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Abstract

Before deploying a software system we need to assure ourselves (and stake-holders)
that the system will behave correctly. This assurance is usually done by testing the system.
However, it is intuitively obvious that adaptive systems, including agent-based systems, can
exhibit complex behaviour, and are thus harder to test. In this paper we examine this “ob-
vious intuition” in the case of Belief-Desire-Intention (BDI) agents. We analyse the size of
the behaviour space of BDI agents and show that although the intuition is correct, the factors
that influence the size are not what we expected them to be; specifically, we found that the
introduction of failure handling had a much larger effect on the size of the behaviour space
than we expected. We also discuss the implications of these findings on the testability of
BDI agents.
Keywords: Testing, Complexity, Validation, Belief-Desire-Intention (BDI)

1 Introduction
Increasingly we are called upon to develop software systems that operate in dynamic environ-
ments, that are robust in the face of failure, that are required to exhibit flexible behaviour, and
that operate in open environments. One approach for developing such systems that has demon-
strated its effectiveness in a range of domains is the use of the metaphor of software agents to
conceptualise, design and build software systems [1]. Agent systems have been increasingly
finding deployment in a wide range of applications (e.g. [2, 3]).

As agent-based systems are increasingly deployed, the issue of assurance rears its head.
Before deploying a system, we need to convince those who will rely on the system (or those who
will be responsible if it fails) that the system will, in fact, work. Traditionally, this assurance is
done through testing. However, it is generally accepted that adaptive systems exhibit a wider and
more complex range of behaviours, making testing harder. For example:

“. . . validation through extensive tests was mandatory . . . However, the task proved
challenging for several reasons. First, agent-based systems explore realms of be-
haviour outside people’s expectations and often yield surprises . . . ” [2, Section
3.7.2].
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That is, there is an intuition that agent systems exhibit complex behaviour, which makes
them harder to test. In this paper we explore this intuition, focusing on the well-known Belief-
Desire-Intention (BDI) [4, 5] approach to realising adaptive and flexible agents, which has been
demonstrated to be practically applicable, resulting in reduced development cost and increased
flexibility [3].

We explore the intuition that “agent systems are harder to test” by analysing both the space of
possible behaviours of BDI agents, and the probability of failure. We focus on BDI agents both
because they provide a well-defined execution mechanism that can be analysed, but also because
we seek to understand the complexities (and testability implications) of adaptive and intelligent
behaviour in the absence of parallelism (since the implications of parallelism are already well-
known).

Specifically, we aim to answer these questions:

1. How large is the behaviour space for BDI agents?

2. What factors influence the size of the behaviour space?

3. Is it feasible to assure the effectiveness of BDI systems by testing?

As might be expected, we show that the intuition is correct. The contribution of this paper
is thus to confirm the intuition by quantifying the size of the behaviour space. Additionally, we
find some surprising results about what factors influence the size of the behaviour space.

Although there has recently been increasing interest in testing agent systems (see for example
[6, 7, 8, 9]), there has been surprisingly little work on determining the feasibility of testing agent
systems in the first place. Padgham and Winikoff [10, Pages 17-19] analyse the number of
successful executions of a BDI agent’s goal-plan tree, but they do not consider failure or failure
handling in their analysis, nor do they consider testability implications. Shaw and Bordini [11]
have analysed goal-plan trees and shown that checking whether a goal-plan tree has an execution
schedule with respect to resource requirements is NP-complete. This is a different problem to
the one that we tackle: they are concerned with the allocation of resources between goals, rather
than with the behaviour space.

The remainder of the paper is structured as follows. We begin by briefly presenting the BDI
execution model (section 2). Section 3 is the core of the paper where we analyse the behaviour
space of BDI agents. We then consider how our analysis and its assumptions holds up against a
real system (section 4) before discussing the implications for testing and concluding (section 5).

2 The BDI Execution Model
Although the BDI model may be viewed from philosophical [5] and logical [4] perspectives, we
are interested here in the implementation perspective, as exhibited in a range of architectures and
platforms (such as JACK [12], JAM [13], dMARS [14], PRS [15, 16], Jason [17], etc.). For the
purposes of our analysis here, a formal and detailed presentation is unnecessary. Those interested
in formal semantics for BDI languages are referred to (e.g.) [18, 19, 17].
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In the implementation of a BDI agent the key concepts are beliefs (or, more generally, data),
events and plans. The reader may find it surprising that goals are not key concepts in BDI
systems. The reason is that goals are modelled as events: the acquisition of a new goal is viewed
as a “new-goal” event, and the agent responds by selecting and executing a plan that can handle
that event1. In the remainder of this section, in keeping with established practice, we will describe
BDI plans as handling events (not goals).

A BDI plan consists of three parts: an event pattern specifying the event(s) it is relevant for,
a context condition (a Boolean condition) that indicates in what situations the plan can be used,
and a plan body that is executed. A plan’s event pattern and context condition may be terms
containing variables, so a matching or unification process (depending on the BDI system used) is
used by BDI interpreters to find plans that respond to a given event. In general the plan body can
contain arbitrary code in some programming language2, however for our purposes (following
abstract notations such as AgentSpeak(L) [18] and CAN [19]) we assume that a plan body is a
sequence of steps, where each step is either an action3 or posting an event. Note that actions can
succeed or fail.

PlanA: handles event: achieve goal go-home
context condition: train imminent
plan body:

(1) walk to train station
(2) check train running on time
(3) catch train
(4) walk home

PlanB: handles event: achieve goal go-home
context condition: not raining and have bicycle
plan body:

(1) cycle home

PlanC: handles event: achieve goal go-home
context condition: true (i.e. always applicable)
plan body:

(1) walk to bus stop
(2) check buses running
(3) catch bus
(4) walk home

Figure 1: Three Simple Plans

1Other types of event typically include the addition and removal of beliefs from the agent’s belief set.
2E.g. for JACK a plan body is written in a language that is a superset of Java.
3This includes both traditional actions that affect the agent’s environment, and internal actions that invoke code,

or that check whether a certain condition follows from the agent’s beliefs.
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For example, consider the simple plans given in Figure 1. For the first plan, PlanA, the plan
is relevant for handling the event “achieve goal go-home”, and it is applicable in situations where
the agent believes that a train is imminent. The plan body consists of a sequence of four steps
(in this case we assume that these are actions, but they could also be modelled as events that are
handled by further plans). Figure 2 shows the first plan, as it might be written in the JACK agent
language.

plan PlanA extends Plan
{

#handles event GoHome go_home;

context() {
nextTrain()-now() < ACCEPTABLE_WAIT; // Train imminent

}

body()
{

walkTo(trainStation.location());
checkTrainOnTime(); // If returns false, plan fails
catchTrain();
walkTo(home.location());

}
}

Figure 2: Simple Plan in JACK

A key feature of this approach is that each plan encapsulates the conditions under which it is
applicable (by defining an event pattern and context condition) [20]. This allows for additional
plans for a given event to be added in a modular fashion, since the invoking context (i.e. where
the triggering event is posted) does not contain code that selects amongst the available plans, and
is a key reason for the flexibility of BDI programming.

A typical BDI execution cycle is an elaboration of the following event-driven process (sum-
marised in Figure 3)4:

1. An event occurs (either received from an outside source, or triggered from within the agent)

2. The agent determines the set of plans in its plan library that are declared to handle an event
that matches the triggering event. This is the set of relevant plan instances.

