universal modality A, and the following
features of hybrid logic: nominals, state variables, the operator @t

(“shift evaluation to the state named by nominal or state variable
a”), and the binding operators ↓x (“bind x to the current state”)
and ∃x (“binding x to some state makes the following expression
true”). The duals of the modal operators are defined in the usual
way.

The global model checking problem for any subset of this lan-
guage that freely combines temporal operators with binders is known
to be PSPACE-complete [10]. MCLITE is a bottom-up labelling
algorithm for the sublanguage that excludes the two binding opera-
tors, and it runs in time O(k.n.m) where k is the length of the for-
mula to be checked, n is the number of states in the model, andm is
the size of the model’s accessibility relation. MCFULL handles the
full language, uses polynomial space, and runs in time exponential
on the nesting degree of the binders in the formula.

MCLITE works by labelling each subformulae of the formula



to be checked, for all states in the model, in a bottom-up manner.
Figure 5 shows the semantics of some of the operators supported
by HLMC together with the corresponding definition of the label
LM,g(φ, s). The presentation is adapted from that of Franceschet
and de Rijke [10] to correspond to the HLMC operators, and to
provide a declarative rather than procedural account4. We use the
notation [V, g](a) as an abbreviation for either the value of V (a) if
a is a nominal or {g(a)} if a is a state variable. It can be seen that
in these cases the labelling function is a straightforward translation
from the semantics—a property we have sought to preserve where
possible for our extended notion of labels presented in Section 5.2.

Nominals and state variables

M, g, s |= a iff s ∈ [V, g](a)

LM,g(a, s) =

{
� if s ∈ [V, g](a)

⊥ otherwise
Operator @t

M, g, s |= @tφ iff M, g, s′ |= φ where [V, g](t) = {s′}
LM,g(@tφ, s) = LM,g(φ, s′) where [V, g](t) = {s′}

Operator ♦R

M, g, s |= ♦Rφ iff ∃s′(Rss′ ∧M, g, s′ |= φ)

LM,g(♦Rφ, s) =
∨

s′∈R(s)

LM,g(φ, s′)

Figure 5: The MCLITE labelling function (partial definition)

The simple bottom-up procedure does not work when binders
are included in the language as there will be subformulae contain-
ing free state variables, and the values of these depend on the en-
closing binding context. Instead, the recursive top-down MCFULL
procedure is used. A formula is labelled by first labelling its im-
mediate subformulae recursively, and then applying the appropri-
ate labelling algorithm for the formula’s operator. For operators
in the MCLITE sublanguage, the MCLITE labelling algorithm is
used. When the recursion encounters a formula of the form ↓xφx

or ∃xφx, the recursive labelling is performed for each binding of x
to a state in the model (consider the formula G ↓x@xp : labelling
this for any given state s requires the truth of the subformula to be
known for all bindings of x to states accessible from s).

Franceschet and de Rijke claim that “MCFULL can be viewed
as a general model checker for the hybridization of any tempo-
ral logic” by adding appropriate labelling subprocedures for each
modal operator [10], and therefore the model checker HLMC was
chosen as the basis for this research. However, HLMC is not a
direct implementation of MCLITE and MCFULL. It is not spe-
cialised to temporal logic as it allows multiple accessibility rela-
tions to appear in the model and makes no assumptions about the
structure of these relations. Formulae to be checked can include
diamond and box modalities for each accessibility relation in both
forward and reverse directions, the existential and universal modal-
ities, and the hybrid logic operators ↓x and @t. There is no support
for U and S.

5.2 Handling TruncS
We have adapted HLMC for checking the fulfilment and viola-

tion of expectations. We assume (and verify) that the input model
represents a linear path and thus contains a single “next state” ac-
cessibility relationship.

To allow the checking of fulfilment and violation a labelling al-
gorithm for TruncS was developed. This was complicated by the
presence of past-time operators. Consider the label for TruncS¬φ.

4We use the notation defined in Section 3, but in this more general
non-linear setting, we write M, g, s |= φ where s is a state in the
model rather than the index of a state in the model.

