
Report of Otago Contributions to
Telecom LifeLink Project

Nathan Lewis
Hailing Situ

Melanie Middlemiss

The Information Science
Discussion Paper Series

Number 2008/02
July 2008

ISSN 1177-455X

University of Otago

Department of Information Science

The Department of Information Science is one of seven departments that make up the
School of Business at the University of Otago. The department offers courses of study
leading to a major in Information Science within the BCom, BA and BSc degrees. In
addition to undergraduate teaching, the department is also strongly involved in post-
graduate research programmes leading to MCom, MA, MSc and PhD degrees. Re-
search projects in spatial information processing, connectionist-based information sys-
tems, software engineering and software development, information engineering and
database, software metrics, distributed information systems, multimedia information
systems and information systems security are particularly well supported.

The views expressed in this paper are not necessarily those of the department as a
whole. The accuracy of the information presented in this paper is the sole responsibil-
ity of the authors.

Copyright

Copyright remains with the authors. Permission to copy for research or teaching pur-
poses is granted on the condition that the authors and the Series are given due ac-
knowledgment. Reproduction in any form for purposes other than research or teach-
ing is forbidden unless prior written permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the au-
thors’ final conclusions relating to this topic. It is likely, however, that the paper will ap-
pear in some form in a journal or in conference proceedings in the near future. The au-
thors would be pleased to receive correspondence in connection with any of the issues
raised in this paper, or for subsequent publication details. Please write directly to the
authors at the address provided below. (Details of final journal/conference publication
venues for these papers are also provided on the Department’s publications web pages:
http://www.otago.ac.nz/informationscience/pubs/). Any other correspondence con-
cerning the Series should be sent to the DPS Coordinator.

Department of Information Science
University of Otago
P O Box 56
Dunedin
NEW ZEALAND

Fax: +64 3 479 8311
email: dps@infoscience.otago.ac.nz
www: http://www.otago.ac.nz/informationscience/

http://www.otago.ac.nz/informationscience/pubs/
mailto:dps@infoscience.otago.ac.nz
http://www.otago.ac.nz/informationscience/

Report of Otago
contributions to
Telecom LifeLink
Project

Nathan D. Lewis
Hailing Situ
Melanie Middlemiss

Global Network Interconnectivity Project

Friday, 11 July 2008

Global Network Interconnectivity Project

Page 1

1. Introduction

Gartner has for some time been reporting the potential for virtual world technology to become the

next wave of the Internet, delivering what is known as the Web3.D environment. This is

characterised by a high level of user participation through immersion in the virtual world. Gartner

has predicted that by 2011, 80% of internet users will be regular users of Web3.D technology [1].

Project LifeLink was initiated to discover what opportunities for Telecom might exist in the growth of

business and consumer interest in virtual worlds. This has focused on a number of technologies, in

particular Second Life [2], OpenSimulator (OpenSIM) [3] and JAIN SLEE [4]. The project has been run

by Telecom with coordination and support from MediaLab, and with researchers at Canterbury and

Otago Universities. This report describes the work undertaken at Otago University to implement a

gateway to enable demonstration of communications between an object in Second Life and the JAIN

SLEE environment in order to interoperate with external network services.

The report is structured as follows: Section 2 gives a brief overview of the technologies used in this

project; Section 3 describes the whiteboard application that has been developed; and Section 4

describes the HTTP-SIP gateway that has also been developed. To conclude, a copy of a paper

entitled “Using JAIN SLEE to Extend Second Life Services for Flexible Social Networking” which has

been submitted to the Hawaii International Conference on System Sciences (HICSS) is provided in

Appendix A.

2. Technologies

2.1. Virtual Worlds

Currently there are numerous web-based computer-mediated social networking tools available that

provide communities or networks of users who share similar interests and activities methods for

chatting (via voice or text), file sharing, etc. Some examples of these tools are MySpace, Facebook,

Bebo, and Flickr [5-8]. As well as these 2D web-based tools, virtual worlds, such as Second Life, are

becoming increasingly popular as 3D platforms for collaborating and social networking.

Second Life is slightly different in that it is not Web based; rather client software is used to connect

to the application-specific Linden Lab Second Life servers. Second Life allows users to easily interact

with other users who are also in Second Life. It also offers some limited ability to render an image of

a web page on an object in the Second Life virtual world. However, Second Life is a proprietary and

closed platform and is restrictive in enabling service extensions or interaction with external services.

Global Network Interconnectivity Project

Page 2

It provides only two protocols for communicating between objects inside Second Life and external

servers – HTTP and XML-RPC protocols.