3. The agent determines a subset of the relevant plans that are applicable in the current sit-
uation. A plan (instance) is applicable if its context condition is true. If there are no

4BDI engines are, in fact, more complicated than this as they can interleave the execution of multiple active plans
(or intentions) that were triggered by different events.
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Boolean function execute(event)
let relevant-plans = set of plan instances resulting from

matching all plans’ event patterns to event
let tried-plans = ∅
while true do

let applicable-plans = set of plan instances resulting from
solving the context conditions of relevant-plans

applicable-plans := applicable-plans\ tried-plans
if applicable-plans is empty then return false
select plan p ∈ applicable-plans
tried-plans := tried-plans∪{p}
if execute(p.body)=true then return true

endwhile

Boolean function execute(plan-body)
if plan-body is empty then return true
elseif execute(first(plan-body)) = false then return false
else execute(rest(plan-body))
endif

Boolean function execute(action)
attempt to perform the action
if action executed successfully then return true else return false endif

Figure 3: BDI Execution Cycle (pseudo code)

applicable plans then the event is deemed to have failed, and if it has been posted from a
plan, then that plan fails. Note that a single relevant plan may lead to no applicable plan
instances (if the context condition is false), or to more than one applicable plan instance (if
the context condition has multiple solutions).

4. One of the applicable plan instances is selected and is executed. The plan’s body may
create additional events that are handled using this process.

5. If the plan body fails, then failure handling is triggered.

Regarding the final step, there are a few approaches to dealing with failure. Perhaps the most
common approach is to select an alternative applicable plan, and only consider an event to have
failed when there are no remaining applicable plans. In determining alternative applicable plans
one may either consider the existing set of applicable plans, or re-calculate the set of applicable
plan instances (ignoring those that have already been tried), as is done in Figure 3. This makes
sense because the situation may have changed since the applicable plans were determined.
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An alternative failure handling approach, used by Jason [17], is to post a failure event which
can be handled by a user-provided plan. Although this is more flexible, since the user can specify
what to do upon failure, it does place the burden of specifying failure handling on the user. Note
that Jason does provide a “pattern” that allows the traditional BDI failure handling mechanism
to be specified [17, pages 171–172].

Given the execution cycle, the three example plans given earlier can give rise to a range of
behaviours, including the following:

• Suppose the event “achieve goal go-home” is posted and the agent believes that a train is
imminent. It walks to the train station, finds out that the train is running on time, catches
the train, and then walks home.

• Suppose that upon arrival at the train station the agent finds out that trains are delayed.
Step (2) of PlanA fails, and the agent considers alternative plans. If it is raining at the
present time, then PlanB is not applicable, and so PlanC is adopted (to catch the bus).

• Suppose that the agent has decided to catch the bus (because no train is believed to be
imminent, and it is raining), and that attempting to execute PlanC fails (e.g. there is a bus
strike). The agent will reconsider its plans and if the rain has stopped (and it has a bicycle)
it may then use PlanB.

The events and plans can be visualised as a tree (sometimes called a “goal-plan tree”) where
each event has as children the plan instances that are applicable to it, and each plan instance has
as children the events that it posts. The goal-plan tree is an “and-or” tree: each goal is realised
by one of its plan instances (“or”) and each plan instance needs all of its sub-goals to be achieved
(“and”). In order to be consistent with existing practice we shall use the term “goal” rather than
“event” in the remainder of this paper.

3 Behaviour Space Size of BDI Agents
We now consider how many possible behaviours there are for a BDI agent that is trying to realise
a goal5 with a given goal-plan tree. Executing a goal-plan tree is highly non-deterministic: we
need to choose a plan for each goal in the tree, when we consider failure we need to consider
for each action and for each goal whether it fails or not, and if it does, what failure recovery is
done, and finally, if there is any parallelism, then we need to select a particular interleaving of
the parallel threads.

In this section we seek to answer the question of how large is the behaviour space for BDI
agents? We do this by deriving formulae that compute the number of behaviours (both successful,
and unsuccessful, i.e. failed) for a given goal-plan tree.

We make the following assumptions which allow us to perform the analysis.

5We focus on a single goal in our analysis: multiple goals can be treated as the concurrent interleaving of the
individual goals.
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• We assume that the tree is uniform in that for a goal at depth d, all of its children are at
depth d−1 (and similarly for plan instances); and we assume that all plan instances have
k (or 0) sub-goals (see Figure 4).

• We do not model the instantiation of plan types to plan instances by matching their event
patterns to events. Instead we assume that each goal (uniformly) has j applicable plan
instances. This can be the case if each goal has j relevant plans, each of which results in
exactly one applicable plan instance, but can also be the case in other ways.

We re-examine these assumptions in section 4 where we consider a (non-uniform) goal-plan
tree from an industrial application.

Abstractly we can consider the process of executing a goal-plan tree as taking a goal-plan
tree, and, by following the BDI execution cycle, progressively making decisions about which
plans to use for each goal and executing these plans. This process can be seen as taking a goal-
plan tree and yielding a sequence of actions that were executed (see the appendix).

Our analysis uses the following terminology:

• Each goal g has j applicable plan instances p1 . . . p j. Our uniformity assumption makes
these plan instances indistinguishable for the purpose of our analysis, so we can omit the
indices.

• Each non-leaf plan instance p has k sub-goals g1 . . .gk (for the moment we ignore actions).
Due to our uniformity assumption we can also treat these sub-goals as identical and omit
the indices.

• We consider a goal-plan tree to have depth d if there are d goal “layers” (see Figure 4),
that is, a goal-plan tree of depth 1 has either a single goal which has j plans as its children
(and the plans have no sub-goals), or a single plan with k sub-goals, each of which has j
plans. A tree of depth 0 is a plan with no sub-goals. A goal/plan of depth d, where d > 0,
is written (resp.) as gd or pd .

• We use n4(xd) to denote the number of successful execution paths of a goal-plan tree of
depth d rooted at x (where x is either a goal g or a plan p). Where specifying d is not
important we will sometimes elide it, writing n4(x).

• Similarly, we use n8(xd) to denote the number of unsuccessful execution paths of a goal-
plan tree of depth d with root x (either g or p).

• We extend this notation to plan body segments, i.e. sequences x1; . . . ;xn where each xi is
a goal or action and ‘;’ denotes sequential composition. We abbreviate a sequence of n
occurrences of x by xn.
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Figure 4: Goal-plan tree

3.1 Base Case: Successful Executions
We begin by calculating the number of successful paths through a goal-plan tree in the absence
of failure (and of failure handling). This analysis follows that of [10, pages 17–19].

Roughly speaking, for a goal, the number of ways it can be achieved is the sum of the number
of ways in which its children can be achieved (since the children represent alternatives, i.e. “or”).
On the other hand, for a plan, the number of ways it can be achieved is the product of the number
of ways in which its children can be achieved (since the children must all be achieved, i.e. “and”).
More precisely, n4(x1;x2) = n4(x1)n4(x2), that is, the sequence is successful if both x1 and x2
are successful.