Based on the definitions of Section 3, we have:

M, g, i |= TruncS¬φ ⇐⇒ Mi, g, i |=+ ¬φ
⇐⇒ Mi, g, i−1 |=+ ¬φ
⇐⇒ Mi, g, i−1 �|=− φ

or equivalently:

LM,g(TruncS¬φ, i) = L+
Mi,g

(¬φ, i)

= L+
Mi,g

(¬φ, i−1)

= ¬L−
Mi,g

(φ, i−1)

where L+
M,g and L−

M,g denote labelling under the strong and weak
semantics, respectively. Thus to label TruncS¬φ at model index
i it is necessary to know the weak semantics label for φ at index i−1
when the model is truncated at i. More generally, when labelling a
formula φ at a model index i it is necessary to store both weak and
strong labels with respect to all possible future truncation points:
L−

Mj ,g
(φ, i) and L+

Mj ,g
(φ, i) for j ≥ i. We therefore define a

generalised label for a formula φ at a model index as a sequence of
pairs of weak and strong labels for each possible truncation point
from i to the final state in the model:

LM,g(φ, i) =
〈(
L−

Mj ,g
(φ, i), L+

Mj ,g
(φ, i)

)
| i ≤ j ≤ |M|

〉
LM,g(φ, i) consists of an element (vw

j , v
s
j ) for each j from i to

|M|, where vw
j is the value for φ at index i in the model under

the weak semantics assuming a truncation at index j, and vs
j is the

corresponding value under the strong semantics.
We will write the value of a label LM,g(φ, i) in an abbreviated

notation that only lists the pairs of weak and strong values when
there has been a change of value since the previous possible trun-
cation point:

〈j1 : (wj1 , sj1), . . . , jn−1 : (wjn−1 , sjn−1)〉

where i = j1 < · · · < jn−1 ≤ jn = |M| and
∀k : 1≤k≤n−1∀l : jk<l<jk+1(wl = wjk ∧ sl = sjk ).

This is also how we store generalised labels in our extended ver-
sion of HLMC.

Boolean functions apply to generalised labels in a straightfor-
ward way, acting element-wise, with negation also exchanging weak
and strong values for a given truncation point, e.g. ¬ 〈1: (�,⊥),
2: (�,�)〉 = 〈1: (�,⊥), 2: (⊥,⊥)〉. When ∧ and ∨ are applied
to labels l = 〈i : (wi, si), . . . 〉 and l′ = 〈j : (w′

i, s
′
i), . . . 〉 where

i < j, l′ is treated as if it had i : (⊥,⊥) prepended for ∨ and
i : (�,�) prepended for ∧ (and l is treated similarly if i > j),
i.e. the sequence starting at a later truncation point is padded with
true weak and strong labels for truncation points i to j − 1. We
write indexed conjunctions and disjunctions, e.g. i∧1≤k≤|M|, with
a prefix superscript index i, indicating that the value if there are no
conjuncts or disjuncts is 〈i : (�,�)〉 or 〈i : (⊥,⊥)〉 respectively.

For the HLMC operators that are not future oriented, the declar-
ative specifications of the MCLITE/MCFULL labelling algorithms
(as shown in part in Figure 5) can then be applied directly to these
generalised labels. Labels for the temporal operators are computed
using the following definitions in Figure 6 (where we use the op-
erator symbols from Section 3). We also support the derived op-
erators , ,  and  defined in Section 35. The expression
· · · ∨ (LM,g(φ, k) ∧ πw

k ) used in the definition of U captures the
intuition that under the weak semantics, φUψ is satisfied if φ al-
ways holds (weakly) in the future and ψ never does. The constant
label πw

k is used as a mask to ensure that this disjunct only applies
for the weak semantics.
5Note that our use of in this context differs from that used in the
original HLMC input language. We use models with a “next step”
accessibility relation R, so HLMC’s ♦R becomes our , and our
 corresponds to the transitive closure of R.



Out of bound indices

LM,g(φ, i) =

{
〈1: (⊥,⊥)〉 for i < 1

〈〉 for i > |M|

Operators and (1 ≤ i ≤ |M|)
LM,g(φ, i) = i : (�,⊥) • LM,g(φ, i+1)

where • is the prepend operation

LM,g(φ, i) = LM,g(φ, i−1) � i
where σ � i is 〈j : (wj , sj) ∈ σ | j ≥ i〉

Operators U and S (1 ≤ i ≤ |M|)

LM,g(φUψ, i) =
i∨

i≤k≤|M|

(
(LM,g(ψ, k) ∨ (LM,g(φ, k) ∧ πw

k ))

∧
∧k

i≤j<k

LM,g(φ, j)
)

where πw
k = 〈k : (�,⊥)〉

LM,g(φSψ, i) =
(

1∨
1≤k≤i

(LM,g(ψ, k)

∧
k∧
k<j≤i

LM,g(φ, j))
)