The HTTP protocol is a standard protocol used for Web-based applications. In Second Life, HTTP

requests can be sent to external Web servers. Second Life can only process the response to a HTTP

request; it cannot accept incoming HTTP requests. XML-RPC is a standard messaging protocol for

invoking operations on remote machines. XML data is sent via HTTP to the remote system to be

handled. Second Life can only receive external communications via XML-RPC. The communication

must be initiated by an external server.

In order to make Second Life more accessible to outside communication, some mechanism is needed

to facilitate interaction with external services. This can be achieved using JAIN SLEE.

2.2. JAIN SLEE

JAIN SLEE, sometimes referred to simply as JSLEE, gets

its name from Java APIs for Integrated Networks (JAIN)

Service Logic Execution Environment (SLEE). The SLEE

provides a standard integration environment for

multiple network resources and protocols, refer to

Figure 1.

JAIN SLEE is a common middleware platform. With

different resource adaptors, JAIN SLEE application

servers can receive different kinds of requests, process

the requests and send responses back.

The benefits of using JAIN SLEE are as follows:

• Using existing resource adaptors can provide an easy start to application development.

In this project, we use the HTTP and SIP resource adaptors.

• Developers can combine different servers (e.g. HTTP server and SIP server) in the same

application.

• Developers do not need to learn different server programming models to develop

applications. They only need to know the JAIN SLEE programming model and are able to

develop different kinds of applications according to this model.

In the JAIN SLEE architecture, a SLEE defines how an application can be composed of components.

These components are known as Service Building Block (SBB) components. Each SBB component

Figure 1: SLEE Architecture [9]

Global Network Interconnectivity Project

Page 3

defines the event types that it subscribes to and has event handler methods that contain application

code that processes events of these event types. The SBB component also declares the SBB local

interface of the SBB component. The SBB local interface specifies the methods of the SBB

component that may be invoked synchronously. The SBB component may have zero or more child

SBB components. The SBB component specifies its child SBB component relations [10, pp. 23].

3. Whiteboard application

3.1. Introduction

The whiteboard application was developed as an initial application to demonstrate the

communications between an object in Second Life and the JAIN SLEE environment. The whiteboard

was designed to allow several Second Life users to add, edit and view text on a commonly accessible

Second Life object. It allows users to interact with it in a similar way to a real whiteboard. It is

updated in real-time and has a persistent state so that it can be retrieved at a later date.

A brainstorming session is an example of the use of the whiteboard. Several people could be

communicating together (with text or voice) and the ideas they produce can be recorded for

everyone who is present to see. Additions and alterations can be made during the session, perhaps

by more than one of the participants.

Second Life functionality does not allow arbitrary text to be displayed on an object. Textures

containing text can be uploaded to Second Life, but required a fee to do so, and the process is not

real-time and cannot be easily automated. Other solutions involve building an array of objects, each

textured with a single letter of the text that is to be displayed, but are slow, require complex scripts

to operate and are limited to the amount of text that can be displayed. The whiteboard overcomes

these limitations by replacing a texture, which is on the surface of a single Second Life object, with

the contents of a webpage.

3.2. What it does

The whiteboard listens to a chat channel for commands which are used to change the content or

adjust the configuration. The Whiteboard listens for the following commands:

 ADD – Add a line of text to the end of the whiteboard.

 REPLACE – Replace the specified line of text with a new one.

 GET – Retrieve a line of text.

 DELETE – Delete a line of text.

 MOVEUP – Move the specified line of text to a higher position on the whiteboard.

Global Network Interconnectivity Project

Page 4

 MOVEDOWN – Move the specified line of text to a lower position on the whiteboard.

 RESET – Remove all text from the whiteboard.

 CHANNEL – Set the channel number that the whiteboard listens to.

 KEY – Change the key of the whiteboard that is being displayed.

The GET command is used to retrieve a line of text so that it can be edited. When a line number is

specified, the person who issued this command receives a private chat message containing the line

of text specified. This text can then be copied and pasted as required.

The KEY command is used to select a specific instance of the whiteboard. By specifying a key that

was used during a previous session, the contents of the whiteboard that were present at the end of

that session can be retrieved.

Further functionality could be implemented. Ideas for further functionality include:

 Controlling how the text is displayed on the whiteboard. The font, size, colours etc could be

change. While some settings could be controlled by the user, a setting such as the size may

be adjusted automatically by the program to make sure that all the text fits onto the object.

 Controlling who has permission to edit the whiteboard. It could also record who makes what

changes.

 An undo command.

3.3. How it works

The whiteboard is built using a Second Life script and a JAIN SLEE SBB. When the whiteboard script

is started, it sets the Land Parcel URL to the address that the SBB is listening on. When this URL is

accessed, the SBB returns a webpage containing the current contents of the whiteboard.