Given a tree with root g (a goal), assume that each of its j children can be achieved in n
different ways6, then, because we select one of the children7, the number of ways in which g can
be achieved is jn. Similarly, for a tree with root p (a plan), assume that each of its k children can
be achieved in n different ways, then, because we execute all of its children, the number of ways
in which p can be executed is n · · · n, or nk. A plan with no children (i.e. at depth d = 0) can be
executed (successfully) in exactly one way. This yields the following definition:

n4(gd) = j n4(pd−1)
n4(p0) = 1
n4(pd) = n4(gd

k) = n4(gd)k

Expanding this definition we obtain

n4(g1) = j n4(p0) = j 1 = j

n4(g2) = j n4(p1) = j (n4(g1)
k) = j ( jk) = jk+1

n4(g3) = j n4(p2) = j ( jk+1)k = jk2+k+1

n4(g4) = j n4(p3) = j ( jk2+k+1)k = jk3+k2+k+1

which can be generalised to:
n4(gd) = j∑

d−1
i=0 ki

6Because the tree is assumed to be uniform, all of the children can be achieved in the same number of ways, and
are thus interchangeable in the analysis, allowing us to write j n rather than n1 + . . .+n j.

7This is done in any order: in general there is no assumption that plans are selected in a given order.

8



If k > 1 this can be simplified using the equivalence ki−1 + . . .+ k2 + k +1 = (ki−1)/(k−1) to
give the following closed form definition:

n4(gd) = j(k
d−1)/(k−1) (1)

n4(pd) = jk (kd−1)/(k−1) (2)

If k = 1 we have n4(gd) = n4(pd) = jd .
Note that the equation for n4(pd) assumes that sub-goals are achieved sequentially. If they are

executed in parallel then the number of options is higher, since we need to consider all possible
interleavings of the sub-goals’ execution. For example, suppose that a plan pd has two sub-goals,
g1d and g2d , where each of the sub-goals has n4(gd) successful executions, and each execution
has l steps (we assume for ease of analysis that both execution paths have the same length). The
number of ways of interleaving two parallel executions, each of length l is (see, e.g., [21, Section
3]): (

2l
l

)
=

(2 l)!
(l!)(l!)

and hence the number of ways of executing pd with parallel execution of subgoals is:

n4(pd) = n4(gd)2
(

2l
l

)
= n4(gd)2 (2 l)!

(l!)(l!)

In the remainder of this paper we assume that the sub-goals of a plan are achieved sequen-
tially, since this is the common case, and since it yields a lower figure which, as we shall see, is
still large enough to allow for conclusions to be drawn.

3.2 Adding Failure
We now extend the analysis to include failure, and determine the number of unsuccessful execu-
tions, i.e. executions that result in failure of the top-level goal. For the moment we assume that
there is no failure handing (we add failure handling in section 3.3).

In order to determine the number of failed executions we have to know where failure can
occur. In BDI systems there are two places where failure occurs: when a goal has no applicable
plan instances, and when an action (within an applicable plan instance) fails. However, our
uniformity assumption means that we do not address the former case—it is assumed that a goal
will always have j instances of applicable plans. Note that this is a conservative assumption:
relaxing it results in the number of unsuccessful executions being even larger.

In order to model the latter case we need to extend our model of plans to encompass actions.
For example, suppose that a plan has a body of the form a1;ga;a2;gb;a3 where ai are actions,
ga and gb are sub-goals, and “;” denotes sequential execution. Then the plan has the following
five cases of unsuccessful (i.e. failed) executions:

1. a1 fails

2. a1 succeeds, but then ga fails
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3. a1 and ga succeed, but a2 fails

4. a1, ga, and a2 succeed, but then gb fails

5. a1, ga, a2 and gb succeed, but a3 fails

Suppose that ga can be executed successfully in n4(ga) different ways, then the third case
corresponds to n4(ga) different failed executions: for each successful execution of ga, extend it
by adding a failed execution of a2 (actions can only be executed in one way, i.e. n4(a) = 1 and
n8(a) = 1). Similarly, if gb has n4(gb) successful executions then the fifth case corresponds to
n4(ga)n4(gb) different failed executions. If ga can be unsuccessfully executed in n8(ga) different
ways then the second case corresponds to n8(ga) different executions. Similarly, the fourth case
corresponds to n4(ga)n8(gb) different executions. Putting this together, we have that the total
number of unsuccessful executions for a plan p with body a1;ga;a2;gb;a3 is the sum of the
above five cases:

1 + n8(ga) + n4(ga) + n4(ga)n8(gb) + n4(ga)n4(gb)

More formally, n8(x1;x2) = n8(x1)+ n4(x1)n8(x2), that is, the sequence can fail if either x1
fails, or if x1 succeeds but x2 fails. It follows that n4(xk) = n4(x)k and n8(xk) = n8(x)(1 + · · ·+
n4(x)k−1), which can easily be proven by induction.

More generally, we assume there are ` actions before, after, and between the sub-goals in a
plan, i.e. the above example plan corresponds to ` = 1, and the following plan body corresponds
to ` = 2: a1;a2;g3;a4;a5;g6;a7;a8. A plan with no sub-goals (i.e. at depth 0) is considered to
consist of ` actions (which is quite conservative: in particular, when we use ` = 1 we assume that
plans at depth 0 consist of only a single action).

The number of unsuccessful execution traces of a goal-plan tree can then be defined, based
on the analysis above, as follows. First we calculate the numbers of successes and failures of the
following repeated section of a plan body: gd;a`:

n4(gd;a`) = n4(gd)n4(a`)
= n4(gd)n4(a)`

= n4(gd)1`

= n4(gd)
n8(gd;a`) = n8(gd)+n4(gd)n8(a`)

= n8(gd)+n4(gd)n8(a)(1+ · · ·+n4(a)`−1)
= n8(gd)+n4(gd)`
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We then have for d > 0:

n8(pd) = n8(a`;(gd;a`)k)
= n8(a`)+n4(a`)n8((gd;a`)k)
= n8(a)(1+ · · ·+n4(a)`−1))+n4(a)` n8((gd;a`)k)
= `+1n8(gd;a`)(1+ · · ·+n4(gd;a`)k−1)
= `+(n8(gd)+n4(gd)`)(1+ · · ·+n4(gd)k−1))

= `+
(
n8(gd)+ `n4(gd)

) n4(gd)k−1
n4(gd)−1

(assuming n4(gd) > 1)

This yields the following definitions for the number of unsuccessful executions of a goal-plan
tree, without failure handling. The equation for n8(gd) is derived using the same reasoning as in
the previous section: a single plan is selected and executed, and there are j plans.

n8(gd) = j n8(pd−1)
n8(p0) = `

n8(pd) = `+
(
n8(gd)+ `n4(gd)

) n4(gd)k−1
n4(gd)−1

(for d > 0 and n4(gd) > 1)

Finally, we note that the analysis of the number of successful executions of a goal-plan tree in
the absence of failure handling presented in Section 3.1 is unaffected by the addition of actions
to plan bodies. This is because there is only one way for a sequence of actions to succeed, so
Equations 1 and 2 remain correct.