� i

Figure 6: Labelling temporal formulae in extended HLMC

5.3 Defining expectation, fulfilment and
violation

We now show how the semantics of expectation, fulfilment and
violation can be encoded within the extended HLMC. We elabo-
rate on the intuitive account of these notions given in Section 2.
We wish to use the model checker to check for the existence of
rule-based conditional expectations, and their fulfilments and vio-
lations without requiring the rules of expectation to be hard-coded
in the model checker, or integrated into the labelling procedure dy-
namically. Therefore, we define a hypothetical expectation modal-
ity Exp(λ, ρ, n, φ). This means (informally) that if there were a
rule λ → Exp(ρ) then λ would have been strongly true at a previ-
ous state named by nominal n, the rule would have fired, and the
expectation ρ would have progressed (possibly over multiple inter-
mediate states) to φ in the current state. This means that we don’t
have to hardcode rules into the model checker, or provide a mech-
anism to read and internalise them. Instead, a rule of interest to
the user can be supplied as arguments to an input formula using the
ExistsExp modality. It is defined as follows.

M, g, i |=± Exp(λ, ρ, n, ψ) iff M, g, i |=± TruncS λ, V (n)={mi} and
ψ=ρ

or ∃φ s.t. M, g, i−1 |=± Exp(λ, ρ, n, φ),

M, g, i−1 �|=± TruncS φ,

M, g, i−1 �|=± TruncS ¬φ and

M, g, i−1 |=± Progress(φ, ψ)}

where we write |=± to indicate that the choice between the weak
or strong semantics is immaterial as states at indices greater than i
play no role in this definition.

The first conjunct in the definition expresses the case in which
the hypothetical rule matches the current state. Note that we use
TruncS when evaluating the rule’s condition λ to restrict it to present
and past information only. The second conjunct expresses the case
of progressing a non-fulfilled and non-violated exectation from the
previous state. Note that in order to use nominals to name the state
at which rules apply, we require that the input model has been an-
notated with nominals for each state.

We also define hypothetical versions of Fulf and Viol as follows:

M, g, i |=± Fulf(λ, ρ, n, φ) iff M, g, i |=± Exp(λ, ρ, n, φ) and
M, g, i |=± TruncS φ

M, g, i |=± Viol(λ, ρ, n, φ) iff M, g, i |=± Exp(λ, ρ, n, φ) and
M, g, i |=± TruncS ¬φ

These modalities are not used directly by the model checker. In-
stead we define the following existential version of Exp:

M, g, i |=± ExistsExp(λ, ρ)

iff ∃n, φ s.t. M, g, i |=± ExistsExp(λ, ρ, n, φ)

with similar definitions for ExistsFulf(λ, ρ) and ExistsViol(λ, ρ).
These correspond to the actual queries that we wish to make to
the model checker: “are there any expectations (or fulfilments or
violations) for a given rule, at any state in the model?”

To compute labels for these existential modalities, we first com-
pute the following witness functionWM,g,i iteratively for i increas-
ing from 1 to |M| (where labels for the subformulae λ and ρ have
already been computed due to HLMC’s top-down recursive algo-
rithm):

WM,g,i(ExistsExp(λ, ρ)) =

⎧⎪⎨
⎪⎩

{(n, ρ)} where V (n)={mi}
if M, g, i |=± TruncS λ

∅ otherwise

⎫⎪⎬
⎪⎭ ∪

{(n, ψ) |
∃φ.(n, φ) ∈ WM,g,i−1(ExistsExp(λ, ρ)),

M, g, i−1 �|=± TruncS φ,

M, g, i−1 �|=± TruncS ¬φ and

M, g, i−1 |=± Progress(φ, ψ)}

This collects all pairs (n, φ) making Exp(λ, ρ, n, φ) true at i
for a given λ and ρ. The corresponding label for this formula
at i is then 〈i : (⊥,⊥)〉 if the witness set is empty, and otherwise
〈i : (�,�)〉.

Witness functions are also defined for ExistsFulf(λ, ρ) and
ExistsViol(λ, ρ) by taking the subset of pairs (n, φ) in
ExistsExp(λ, ρ) for which TruncS φ strongly holds and TruncS ¬φ
strongly holds, respectively.

Finally, we can use the extended HLMC to check for expecta-
tions, violations and fulfilments over a given model by peforming
the global model checking procedure with an empty intial binding
g, for an input formulae such as ExistsExp(λ, ρ), ExistsFulf(λ, ρ)
or ExistsViol(λ, ρ) where condition λ and expectation ρ corre-
spond to some rule of interest. The model checker will report all
witnesses for the input formula for all states. This can be easily
generalised to apply to disjunctions of input formulae referring to
multiple rules.