A Second Life user can issue commands which are interpreted by the Second Life script. It sends the

commands as parameters to another URL that the SBB is listening to. The SBB maintains a database

of the contents of the whiteboards and makes changes as instructed. Once a change is made, the

SBB informs the Second Life script that the change was successful by sending an appropriate HTTP

response. If a command resulted in a change to the contents of the whiteboard, the Second Life

script updates the Land Parcel URL, causing Second Life to retrieve a fresh copy of the webpage

containing the updated contents.

User instructions for the whiteboard are provided with the Second Life object and given here in

Appendix B.

Global Network Interconnectivity Project

Page 5

4. HTTP-SIP Gateway

4.1. Introduction

Second Life is a proprietary and closed platform and is restrictive in enabling service extensions or

interaction with external services. It provides only two protocols for communicating between

objects inside Second Life and external servers – HTTP and XML-RPC protocols. In order to make

Second Life more accessible to outside communication, some mechanism is needed to facilitate

interaction with external services. In this project, the HTTP-SIP Gateway (or “gateway”) was

designed to allow users in Second Life to communicate with people outside Second Life, and vice-

versa, by using the Session Initiation Protocol (SIP) and taking advantage of the JAIN SLEE platform.

SIP allows two people to negotiate a connection. The type of connection made is independent of the

protocol, and is most often a voice or video stream. SIP has many features which including the ability

to register presence, discover the status of other SIP users and can be used as transportation for

sending instant messages.

Second Life users have the ability to type messages to people within hearing distance, send instant

messages to each other and speak to nearby Second Life users. The ability for Second Life users to

communicate with people who are not logged in to Second Life is limited (or non-existent).

In this project we implemented a gateway that allows Second Life users to send instant messages to

people who are outside Second Life and are using a SIP software client or SIP enabled device. A

person with such a device or software can also send an instant message to a user who is logged in to

Second Life.

4.2. What it does

In Second Life, a user “wears” a text client. The text client object contains a Settings notecard, where

the user can set their SIP address, and a Friends notecard, where they can list the SIP addresses of

people they wish to communicate with.

When the connect button is touched, the text client informs a SIP registrar server, via the gateway,

that the user is online. Once registered, a SIP user outside Second Life can send the Second Life user

an instant message by specifying the Second Life user’s SIP address. The instant message is routed

through the gateway, the text client receives the instant message and then presents it to the Second

Life user.

The Second Life user can click the Friends button to select a SIP address from those listed in the

Friends notecard. The text client will then listen for any message written to it on the chat channel

Global Network Interconnectivity Project

Page 6

specified in the Settings notecard. When such a message is detected, the text client sends the

message and the most recently select SIP address to the gateway. The gateway sends the message

to the specified SIP address.

Further functionality that could be implemented includes:

 Automatically refreshing the user’s registration (currently times out after 3600 seconds).

 Retrieving the list of friends from an online source.

 Displaying the status of friends.

 Displaying instant messages in a chat session (requires additional features in the virtual

world client and servers).

 Initiating voice communications (requires additional features in the virtual world client and

servers).

Where the virtual world client and servers need to be changed to implement additional features,

those changes may be possible to implement within OpenSIM.

4.3. How it works

The gateway is implemented as a JAIN SLEE SBB. It communicates with a Second Life script which is

contained within a text client object.

The text client has buttons to allow the user to register and unregister their SIP address with their

SIP registrar via the gateway. Another button lets the user select the SIP address which will be the

recipient of instant messages. It sends HTTP requests to the gateway and listens for XML-RPCs.

The gateway listens for HTTP requests from the text client and sends XML-RPCs to it. It also sends

and receives SIP requests to and from SIP servers. The states of the text clients are recorded in a

MySQL database.

1. Registering

A Second Life user begins by wearing their text client and clicking the Register button. The text client

establishes a XML-RPC channel for incoming communications. It constructs a HTTP request which

contains parameters including the SIP address of the user, the XML-RPC channel identifier and the

address where XML-RPC communications are to be sent. The request is sent to the

httpsipgateway_register path on the gateway and the values are recorded in the database,

using the XML-RPC channel identifier as the primary key. A 200 OK response is sent back to the text

client. The gateway then sends a SIP REGISTER request to the SIP registrar. The REGISTER request

Global Network Interconnectivity Project

Page 7

contains the SIP address of the Second Life user and the address of the gateway as the destination

where communications with this user should be sent. The registrar should respond with a 200 OK

SIP response. When the gateway receives this response, it generates a XML-RPC containing the XML-

RPC channel identifier and a message indicating that the registration was successful. The text client

informs the user.

2. Sending an instant message

A Second Life user can send an instant message to any SIP address by first clicking on the Friends

button. A dialog box is displayed containing a button for each SIP address in their Friends notecard.

The user clicks on a SIP address to select it as the active recipient. The text client listens on the chat

channel that the user specified in their Settings notecard. When the text client receives a message

on that channel, it sends a HTTP request to the httpsipgateway_message path on the gateway

containing the XML-RPC channel identifier, the SIP address of the selected recipient and the

contents of the instant message. The gateway receives the requests and sends a 200 OK response.