3.3 Adding Failure Handling
We now consider how the introduction of a failure handling mechanism affects the analysis. A
common means of dealing with failure in BDI systems is to respond to the failure of a plan by
trying an alternative applicable plan for the event that triggered that plan. For example, suppose
that a goal g (e.g. “achieve goal go-home”) has three applicable plans pa, pb and pc; that pa is
selected, and that it fails. Then the failure handling mechanism will respond by selecting pb or
pc and executing it. Assume that pc is selected, then if pc fails, the last remaining plan (pb) is
used, and if it too fails, then the goal is deemed to have failed.

The result of this is that, as we might hope, it is harder to fail: the only way a goal execution
can fail is if all of the applicable plans are tried and each of them fails8.

The number of executions can then be computed as follows: if the goal has j applicable plan
instances p1 . . . p j and each of the plans has ni = n8(pi) unsuccessful executions, then we have

8In fact, this is actually an under-estimate: it is also possible for the goal to fail because none of the untried
relevant plans are applicable in the resulting situation. As noted earlier, we assume in our analysis that goals cannot
fail due to there not being applicable plan instances. This is a conservative assumption: relaxing it results in the
number of behaviours being even larger.
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n1 · · · n j unsuccessful executions of all of the plans. Since the plans can be selected in any order
we multiply this by j! yielding n8(gd) = j!n8(pd−1) j.

The number of ways in which a plan can fail is still defined by the same equation — because
failure handling happens at the level of goals — but where n8(g) refers to the new definition:

n8(gd) = j!n8(pd−1)
j (3)

n8(p0) = ` (4)

n8(pd) = `+
(
n8(gd)+ `n4(gd)

) n4(gd)k−1
n4(gd)−1

(5)

(for d > 0 and n4(gd) > 1)

Turning now to the number of successful executions (i.e. n4(x)) we observe that the effect of
adding failure handling is to convert failures to successes, i.e. an execution that would otherwise
be unsuccessful is extended into a longer execution that may succeed.

Consider a simple case: a depth 1 tree consisting of a goal g (e.g. “achieve goal go-home”)
with three children: pa, pb, pc. Previously the successful executions corresponded to each of the
pi (i.e. select a pi and execute it). However, with failure handling, we now have the following
additional successful executions (as well as additional cases corresponding to different orderings
of the plans, e.g. pb failing and then pa being successfully executed):

• pa fails, pb is then executed and it succeeds

• pa fails, pb is then executed and it fails, pc is then executed and it succeeds

This leads to a definition of the form

n4(g) = n4(pa)+n8(pa)n4(pb)+n8(pa)n8(pb)n4(pc)

We need to account for different orderings of the plans. For instance, the case where the first
selected plan succeeds (corresponding to the first term, n4(pa)) in fact applies for each of the j
plans, so the first term, including different orderings, is j n4(p).

Similarly, the second term (n8(pa)n4(pb)), corresponding to the case where the initially se-
lected plan fails but the next plan selected succeeds, in fact applies for j initial plans, and then
for j−1 next plans, yielding j ( j−1)n8(p)n4(p).

Continuing this process (for j = 3) yields the following formulae

n4(g) = 3n4(p)+32n8(p)n4(p)+3!n8(p)2 n4(p)

which generalises to

n4(g) = j n4(p)+ j ( j−1)n8(p)n4(p)+ . . .+ j!n8(p) j−1 n4(p)
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No failure handling With failure handling
Parameters Number of (secs 3.1 and 3.2) (section 3.3)
j k d goals actions n4(g) n8(g) n4(g) n8(g)
2 2 3 21 62 (13) 128 614 ≈ 6.33×1012 ≈ 1.82×1013

3 3 3 91 363 (25) 1,594,323 6,337,425 ≈ 1.02×10107 ≈ 2.56×10107

2 3 4 259 776 (79) 1,099,511,627,776 6,523,509,472,174 ≈ 1.82×10157 ≈ 7.23×10157

3 4 3 157 627 (41) 10,460,353,203 41,754,963,603 ≈ 3.13×10184 ≈ 7.82×10184

Table 1: Illustrative values for n4(g) and n8(g)

resulting in the following equations (again, since failure handling is done at the goal level, the
equation for plans is the same as in section 3.1):

n4(gd) =
j

∑
i=1

n4(pd−1)n8(pd−1)
i−1 j!

( j− i)!
(6)

n4(p0) = 1 (7)
n4(pd) = n4(gd)k (for d > 0 ) (8)

We have used the “standard” BDI failure handling mechanism of trying alternative applicable
plans. Now let us briefly consider an alternative failure handling mechanism that simply re-posts
the event, without tracking which plans have already been attempted. It is fairly easy to see that
this, in fact, creates an infinite number of behaviours: suppose that a goal g can be achieved by
pa or pb, then pa could be selected, executed resulting in failure, and then pa could be selected
again, fail again, etc. This suggests that the “standard” BDI failure handling mechanism is, in
fact, more appropriate, in that it avoids an infinite behaviour space, and the possibility of an
infinite loop.

Table 1 makes the various equations developed so far concrete by showing illustrative values
for n8 and n4 for a range of reasonable (and fairly low) values for j, k and d and using ` = 1. The
“Number of” columns show the number of goals in the tree, and the number of actions in the
tree. The number of actions in brackets is how many actions are executed in a single (successful)
execution with no failure handling.

3.4 Recurrence Relations
The equations in the previous sections define the functions n4 and n8 as a mutual recurrence on
the depth d of the goal-plan tree. The effect of increasing the parameters k and ` is evident at
each level of the recursion, but it is not so clear what the effect is of increasing the number of
applicable plan instances for a goal. To better understand this, in this section we derive a set
of recurrence relations for n4 and n8 in the presence of failure handling as a recurrence on the
depth d and the number of applicable plan instances n for a given goal node in the goal-plan tree,
treating j (for other goal nodes), k and ` as constant.
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We begin by defining the generalised notation n8(gd,n) and n4(gd,n) where n is the number
of plans that are applicable for the goal gd . In the previous discussion we have assumed that this
value is equal to the constant j for all goal nodes in the goal-plan tree (i.e. n8(gd) = n8(gd, j) and
n4(gd) = n4(gd, j)). Now we isolate the effects of varying the number of applicable plans for a
given goal node in the tree, while retaining the regularity assumption for all other goal nodes.
We rewrite Equations 3 and 6 using this notation and expressing the right hand sides as functions
of n8(pd−1) and (for the case of Equation 6) n4(pd−1):

n8(gd,n) = f 8(n, n8(pd−1))
n4(gd,n) = f 4(n, n8(pd−1), n4(pd−1))

where

f 8(n,a) = n!an

f 4(n,a,b) =
n

∑
i=1

bai−1 n!
(n− i)!

=
n−1

∑
i=0

(
n
i

)
i!ai (n−i)b (9)

The equality on the right of the last line above will be useful in the discussion below, and
corresponds to the following combinatorial analysis of f 4. For a goal gd , each successful exe-
cution will involve a sequence of i plan executions that fail (for some i, 0≤ i≤n−1) followed
by one plan execution that succeeds. There are

(n
i

)
ways of choosing the failed plans, which can

be ordered in i! ways, and each plan has a = n8(pd−1) ways to fail. There are then n−i ways of
choosing the final successful plan, which has b = n4(pd−1) ways to succeed.