Although the witnesses for the ExistsExp modality could be used
to generate labels for Exp for a given rule, we do not currently
support the use of Exp to appear within rules, and so cannot handle
interdependent expectations.

6. AN EXAMPLE
Consider an interaction between a merchant and a customer. One

possible expectation in this interaction is that a customer agent that
has placed an order (modelled as the proposition o) should not
subsequently place another order until its order has been paid for
(proposition p). We formalise this as:

o→ Exp(¬oU p)

That is, when the condition o is true, an expectation is created that,
from the next state, o is false until p.

Consider now Scenario 1, illustrated by the example segment of
a trace shown below (ignoring for now the o in parentheses). This



shows four states labelled by the nominals s1, . . . , s4 where o is
true in s1 and s4, and p is true in s3. Then in s1 the condition o
is true and hence the expectation Exp(¬oU p) is created. This
expectation is progressed to Exp¬oU p in s2. Since ¬o holds in s2
but p does not the expectation is further progressed to Exp¬oU p
in s3. Finally, since p holds in s3, the expectation is fulfilled in s3.

Now consider a different scenario (Scenario 2), in which o is
also true in s2 (in brackets in the diagram below). The expectation
is progressed to Exp¬oU p in s2, but because ¬o fails to hold in
s2 the expectation is violated in this state.

� � � �

o (o) p o

s1 s2 s3 s4

Figure 7 shows the output witness lists from the model checker
for these scenarios for the input formulae ExistsExp(o,(¬oU p)),
ExistsFulf(o,(¬oU p)) and ExistsViol(o,(¬oU p)).

Scenario 1

ExistsExp(o,(¬oU p))

s1: (s1,(¬oU p))
s2: (s1,¬oU p)
s3: (s1,¬oU p)
s4: (s4,(¬oU p))

ExistsFulf(o,(¬oU p))

s1:
s2:
s3: (s1,¬oU p)
s4:

ExistsViol(o,(¬oU p))

s1:
s2:
s3:
s4:

Scenario 2

ExistsExp(o,(¬oU p))

s1: (s1,(¬oU p))
s2: (s2,(¬oU p)), (s1,¬oU p)
s3: (s2,¬oU p)
s4: (s4,(¬oU p))

ExistsFulf(o,(¬oU p))

s1:
s2:
s3: (s2,¬oU p)
s4:

ExistsViol(o,(¬oU p))

s1:
s2: (s1,¬oU p)
s3:
s4:

Figure 7: Example output from the model checker

In these results, the list of witnesses (pairs) beside each state
record the current existing, fulfilled or violated expectations (de-
pending on the input formula), alongside a nominal naming the
state in which the expectation was created.

7. RELATED WORK
There have been a variety of approaches to modelling expecta-

tions and commitments formally, some of which are outlined be-
low.

The SOCS-SI system [1] represents conditional expectations as
rules with an E modality in their conclusion. Abductive inference is
used to generate expectations and these are monitored at run time.

Verdicchio and Colombetti [13] use a variant of CTL with past-
time operators to provide axioms defining the lifecycle of commit-
ments in terms of primitives representing the existence, the fulfil-
ment, and the violation of a commitment in a state. In their ap-
proach, commitments are always expressed from the viewpoint of
the state in which they were created, and the formulaComm(e, a, b, u),
recording that event e created a commitment from a to b that u
holds, remains true in exactly that form from one state to the next.
Fulfilment is then defined by a temporal formula that searches back
in time for the event that created the commitment, and then evalu-
ates the content u at that prior state.

Yolum and Singh [15] define commitment machines as a high-
level way of defining agent interaction protocols. The semantics of
the language used has an primitive notion of “modal accessibility
relations for commitments”, but the intuition behind these relations
is not explained.

Bentahar et al. [3] also present a logical model for commitments
where the semantics of commitments includes accessibility rela-
tions for different types of commitments. These encode the dead-
lines associated with commitments on their creation.

Model checking has been applied to statically verifying proper-
ties of institutions as well as interpreting institutions to manage or
guide agent interaction, a recent example of the former being the
work of Viganò and Colombetti [14]. Of more relevance to this
paper is the application of model checking to run-time compliance
checking.

Endriss [9] discussed the use of generalised model checking for
deciding whether a trace of an agent dialogue conforms to a proto-
col expressed in propositional linear temporal logic.