It constructs a MESSAGE SIP request containing the From and To SIP addresses and the instant

message contents. It sends the request to the SIP proxy server. When the server responds with a

200 OK SIP response, the gateway sends RPC to the text client in Second Life an XML-RPC containing

the XML-RPC channel and a message that indicates that the message was sent successfully. The text

client sends a 200 OK response and informs the user that the message was successfully sent.

3. Receiving an instant message

Second Life text client users can receive instant messages from other SIP users. When a SIP proxy

server receives a MESSAGE SIP request addressed to the SIP address of a registered Second Life text

client user, it will pass the request to the gateway. The proxy server is not aware that the destination

user is logged in to Second Life, only that requests to that SIP address should be forwarded to the

gateway. The gateway receives the request and attempts to retrieve the corresponding record from

the database using the SIP address of the To header field. If found, it returns a 200 OK SIP

response. The gateway then creates an XML-RPC containing the XML-RPC channel identifier, the SIP

address of the sender and the instant message contents and sends it to Second Life. The text client

responds with a 200 OK response and displays the sender’s name and contents of the instant

message to the user.

4. Going offline

When a Second Life user clicks the Unregister button, a HTTP request is sent to the

httpsipgateway_unregister path on the gateway and contains the XML-RPC channel identifier.

Global Network Interconnectivity Project

Page 8

The gateway retrieves the matching record from the database and sends a 200 OK response back. It

then sends a REGISTER request to the SIP registrar with the SIP address that was retrieved and an

Expires header field with the value of 0. When the gateway receives the 200 OK SIP response from

the SIP registrar it sends an XML-RPC to the Second Life text client telling it that the user is now

offline. The text client responds with a 200 OK response.

User instructions for the SIP text client are provided with the Second Life object and given here in

Appendix C.

4.4. Use of gateway with other virtual worlds

The gateway was built with other virtual worlds (such as OpenSIM) in mind, but there are still several

issues that need to be address to accommodate other virtual worlds.

The text client must be implemented in each virtual world. The implementation may differ from that

of the Second Life text client, but at minimum it must:

 Send correctly formatted HTTP requests to the gateway and receive and interpret HTTP

responses.

 Create a XML-RPC channel, receive and interpret messages on that channel and send

correctly formatted responses.

From the gateway’s perspective, the address to which XML-RPCs are sent is dependent on the virtual

world being used. The virtual world text client is already required to send a parameter specifying the

address to which XML-RPCs are to be sent. The gateway records this URL and uses it when sending

XML-RPCs.

One problem that needs to be addressed is the format of the XML-RPCs. The gateway currently only

sends XML-RPCs to Second Life and is using a Second Life specific format. If another format was

required, it could be added to the gateway and a requirement could be added that the virtual world

text clients specify which format is to be used.

5. Acknowledgements

The authors would like to acknowledge the financial support for this work provided by Telecom New

Zealand Ltd. and the Global Network Interconnectivity Project (GIPI UOO KSE ICT 5023 TEC).

6. References

[1] Gartner press release 24/04/07 http://www.gartner.com/it/page.jsp?id=503861; Last accessed 7/07/08

Global Network Interconnectivity Project

Page 9

[2] Second Life http://secondlife.com/; Last accessed 7/07/08

[3] OpenSim – OpenSimulator Project http://opensimulator.org/wiki/Main_Page; Last accessed 7/07/08

[4] JAIN SLEE – JAIN SLEE portal http://jainslee.org/; Last accessed 7/07/08

[5] MySpace http://www.myspace.com/; Last accessed 7/07/08

[6] Facebook http://www.facebook.com; Last accessed 7/07/08

[7] Bebo http://www.bebo.com; Last accessed 7/07/08

[8] Flickr http://www.flickr.com; Last accessed 7/07/08

[9] S.B.Lim, D. Ferry, JAIN SLEE Tutorial: Introducing JAIN SLEE http://jainslee.org/downloads/jainslee-tutorial-