Our goal is now to find an explicit characterisation of the incremental effect of adding an
extra plan on n8(gd,n) and n4(gd,n) by finding definitions of f 8 and f 4 as recurrence relations
in terms of the parameter n. Deriving the recurrence relation for f 8 is straightforward:

f 8(n,a) = n!an

= (n(n−1) . . . 21) (aa . . . aa︸ ︷︷ ︸
n times

)

= (na)((n−1)a) . . . (2a)(1a)

This shows that f 8(0,a) = 1 and f 8(n+1,a) = (n+1)a f 8(n,a)
However, the derivation of a recurrence relation for f 4 is not as simple. Here we use

the technique of first finding an exponential generating function (e.g.f.) [22] for the sequence
{ f 4(n,a,b)}∞

n=0, and then using that to derive a recurrence relation.
The e.g.f. F(x) of the sequence { f 4(n,a,b)}∞

n=0 is the function defined by the following
power series:

F(x) =
∞

∑
n=0

f 4(n,a,b)
xn

n!
(10)

=
∞

∑
n=0

(
n−1

∑
i=0

(
n
i

)
i!ai(n−i)b

)
xn

n!
=

∞

∑
n=0

(
∞

∑
i=0

(
n
i

)
i!ai(n−i)b

)
xn

n!
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On the right hand side above we have changed the upper limit of the inner sum to ∞ based on
the generalised definition of

(n
i

)
as n(n−1)(n−2)...(n−i +1)/i!, which is valid for all complex

numbers n and non-zero integers i [22] and gives
(n

i

)
= 0 for i > n.

The right hand side has the form of a product of exponential generating functions [22, Rule
3’, Section 2.3]:

∞

∑
n=0

(
∞

∑
i=0

(
n
i

)
α(i)β (n−i)

)
xn

n!
=

(
∞

∑
n=0

α(n)
xn

n!

)(
∞

∑
n=0

β (n)
xn

n!

)
where, for our case, α(n) = n!an and β (n) = nb. Therefore, we can write:

F(x) =

(
∞

∑
n=0

n!
(ax)n

n!

)(
∞

∑
n=0

nb
xn

n!

)
The left hand sum is G(ax) where G(y) = ∑n yn = 1

1−y [22, Equation 2.5.1]. The right hand

sum is equal to bx d
dx

(
∑

xn

n!

)
[22, Rule 2′, Section 2.3] = bx d

dxex [22, Equation 2.5.3] = bxex.
Thus we have:

F(x) =
1

1−ax
bxex =

bxex

1−ax
Therefore, f 4(0,a,b) is the constant term in the power series ∑

∞
n=0 f 4(n,a,b)xn

n! , which is
F(0) = 0. To find a recurrence relation defining f 4(n+1,a,b) we equate the original definition
of F(x) in Equation 10 with our closed form of this function, differentiate each side (to give us
a power series with the f 4(n,a,b) values shifted one position to the left), and multiply by the
denominator of the closed form, giving us:

(1−ax)
d
dx

(
∞

∑
n=0

f 4(n,a,b)
xn

n!

)
= (1−ax)

d
dx

(
bxex

1−ax

)
=⇒ (1−ax)

∞

∑
n=0

f 4(n,a,b)n
xn−1

n!
= (1−ax)

(
b(x+1)ex

1−ax
+

abxex

(1−ax)2

)
=⇒

∞

∑
n=0

f 4(n,a,b)n
xn−1

n!
−

∞

∑
n=0

a f 4(n,a,b)n
xn

n!
= b(x+1)ex +a

bxex

1−ax

=⇒
∞

∑
n=0

f 4(n+1,a,b)(n+1)
xn

(n+1)!
−

∞

∑
n=0

an f 4(n,a,b)
xn

n!
= bxex +bex +a

∞

∑
n=0

f 4(n,a,b)
xn

n!

= b
∞

∑
n=0

n
xn

n!
+b

∞

∑
n=0

xn

n!
+a

∞

∑
n=0

f 4(n,a,b)
xn

n!

Equating the coefficients of xn

n! we get:

f 4(n+1,a,b)−an f 4(n,a,b) = bn+b+a f 4(n,a,b)
=⇒ f 4(n+1,a,b) = an f 4(n,a,b)+b(n+1)+a f 4(n,a,b)

= (n+1)(a f 4(n,a,b)+b) (11)
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Equation 11 gives us the recurrence relation for the sequence { f 4(n,a,b)}∞
n=0 that we have

been seeking9. Figure 5 brings together the equations we have so far for the failure handling case
(including those from the previous section defining n4(pd) and n8(pd).

n4(gd,n) = f 4(n, n8(pd−1), n4(pd−1))
n8(gd,n) = f 8(n, n8(pd−1))

f 4(0,a,b) = 0
f 4(n+1,a,b) = (n+1)(a f 4(n,a,b)+b)

f 8(0,a) = 1
f 8(n+1,a) = (n+1)a f 8(n,a)

n4(p0) = 1
n8(p0) = `

n4(pd) = n4(gd, j)k, for d > 1

n8(pd) = `+
(
n8(gd, j)+ `n4(gd, j)

) n4(gd, j)k−1
n4(gd, j)−1

, for d > 0

Figure 5: Recurrence relations for the numbers of failures and successes of a goal plan tree in
the presence of failure handling

This formulation allows us to more easily see how the behaviour space grows as the number
of applicable plans, n, for a goal grows. In particular, the number of successes of a goal for
n+1 plans is just n4(g,d,n+1) = f 4(n+1, n8(p,d−1,n+1), n4(p,d−1,n+1)), which is just
(n+1)(a f 4(n,a,b)+ b) where a ≡ n8(p,d−1,n+1) and b ≡ n4(p,d−1,n+1). However, note
that, with a uniform goal-plan tree, any change to n also applies to sub-trees, i.e. to a and b
above.

3.5 The Probability of Failing
In section 3.3 we said that introducing failure handling makes it harder to fail. However, table 1
appears at first glance to contradict this, in that there are many more ways of failing with failure
handling than there are without failure handling.

The key to understanding the apparent discrepancy is to consider the probability of failing:
table 1 merely counts the number of possible execution paths, without considering the likelihood
of a particular path being taken. Working out the probability of failing (as we do below) shows

9In the simple case when a = b = 1 this is listed as sequence A007526 in the On-Line Encyclopedia of Integer
Sequences [23]: “the number of permutations of nonempty subsets of {1, · · · ,n}”.
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that although there are many more ways of failing (and also of succeeding), the probability of
failing is, indeed, much lower.

Let us denote the probability of an execution of a goal-plan tree with root x and depth d
failing as p8(xd), and the probability of it succeeding as p4(xd) = 1− p8(xd).

We assume that the probability of an action failing is εa
10. Then the probability of a given

plan’s actions all succeeding is simply (1− εa)x where x is the number of actions. Hence the
probability of a plan failing due to the failure of (one of) its actions is simply 1− (1− εa)x, i.e.
for a plan at depth 0 the probability of failure is:

ε0 = 1− (1− εa)`

and for a plan at depth greater than 0 the probability of failure due to actions is:

ε = 1− (1− εa)`(k+1)

(recall that such a plan has ` actions before, after, and between, each of its k sub-goals). Consid-
ering not only the actions but also the sub-goals g1, . . . ,gk of a plan p, we have that for the plan
to succeed, all of the sub-goals must succeed, and additionally, the plan’s actions must succeed
giving p4(pd) = (1− ε) p4(gd)k. We can easily derive from this an equation for p8(pd) (given
below). Note that the same reasoning applies to a plan regardless of whether there is failure
handling, because failure handling is done at the goal level.