Spoletini and Verdicchio [12] have developed an automata-based
approach for online monitoring of the truth values of commitments
expressed in a propositional temporal logic with both past and fu-
ture operators.

8. CONCLUSIONS AND FUTURE WORK
This paper has presented a logical account of the notions of con-

ditional expectation, fulfilment and violation in terms of a linear
temporal logic. For offline monitoring of expectations, the problem
of determining fulfilment and violation of expectations without re-
course to future information was identified as a key problem, and
a solution was presented in terms of path truncation and the strong
semantics of Eisner et al. [8]. It was then shown how the MCLITE
and MCFULL model checking algorithms can be modified to sup-
port the truncation operator by using generalised labels that record
for a model state the truth values under both the weak and strong
semantics for all possible future states. This was then used to de-
fine fulfilment and violation. An existing model checker (HLMC)
has been modified using these techniques to allow the existence of
expectations, and fulfilments and violations of these expectations
to be detected.

A hybrid propositional temporal logic was used in this work as
that is what was implemented by HLMC. Including nominals al-
lowed our Exp modality to record the states in which expectations
were created. However, with our focus on linear histories, the other
hybrid constructs have limited value for defining conditional ex-
pectations. We plan to extend our approach to apply to a real-time
temporal logic interpreted over timed paths. In this case, binders
and state variables become useful for expressing timing relations
between states.

We also plan to investigate extending the technique to apply to
some suitably constrained fragment of first order temporal logic
(e.g. the guarded fragment).

Other future work includes modifying the internal data structures
and labelling algorithms to support incremental online monitoring
of expectations, a detailed analysis of complexity of the modified
algorithms and empirical evaluations.

9. REFERENCES
[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,

and P. Torroni. Compliance verification of agent interaction:
a logic-based software tool. In R. Trappl, editor, Cybernetics
and Systems 2004, volume II, pages 570–575. Austrian
Society for Cybernetics Studies, 2004.

[2] F. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial
Intelligence, 116(1-2):123–191, 2000.

[3] J. Bentahar, B. Moulin, J.-J. C. Meyer, and B. Chaib-draa. A
logical model for commitment and argument network for



agent communication. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004), pages 792–799. IEEE
Computer Society, 2004.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[5] U. Cortés. Electronic institutions and agents. AgentLink
News, 15:14–15, September 2004.

[6] S. Cranefield. A rule language for modelling and monitoring
social expectations in multi-agent systems. In Coordination,
Organizations, Institutions, and Norms in Multi-Agent
Systems, volume 3913 of Lecture Notes in Computer
Science, pages 246–258. Springer, 2006.

[7] L. Dragone. Hybrid logics model checker.
http://luigidragone.com/hlmc/, 2005.

[8] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and
D. V. Campenhout. Reasoning with temporal logic on
truncated paths. In Computer Aided Verification, volume
2725 of Lecture Notes in Computer Science, pages 27–39.
Springer, 2003.

[9] U. Endriss. Temporal logics for representing agent
communication protocols. In Agent Communication II,
volume 3859 of Lecture Notes in Computer Science, pages
15–29. Springer, 2006.

[10] M. Franceschet and M. de Rijke. Model checking hybrid
logics (with an application to semistructured data). Journal
of Applied Logic, 4(3):279–304, 2006.

[11] N. Markey and P. Schnoebelen. Model checking a path. In
CONCUR 2003 – Concurrency Theory, volume 2761 of
Lecture Notes in Computer Science, pages 251–265.
Springer, 2003.

[12] P. Spoletini and M. Verdicchio. Commitment monitoring in a
multiagent system. In Proceedings of the 5th International
Central and Eastern European Conference on Multi-Agent
Systems, volume 4696 of Lecture Notes in Artificial
Intelligence, pages 83–92. Springer, 2007.

[13] M. Verdicchio and M. Colombetti. A logical model of social
commitment for agent communication. In Proceedings of the
2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), pages 528–535.
ACM Press, 2003.

[14] F. Viganò and M. Colombetti. Symbolic model checking of
institutions. In ICEC ’07: Proceedings of the ninth
international conference on Electronic commerce, pages
35–44. ACM Press, 2007.

[15] P. Yolum and M. P. Singh. Commitment machines. In
Intelligent Agents VIII: 8th International Workshop, ATAL
2001, volume 2333 of Lecture Notes in Computer Science,
pages 235–247. Springer, 2002.