04.pdf; Last accessed 7/07/08

[10] S.B.Lim, D. Ferry, JAIN SLEE 1.0 Specification, Final Release, 2004

Appendix A

Paper Submitted to HICSS-42 track on Internet and the Digital Economy (Minitrack: Social Networks

and Virtual Worlds for Work, Learning, and Play)

http://www.hicss.hawaii.edu/hicss_42/minitracks/in-snv.htm

Using JAIN SLEE to Extend Second Life Services for Flexible Social

Networking

Nathan D Lewis, Hailing Situ, Melanie J Middlemiss and Martin Purvis

Department of Information Science

University of Otago

PO Box 56

Dunedin, NZ

ndlewis,hsitu, mmiddlemiss, mpruvis @infoscience.otago.ac.nz

Abstract
Computer mediated social networking tools provide

a platform to allow users to communicate and interact

with each other. Currently there are numerous web-

based social networking tools, such as MySpace,

Facebook, Bebo and Flickr, which provide a platform

for online social networking. Virtual worlds, such as

Second Life, are becoming increasingly popular as 3D

platforms for social networking. To provide the most

benefits to users, these platforms must be flexible and

easily extendible through the addition and integration

of value-added services. In this paper we take the

example of Second Life, which is rather restrictive in

enabling service extensions, and investigate how JAIN

SLEE can be used to extend the services provided by

Second Life - in particular to allow users to

communicate from within Second Life with other users

outside Second Life.

1. Introduction

Currently there are numerous web-based computer-

mediated social networking tools available that provide

communities or networks of users who share similar

interests and activities methods for chatting (via voice

or text), file sharing, etc. Some examples of these tools

are MySpace, Facebook, Bebo, and Flickr [1-4]. As

well as these 2D web-based tools, virtual worlds, such

as Second Life, are becoming increasingly popular as

3D platforms for social networking.

As these social networking tools become more

popular, users are becoming increasingly interested in

being able to integrate their different social networks

from the various tools, and to be able to perform

multiple types of tasks within each social networking

tool. For example, Flickr initially began as tool for

users interested in sharing their photographs with users

who shared a similar interest. Now it has been

extended to provide users with a service to share video

as well as still photographs. As another example,

Facebook recently extended its services from a

message board type functionality, to provide users with

an interactive text chat function. Some of these web

based tools also allow users to easily integrate their

various social networks. For example, a user may have

a twitter account with a number of people following

them, and a blog with a different network of people

following this. Using RSS feeds, the twitter feeds can

be easily integrated into their blog.

Second Life is slightly different in that it is not

Web based; rather client software is used to connect to

the application-specific Linden Lab Second Life

servers. Second Life allows users to easily interact

with other users who are also in Second Life. It also

offers some limited ability to render an image of a web

page on an object in the Second Life virtual world.

However, Second Life is a proprietary and closed

platform and is restrictive in enabling service

extensions or interaction with external services. It

provides only two protocols for communicating

between objects inside Second Life and external

servers – HTTP and XML-RPC protocols. In order to

make Second Life more accessible to outside

communication, some mechanism is needed to

facilitate interaction with external services.

This is where JAIN SLEE comes in. JAIN SLEE,

sometimes referred to simply as JSLEE, gets its name

from Java APIs for Integrated Networks (JAIN)

Service Logic Execution Environment (SLEE). The

SLEE provides a standard integration environment for

multiple network resources and protocols, refer to

Figure 1.

In this paper we describe how JAIN SLEE can be

used to extend the services provided by Second Life –

in particular to allow users to communicate from

within Second Life with other users outside Second

Life. Section 2 discusses how JAIN SLEE can be used

to extend Second Life with new value-added services

and the relevant issues involved. The detailed

implementation is presented in Section 3. Section 4

describes the deployment of the application and

demonstration results. Concluding remarks and

proposed future work are given in Section 5.

2. Service extension of Second Life

This paper describes how JAIN SLEE can be used

to extend the services available in Second Life. When

using Second Life, users communicate with other users

that belong to their Second Life social network.

However, many people will belong to multiple social

networks and may want to integrate these. For

example, they may be in Second Life and want to

communicate with friends in their ―real world‖ social

network. As an example of extending Second Life

services, we consider the extension of Second Life

communication services to allow Second Life avatars

to communicate with users outside Second Life.

2.1 JAIN SLEE

JAIN SLEE is a common middleware platform.

With different resource adaptors, JAIN SLEE

application servers can receive different kinds of

requests, process the requests and send responses back.

The benefits of using JAIN SLEE are as follows:

 Using existing resource adaptors can provide an

easy start to application development. In this

project, we use the HTTP and SIP resource

adaptors.

 Developers can combine different servers (e.g.

HTTP server and SIP server) in the same

application.

 Developers do not need to learn different server

programming models to develop applications.

They only need to know the JAIN SLEE

programming model and are able to develop

different kinds of applications according to this

model.

2.2 Protocol issues for Second Life

Currently, Second Life provides HTTP and XML-

RPC protocols to communicate with external systems.

The HTTP protocol is a standard protocol used for

Web-based applications. In Second Life, HTTP

requests can be sent to external Web servers. Second

Life can only process the response to a HTTP request;

it cannot accept incoming HTTP requests.

XML-RPC is a standard messaging protocol for

invoking operations on remote machines. XML data is

sent via HTTP to the remote system to be handled.

Second Life can only receive external communications

via XML-RPC. The communication must be initiated

by an external server.