In the absence of failure handling, for a goal g with possible plans p1, . . . , p j to succeed
we select one plan and execute it, so the probability of success is the probability of that plan
succeeding, i.e. p4(gd) = p4(pd−1). We ignore for the moment the possibility of a goal failing
due to there being no applicable plans. This assumption is relaxed later on.

Formally, then, we have for the case without failure handling:

p8(gd) = p8(pd−1)
p8(p0) = ε0

p8(pd) = 1− [(1− ε)(1− p8(gd))
k]

Now consider what happens when failure handling is added. In this case, in order for a goal
to fail, all of the plans must fail, i.e. p8(gd) = p8(pd−1) j. Since failure handling is at the goal
level, the equation for plans is unchanged, giving:

p8(gd) = p8(pd−1) j

p8(p0) = ε0

p8(pd) = 1− [(1− ε)(1− p8(gd))
k]

It is not easy to see from the equations what the patterns of probabilities actually are, and so,
for illustration purposes, the following table shows what the probability of failure is, both with

10For simplicity, we assume that the failure of an action in a plan is independent of the failure of other actions in
the plan.
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and without failure handling, for two scenarios. These values are computed using j = k = 3 (i.e.
a relatively small branching factor) and with ` = 1. We consider two cases: where εa = 0.05 and
hence ε ≈ 0.185 (which is rather high); and where εa = 0.01 and hence ε ≈ 0.04.

As can be seen, without failure handling, failure is magnified: the larger the goal-plan tree is,
the more actions are involved, and hence the greater the chance of an action somewhere failing,
leading to the failure of the top-level goal (since there is no failure handling). On the other
hand, with failure handling, the probability of failure is both low, and doesn’t appear to grow
significantly as the goal-plan tree grows.

εa d No failure handling With failure handling
0.05 2 30% 0.64%

3 72% 0.81%
4 98% 0.86%

0.01 2 07% 0.006%
3 22% 0.006%
4 55% 0.006%

We now relax the assumption that a goal cannot fail due to plans not being applicable, i.e.
that a goal will only fail once all plans have been tried. Unfortunately, relaxing this assumption
complicates the analysis. This is because we need to consider the possibility that none of the
remaining plans are applicable at each point where failure handling attempts to recover.

Let us begin by reconsidering the case where there is no failure handling. We use εg to denote
the probability of a goal failing due to none of the remaining plans being applicable. We assume,
for analysis purposes, that this probability is constant, and in particular, that it does not depend
on which plans have already been tried nor on the number of relevant plans remaining.

Then the probability of a goal failing is p8(gd) = εg +(1− εg) p8(pd−1), i.e. the goal fails
either because no plans are applicable or because there are applicable plans and the selected plan
fails. As before, the equation for plans is unchanged, since failure handling is done at the goal
level. Collecting this gives the following equations for the case without failure handling:

p8(gd) = εg +(1− εg) p8(pd−1)
p8(p0) = ε0

p8(pd) = 1− [(1− ε)(1− p8(gd))
k]

Observe that setting εg = 0 yields the equations derived earlier, where we assumed that a goal
cannot fail due to inapplicable plans.

We now consider the probability of failure with failure handling. For a goal with two plans
we have the following cases:

• The goal can fail due to no plans being applicable (εg)

• If there are applicable plans ((1− εg) . . .) then the goal can fail if the first selected plan
fails (p8(pd−1) . . .) and if failure handling is not successful, which can occur if either there
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are no applicable plans (εg) or, if there are applicable plans ((1− εg) . . .) and the selected
plan fails (p8(pd−1)).

Pulling this together, for a goal with two plans we have:

p8(gd) = εg +(1− εg) p8(pd−1)(εg +(1− εg) p8(pd−1))

In the general case of j available plans, we have that a goal can fail if:

A. there are no applicable plans at the outset, with probability εg; or

B. there are applicable plans (1− εg), but the selected plan fails (p8(pd−1)) and then either
there are no further applicable plans (εg), or

C. there are applicable plans (1− εg), but the selected plan fails (p8(pd−1)) and then either
there are no further applicable plans (εg),

D. and so on: the reasoning of B is repeated j times.

This gives a definition of the following form:

εg︸︷︷︸
A

+(1− εg) p8(pd−1)(εg+︸ ︷︷ ︸
B

(1− εg) p8(pd−1)(εg+︸ ︷︷ ︸
C

. . .︸︷︷︸
D

))

This can be defined in terms of an auxiliary function p8(gd, i) which defines the probability of
failure for goal g at depth d where there are i remaining relevant plans instances that may (or
may not) yield any applicable plan instances:

p8(gd) = p8(gd, j)
p8(gd,1) = εg +(1− εg) p8(pd−1)

p8(gd, i+1) = εg +(1− εg) p8(pd−1) p8(gd, i)
p8(p0) = ε0

p8(pd) = 1− [(1− ε)(1− p8(gd))
k]

Observe that setting εg = 0 reduces this to the definition derived earlier, since εg + (1− εg)X
simplifies to X , and hence p8(gd, i) = p8(pd−1)i.

As before, it is not immediately clear from the formulae what the actual patterns of prob-
ability are. Considering illustrative examples (see the table below) shows that (a) the overall
behaviour is the same as before, and (b) if εg is assumed to be relatively low compared with the
probability of action failure (ε and ε0), then it doesn’t significantly affect the probabilities.
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No failure handling With failure handling
εa d εg = 0 εg = 0.01 εg = 0.05 εg = 0 εg = 0.01 εg = 0.05

0.05 2 30% 33% 43% 0.64% 2.2% 9.4%
3 72% 76% 86% 0.81% 2.6% 12.8%
4 98% 99% 100% 0.86% 2.8% 16.5%

εa d εg = 0 εg = 0.005 εg = 0.01 εg = 0 εg = 0.005 εg = 0.01
0.01 2 7% 9% 10% 0.006% 0.5% 1.1%

3 22% 27% 32% 0.006% 0.6% 1.1%
4 55% 63% 70% 0.006% 0.6% 1.1%

3.6 Analysis of the Number of Failures
In this section we briefly examine the relationship between the number of action failures and the
number of traces.

We have derived equations that calculate the total number of behaviours (with failure han-
dling). But how many of these behaviours involve many action failures? If we make some sort
of assumption about the rate of action failure, and hence the number of failures that will occur in
an execution of length `, how does this affect the number of behaviours? Do the large numbers
that we have seen reduce significantly?

For instance, considering j = k = 2, ` = 1 and d = 2, there are 1,922 possible executions that
result in failure. How many of these involve many failures of actions, and how many involve
only a small number of failures? Figure 6 contains (cumulative) numbers which were counted
by looking at all possible executions in this (small) case.

The question is how to generalise this analysis for larger execution spaces. Clearly, counting
all possible executions is not feasible. Instead, we turn to generating functions.

We extend our previous notation by defining n4
af (s,n) and n8

af (s,n) to be the numbers of
successful and failed (respectively) executions of a plan body segment s in which exactly n
action failures (hence the af subscript) have occurred.

For a given segment s (and particularly for s = gd) , we are interested in computing the
sequences {n4

af (s,n)}∞
n=0 and {n8

af (s,n)}∞
n=0. This can be achived by considering the ordinary

(rather than exponential) generating functions [22] for these sequences:

F4
af (s,x) =

∞

∑
n=0

n4
af (s,n)xn

F8
af (s,x) =

∞

∑
n=0

n8
af (s,n)xn

In contrast to exponential generating functions, the terms in these sums do not include a denom-
inator of n!.

An action a has one successful execution, which contains no action failures, so F4
af (a,x) = 1

(a power series with the coefficient of x0 being 1 and all other coefficients being 0). Similarly,
F8

af (a,x) = x as there is one failed execution, which has one action failure.
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Figure 6: Number of traces (cumulative) for j = k = 2, ` = 1, d = 2
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We now consider F4
af (s1;s2):

F4
af (s1;s2,x) =

∞

∑
n=0

n4
af (s1;s2,n)xn

=
∞

∑
n=0

(
∑

i+ j=n
n4

af (s1, i)n4
af (s2, j)

)
xn

The inner sum considers all possible ways of allocating the n action failures to the (necessarily)
successful and independent (by assumption) executions of s1 and s2. The second line above can
be rewritten as a product of ordinary generating functions [22, Rule 3, Section 2.2]:

F4
af (s1;s2,x) =

(
∞

∑
n=0

n4
af (s1,n)xn

)(
∞

∑
n=0

n4
af (s2,n)xn

)
= F4

af (s1,x)F4
af (s2,x)

Considering F8
af (s1;s2,x), we have:

F8
af (s1;s2,x) =

∞

∑
n=0

n8
af (s1;s2,n)xn

=
∞

∑
n=0

(
n8

af (s1,n)+ ∑
i+ j=n

n4
af (s1, i)n8

af (s2, j)
)

xn

=
∞

∑
n=0

n8
af (s1,n)xn +

∞

∑
n=0

(
∑

i+ j=n
n4

af (s1, i)n8
af (s2, j)

)
xn

= F8
af (s1,x)+

(
∞

∑
n=0

n4
af (s1,n)xn

)(
∞

∑
n=0

n8
af (s2,n)xn

)
= F8

af (s1,x)+F4
af (s1,x)F8

af (s2,x)

The second line above is based on the observation that each failed execution of s1;s2 with n action
failures is either a failed execution of s1 with n action failures occurring in that execution, or is
a successful execution of s1 with i failures followed by a failed execution of s2 with j failures,
where i+ j = n.

Now, assuming that we know F4
af (gd,x) and F8

af (gd,x) for some depth d, we can construct the
functions F4

af (pd,x) and F8
af (pd,x) by applying the results above to expand the right hand sides

of the following equations (which simply replace pd with its plan body):

F4
af (pd,x) = F4

af (a
`;(gd;a`)k,x)

F8
af (pd,x) = F8

af (a
`;(gd;a`)k,x)

It remains to define F4
af (gd,x) and F4

af (gd,x) in terms of F4
af (pd−1,x) and F4

af (pd−1,x). To
count the successful executions of gd with n action failures, we must first choose one of the j
applicable plans to be the one that ultimately succeeds. We must then choose between 0 and j−1
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of the remaining applicable plans that were tried but failed, and consider all possible orderings
of these plans. The n action failures must be distributed across the failed and successful plans.
This leads us to the following derivation of a procedure to construct F4

af (gd,x):

F4
af (gd,x) =

∞

∑
n=0

n4
af (gd,n)xn

=
∞

∑
n=0

(
j

j−1

∑
m=0

(
j−1
m

)
m! ∑

i0+···+im=n
n4

af (pd−1, i0)n8
af (pd−1, i1) · · ·n8

af (pd−1, im)

)
xn

= j
j−1

∑
m=0

(
j−1
m

)
m!

∞

∑
n=0

(
∑

i0+···+im=n
n4

af (pd−1, i0)n8
af (pd−1, i1) · · ·n8

af (pd−1, im)

)
xn

= j
j−1

∑
m=0

(
j−1
m

)
m!
(

∞

∑
n=0

n4
af (pd−1,n)xn

)(
∞

∑
n=0

n8
af (pd−1,n)xn

)m

= j
j−1

∑
m=0

(
j−1
m

)
m! F4

af (pd−1,x)F8
af (pd−1,x)m

Constructing F8
af (gd,x) is simpler. A failed execution of a goal involves failed attempts to

execute all j applicable plans. All j! orderings of these plans must be considered. This gives us
the following construction for F8

af (gd,x):

F8
af (gd,x) =

∞

∑
n=0

n8
af (gd,n)xn

=
∞

∑
n=0

(
j! ∑

i1+···+i j=n
n8

af (pd−1, i1) · · ·n8
af (pd−1, i j)

)
xn

= j!
(

∞

∑
n=0

n8
af (pd−1,n)xn

) j

= j!F8
af (pd−1,x) j

The equations above define a recursive procedure for computing F4
af (gd,x) and F8

af (gd,x) for
a given d. Furthermore, given any ordinary generating function F(x) that generates a sequence
an, the sequence of partial sums of an is generated by F(x)/(1− x) [22, Exercise 32, Chapter
2]. Therefore we can generate the numbers of successful and failed executions of gd with at
most n action failures using the functions F4

af (gd,x)/(1− x) and F8
af (gd,x)/(1− x). The Sage

mathematical software system11 was used to obtain the power series representations of these

11http://www.sagemath.org/
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functions12 for the values of d, j, k and l shown in Figures 7 and 813.
Examining Figure 7 we can conclude two things. Firstly, the number of traces really explodes

for larger numbers of action failures. Secondly, even though making assumptions about the
number of failures that can occur reduces the number of traces, the number of traces is still
quite large: note the scale on the y-axis – even allowing for at most 5 action failures, there are
1,186,693,266 possible traces. Similar conclusions can be drawn from Figure 8 where, even
assuming at most 10 action failures, there are still many many14 traces.
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Figure 7: Number of traces (cumulative) for j = k = 2, ` = 1, d = 3

4 A Reality Check
We now consider to what extent real systems have deep and branching goal-plan trees, and to
what extent the large numbers shown in table 1 apply to real applications, rather than to uniform
goal-plan trees. As an example of a real application we consider a recent industrial application
at Daimler which used BDI agents to realise agile business processes [24].

12There are a finite number of actions that can be attempted during any execution of a goal-plan tree, and this
defines a bound on the total number of action failures that can occur. Thus F4

af (gd ,x) and F8
af (gd ,x) are polynomial

functions of finite order. The functions generating the partial sums have infinite power series, but only a finite
number of terms need to be generated as the coefficients increase to a maximum value, which is then repeated
infinitely.

13The Sage script used for this can be found at http://sage.milnix.org/home/pub/131
144,417,766,935,416,766,347,021,913,820,447,697,963 to be precise.
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An advantage of this modeling approach is that it implicitly offers 
support for parallel execution of the process parts that do not 
depend on each other. This can reduce the overall time needed for 
process execution. Moreover maintain goals are a good means to 
provide the process with additional agility: the agent monitors 
conditions that have to be fulfilled throughout the process (e.g. 
time constraints) and pro-actively initiates activities to avoid 
problems before they appear. 