2.3 SIP protocol

SIP (Session Initiation Protocol) is an open

standard signalling protocol used for establishing

sessions in an IP based network, such as voice and

video calls over the Internet. There are other signalling

protocols for VoIP, such as H.323 [6]. While the SIP

protocol has been standardised and governed primarily

by the IETF (The Internet Engineering Task Force) [7], the

H.323 protocol has been traditionally more associated

with the ITU-T (International Telecommunication Union)

[8]. However, the two organisations have endorsed

both protocols in some fashion [9]. A number of VoIP

applications have adopted SIP as the session setup

protocol because it is an open standard and appears to

be gaining a more global popularity.

SIP provides registrar and proxy functions for an

application. Registrar services allow users to register

their SIP address and their current locations to the

registrar server. Proxy services can route requests to a

user’s current location by looking up their SIP address

from the registrar service.

SIP also provides an extended standard for instant

messaging and presence services. Users can enquire

about a friend’s status, and presence information is

used as buddy status in IM clients. It is this messaging

service that we use to allow Second Life and real world

users to communicate.

2.4 Communications services for Second Life

avatars

In Second Life, users can find and communicate

(via text and chat) with other users who are also in

Second Life. We want to extend the communication

services to allow users in Second Life to communicate

with users who are not in Second Life, but in the real

world.

Figure 1: SLEE Architecture [5]

In the real world, VoIP is becoming more popular.

Many people have a SIP phone, MSN or Skype

installed in their computers. They want cheap and

instant communications through the Internet to keep in

touch with friends in their social networks. The

current communications services in Second Life allows

users to easily communicate with other users in Second

Life, but is rather restricted when it comes to

communicating between Second Life and users outside

Second Life. For example, users are able to send

instant messages to the email account of a user that is

not currently logged in to Second Life. Also, there are

several vendors who offer the ability to send text

messages to cell phones of real world users who are

outside of Second Life. However, in this work we

investigate how communications can occur between

users in Second Life and any other user with a SIP

based application.

Note that the SIP protocol is essentially an open

standard and not a custom protocol, which is why it is

ideal for opening up platforms, such as Second Life. It

is easily extended and there are a number of free SIP

clients available for use [10].

This project will implement a service that allows

Second Life avatars to register with the SIP registrar

server and send instant messages to a SIP text client

outside of the Second Life virtual world. At the same

time, a SIP text client will also be able to send

messages to a Second Life avatar. The HTTP/SIP

gateway can convert the message between the HTTP

protocol and the SIP protocol. In this application, if a

user registers their SIP address to the SIP registrar

server, no matter where they are (Second Life, real

world, Opensimulator virtual world [11], etc.) the SIP

proxy will be able to locate them and forward

messages to them.

3. Implementation of the new service

The new service provides communication between

Second Life avatars and SIP clients using HTTP and

XML-RPC protocols on the Second Life server and

using SIP protocols on a SIP server. The Second Life

avatars can register their presence and send or receive

instant messages to SIP clients which could, for

example, be running on a computer, PDA or mobile

phone.

A Second Life agent can only send HTTP requests

to external servers and receive XML-RPC requests

from external servers, and the SIP registrar and proxy

services can only send and receive SIP requests, we

must implement a HTTP/SIP gateway to convert

between the two systems. The main architecture of

this gateway service is shown in Figure 2.

Second Life clients and SIP clients can

communicate with each other via the Second Life

server, HTTP/SIP gateway and SIP server. This is

discussed in more detail in the following subsections.

3.1 HTTP/SIP Gateway

The main implementation is the HTTP/SIP

gateway. This gateway is implemented based on

Rhino—a JAIN SLEE platform developed by

OpenCloud, Ltd [12]. Two resource adaptors (RAs)

are used: HTTP RA and SIP RA. The architecture is

shown in Figure 3.

In JAIN SLEE, the purpose of a resource adaptor is

to adapt particular resources to the requirements of the

SLEE. Resources are entities that represent and

interact with other systems outside the SLEE, such as

network devices, protocol stacks, directories,

Figure 2: Architecture of New Service

Figure 3: HTTP/SIP Gateway in JAIN SLEE

databases, or as in this case – a SIP based service [13,

pp. 253].

The HTTP RA provides a generic HTTP interface

for SLEE services. The RA is bidirectional;

applications can receive incoming HTTP requests and

can also initiate outgoing HTTP requests. Request

methods GET, HEAD and POST are supported [14].

The SIP RA supports RFC 3261 functionality and

some SIP extensions, such as the INFO method (RFC

2976), the UPDATE method (RFC 3311), the

MESSAGE method (RFC 3428), and so on (see [15]

for a list of SIP specifications). It provides an interface

based on JAIN SIP 1.1 with some proprietary

extensions for SLEE applications [16].

In Second Life, an object uses the

llHTTPRequest Linden scripting language

function to send the object’s information to the HTTP

RA and creates an XML-RPC channel for receiving

requests coming from the gateway. The information

passed to the gateway from the Second Life object

includes user information and the XML-RPC channel

number which the object will be listening on.

When the HTTP RA receives an HTTP request, the

SLEE will trigger the relevant event method in the

appropriate SBB (Service Building Block). The SBB

will process these requests, prepare relevant SIP

requests, and send these requests (such as REGISTER

or MESSAGE requests) to the SIP registrar server or

SIP proxy server via the SIP resource adaptor. The SIP

servers will then process the requests or send the

requests to the SIP clients.

In the other direction, when a SIP client sends a

request to the SIP server, the SIP server will send this

to the SIP RA of the gateway. The SLEE then triggers

the relevant request method in the appropriate SBB to

process the request, prepare the XML-RPC request,

retrieve the Second Life XML-RPC channel number

from its database, and send the request via the HTTP

resource adaptor. When the Second Life object

receives the request from the gateway, it will display

the relevant information such as the SIP response or

instant message.

3.2 Service Building Blocks (SBBs)

In the JAIN SLEE architecture, a SLEE defines

how an application can be composed of components.

These components are known as Service Building

Block (SBB) components. Each SBB component

defines the event types that it subscribes to and has

event handler methods that contain application code

that processes events of these event types. The SBB

component also declares the SBB local interface of the

SBB component. The SBB local interface specifies the

methods of the SBB component that may be invoked

synchronously. The SBB component may have zero or

more child SBB components. The SBB component

specifies its child SBB component relations [13, pp.

23].

In Figure 3, the root SBB defines the following

event handler methods:

 Process HTTP requests.
o Get the information of the Second Life object

including XML-RPC channel key and SIP

URI;

o Save object information to the database;

o Create REGISTER or MESSAGE SIP

requests;

o Send SIP requests to the SIP server through

SIP RA.
 Process SIP requests.

o Retrieve the Second Life object information

and XML-RPC channel key from the

database;

o Create the XML-RPC data and send it to the

Second Life object;

The child SBB in Figure 3 is used for

communicating with the database. The child SBB

implements save and retrieve database functionality.

4. Demonstration of functionality

The gateway is deployed on Rhino 1.4.5-2 running

on one machine. The Second Life client is installed on

another machine, and a SIP based instant messaging

client is deployed on a mobile phone. The SIP

registrar and proxy servers, developed based on Rhino

1.4.5-2 by OpenCloud, are deployed on another

machine. The resulting functionality is described in

the scenario below.

Sally goes online in Second Life. She starts her

Second Life text client which sends her SIP URI,

sip:sally@opencloud.com, to the gateway

using an HTTP request. The gateway records her text

client’s Second Life XML-RPC channel key and sends

a REGISTER request to the SIP proxy server. The

request contains Sally’s SIP URI and indicates that any

request for Sally should be sent to the gateway’s

address. The SIP proxy replies with a 200 OK

message. The gateway then sends an XML-RPC to

Sally’s text client to tell it that her SIP URI has been

successfully registered.

Richard turns on his SIP-enabled phone. It registers

his SIP URI, sip:richard@realworld.com

with his SIP proxy server. To send a message to Sally,

he needs only to know her SIP URI – he does not need

to be aware of her current location. He addresses a text

message to sip:sally@opencloud.com and

presses the send button. The MESSAGE request is

passed to his SIP proxy server. The proxy server

discovers Sally’s location (the address of the gateway)

and forwards the request. The gateway reads the SIP

URI from the request and retrieves Sally’s Second Life

object information from its database. It creates an

XML-RPC with the contents of Richard’s message and

the XML-RPC channel key of Sally’s text client and

sends it to Second Life. Sally’s Second Life text client

shows her the contents of Richard’s message.

In Second Life, Sally then types a message to

sip:richard@realworld.com which is read by

her Second Life text client. It creates an HTTP request

with the address and message and sends it to the

gateway. The gateway creates a SIP MESSAGE

request with the address and message and sends it to

the SIP proxy server. The SIP proxy server knows the

address to send the message directly to Richard’s SIP

phone.

5. Conclusions

Creating a more flexible communication

environment is useful for social networking. We can

use existing communication paths of social network

platforms and develop gateways to allow different

communication clients to communicate with each

other.

We have created a new service which allows SIP

users to communicate with each other, no matter

whether they are within Second Life or using real-

world SIP applications. We have demonstrated the

general nature of this approach, which means that we

can extend our new service to provide other services,

such as a presence service so that Second Life users

can know their friends’ current status.

JAIN SLEE is a good development platform for

this type of service extension, because developers can

use existing resource adapters to receive and send

requests and responses, ignore the transactions and

threading processes which are handled by the SLEE

and focus on the logical development of the

applications. In this way, developers can develop their

applications faster and more easily.

6. Acknowledgments

The authors would like to acknowledge the

financial support for this work provided by Telecom

New Zealand Ltd. and the Global Network

Interconnectivity Project (GIPI UOO KSE ICT 5023

TEC).

7. References

[1] MySpace http://www.myspace.com/, last accessed June

15, 2008

[2] Facebook http://www.facebook.com, last accessed June

15, 2008

[3] Bebo http://www.bebo.com, last accessed June 15, 2008

[4] Flickr http://www.flickr.com, last accessed June 15, 2008

[5] S.B.Lim, D. Ferry, JAIN SLEE Tutorial: Introducing

JAIN SLEE http://jainslee.org/downloads/jainslee-tutorial-

04.pdf, last accessed June 15, 2008

[6] International Engineering Consortium (IEC)

http://www.iec.org/online/tutorials/h323/index.html, last

accessed June 15, 2008

[7] The Internet Engineering Task Force (IETF)

http://www.ietf.org/, last accessed June 15, 2008

[8] International Telecommunication Union,

Telecommunication Standardization Sector (ITU-T)

http://www.itu.int/ITU-T/, last accessed June 15, 2008

[9] Wikipedia Session Initiation Protocol entry

http://en.wikipedia.org/wiki/Session_Initiation_Protocol, last

accessed June 4, 2008

[10] Wikipedia entry with list of SIP software

http://en.wikipedia.org/wiki/List_of_SIP_software, last

accessed June 15, 2008

[11] OpenSimulator http://www.opensimulator.org, last

accessed June 15, 2008

[12] OpenCloud Ltd http://www.opencloud.com, last

accessed June 15, 2008

[13] S.B.Lim, D. Ferry, JAIN SLEE 1.0 Specification, Final

Release, 2004

[14] OpenCloud HTTP RA document

[15] IETF Tools SIP Status page http://tools.ietf.org/wg/sip/,

last accessed June 15, 2008

[16] OpenCloud SIP RA document

Global Network Interconnectivity Project

Page 15

Appendix B

User instructions for the Second Life Whiteboard object.

To use this whiteboard you must be using version

1.19.1(4) or above of the Second Life client.

Click the Play button in the media control bar in your

user interface.

The whiteboard must be deeded to the group that

controls the land parcel it is placed on.

Once deeded, touch the whiteboard to restart it.

The whiteboard listens to a chat channel which can be

set in the Settings notecard. To issue a command, type the command in local chat. If, for example,

the whiteboard is listening on chat channel 1 and you wish to add some text to the bottom of the

whiteboard then you would type:

/1 ADD Some text

The following commands are accepted by this whiteboard:

 ADD <text>: Adds <text> at the bottom of the whiteboard

 REPLACE <linenumber> <text>: Replaces the text at <linenumber> with <text>

 DELETE <linenumber>: Deletes the text at <linenumber>

 MOVEUP <linenumber> <distance>: Moves the text at <linenumber> up by <distance> lines

 MOVEDOWN <linenumber> <distance>: Moves the text at <linenumber> down by <distance>

lines

 RESET: Wipes the whiteboard clean

 GET <linenumber>: The whiteboard will say the text from <linenumber> so that it can be copy

and pasted

 KEY <string>: Tells the whiteboard to use <string> as its database key. By specifying <string> you

can create a persistant whiteboard. Omit <string> to tell the whiteboard to use its object key as its

database key (the object's key will change when the object is rezzed). The whiteboard uses its object

key as its database key by default.

 CHANNEL <channel number>: Tells the whiteboard to start listening for commands on the new

channel number.

 SETTINGS: Re-load the settings from the settings notecard.

Global Network Interconnectivity Project

Page 16

Appendix C

User instructions for the Second Life SIP text client object.

To use this SIP text client:

1. Wear the text client object.

2. Edit the Settings notecard and enter your SIP address and other details.

3. Edit the Friends notecard and enter names and SIP addresses of people you wish to send

instant messages to.

To send or receive SIP instant messages, you must first register with your SIP Registrar. To do so,

click the green button. The text client will tell you when you have successfully gone online.

Once online, any messages sent to your SIP address will be received by the text client and displayed

to you in local chat.

To send a SIP instant message you must first select the recipient. Clicking the blue button will cause

a dialog box to appear containing the names of the people in your Friends notecard. Click a name to

mark it as the active recipient. Once selected, any messages you type on the chat channel specified

in the Settings notecard will be sent to that recipient. Click the blue button again to select a new

recipient.

To go offline, click the red button.

SIP Text Client worn as Heads

Up Display (HUD) for avatar

in Second Life