During development of the prototype the support for rapid 
prototyping and execution of process models provided by 
LS/ABPM has proven to be very helpful. The developed models 
represent “living process models”, which can be directly executed 
and visualized. The part of the web user interface that is coupled 
with the workflow is generated directly from the process model. 
The interface is computed directly from the parameters of the 
corresponding task: context variables, their types and possible 
values. With this approach changes in the process can be quickly 
modeled and tested. Thus errors in the models can be discovered 
and corrected in a short time. 

As stated above the starting point for building the ACM-prototype 
model was the ACM-reference process model developed for the 
software demonstrator. The underlying agent engine of this 
demonstrator (JadeX) has a partially different modeling and 
execution semantics compared to the LS/ABPM tool. There were 
differences in modeling XOR-gateways, context conditions and 
maintain goals. These semantic differences lead to deviant 
behavior in the process model execution and increased the testing 
effort. 

During ACM prototype phase the goal- and context-oriented 
modeling approach was applied in a bigger setting for the first 
time. Therefore it was necessary to extend the goal-& context-
oriented modeling language. Two sorts of conditions for goals 
were added to be able to express (i) optional goals, which are not 
needed in certain situations (modeled by skip-conditions), and (ii) 
sequence-dependencies among goals (pre-conditions). E.g. some 
goals can only be pursued after certain other goals are fulfilled. 
Although the ACM-prototype represents only a simplified version 
of the real process, some aspects could not be modeled by 
employing tasks provided in the standard task library. For 
example, an interface to an external system required an 
application specific task, which involved also some 
implementation effort. 

Using an agent tool suite and applying the goal- and context-
oriented process modeling approach for the prototype, we also got 
some general ideas what the main future challenges will be. 

The work to model and test the process model was distributed 
among four persons. The concurrent developing of the process 

model was one of the challenges of the ACM-prototype. The 
LS/ABPM modeler provided import functionality to merge 
different parts of a model. But there was no support in versioning 
models and managing changes. Therefore it was a major task to 
keep the merged model consistent. 

The model testing effort increased noticeable with the size of the 
model and the number of defined test scenarios. In ACM-
prototype ten scenarios were specified and implemented. All of 
them were covered by one process model. This leads to more 
complex context conditions and to an increasing complexity of 
dependencies between different context conditions. One of the big 
challenges during the test phase was to keep the model consistent 
and to define the right context conditions that result in the correct 
execution for all scenarios. Therefore more support for 
dependency analysis, automated simulation and testing of the 
process models is needed. 

Based on the experience gathered with the ACM-prototype, it can 
be concluded that the model complexity is influenced by the size 
of the model but mainly by the dependencies created through the 
context variables, context conditions and tasks that can 
manipulate the goal states (deactivate, re-activate). The size of the 
model can be expressed by metrics like the number of goals and 
plans, the number of levels of the goal hierarchies and the number 
of the global context variables. A good practice to reduce this 
complexity is to define local variables in plans whenever this is 
possible. Regarding the dependencies generated by context 
variables and context conditions, it should be noticed that when a 
variable is used in a lot of context condition, changing its value in 
one or more tasks can influence the execution of a big part of the 
process model. For example, setting a certain Boolean context 
variable to “true” could lead to the activation of a lot of goals, 
starting the execution of some plans and to skipping some other 
goals. The deactivation and re-activation of goals from plans 
create dependencies that are not visible at the goal-hierarchy level, 
but “hidden” in tasks’ parameters. In order to support a better 
model complexity management, new concepts for modularization 
of process models, advanced search functionality for goal names 
and context variables, as also model analysis tools are developed. 

The advantage of generating the web user interface directly from 
the process model will be enriched to allow more comfortable 
user interfaces. The prototype version is very simplified: each user 
input task generates a separate To-Do for a specific role. Data 
dependencies among different input fields cannot be modeled. In 
real processes the support of To-Dos that contain several input 
tasks and also the support to handle data dependencies within To-
Dos is needed. 

The focus of the ACM-prototype was more on the process control 
and less on aspects like business data management, user 
management or an advanced graphical user interface. Therefore 
these and further aspects, like a sophisticated type system and an 
organizational model, are needed for a full-fledged goal- and 
context-oriented business process management suite. 

Regarding business data management, the following issues should 
be considered in the future development: 

• additional to process modeling it is necessary to have user-
defined data types, allowing the definition of complex, 
structured and business-specific data types; 

 

figure 6: goal hierarchy of ACM prototype 
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Figure 9: Goal-plan tree from [24, Figure 6]
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Figure 9 shows15 a goal-plan tree from [24] which has “60 achieve goals in up to 7 levels.
10 maintain goals, 85 plans and about 100 context variables” [24, Page 41]. Unlike the typical
goal-plan trees used in BDI platforms, the tree in Figure 9 consists of layers of “and”-refined
goals, with the only “or” refinements being at the leaves (where the plans are). In terms of the
analysis presented in this paper we can treat a link from a goal g to a set of goals, say, g1,g2,g3
as being equivalent to the goal g having a single plan p which performs g1,g2,g3 (and has no
actions, i.e. ` = 0 for non-leaf plans).

The last row of table 2 gives the various n values for this goal-plan tree, for ` = 4 (top row),
` = 2 (middle row) and ` = 1 (bottom row). Note that these figures are actually lower bounds
because we assumed that plans at depth 0 are simple linear combinations of ` actions, whereas it
is clear from [24] that their plans are in fact more complicated, and can contain nested decision
making (for example see [24, Figure 4]).

A rough indication of the size of a goal-plan tree is the number of goals. With 57 goals,
the tree of Figure 9 has size in between the first two rows of table 2. Comparing the number of
possible behaviours of the uniform goal-plan trees against the non-uniform, but real, goal-plan
tree, we see that the behaviour space is somewhat smaller in the non-uniform tree, but that it is
still quite large, especially in the case with failure handling. However, we do need to remember
(a) that the tree of Figure 9 only has plans at the leaves, which reduces its complexity; and (b)
that the figures for the tree are a conservative estimate, since we assume that leaf plans have only
simple behaviour.

No failure handling With failure handling
Parameters Number of (secs 3.1 and 3.2) (section 3.3)
j k d goals actions n4(g) n8(g) n4(g) n8(g)
2 2 3 21 62 (13) 128 614 ≈ 6.33×1012 ≈ 1.82×1013

3 3 3 91 363 (25) 1,594,323 6,337,425 ≈ 1.02×10107 ≈ 2.56×10107

Workflow with 57 goals(*) 294,912 3,250,604 (` = 4) ≈ 2.98×1020 ≈ 9.69×1020

(*) The paper says 60 goals, 294,912 1,625,302 (` = 2) ≈ 6.28×1015 ≈ 8.96×1015

but Figure 9 has 57 goals. 294,912 812,651 (` = 1) ≈ 9.66×1011 ≈ 6.27×1011

Table 2: Illustrative values for n4(g) and n8(g)

5 Conclusion
To summarise, our analysis has found that the space of possible behaviours for BDI agents is,
indeed, large. As expected, the number of possible behaviours grows as the tree’s depth (d) and
breadth ( j and k) grow. However, somewhat surprisingly, the introduction of failure handling

15The details are not meant to be legible: the structure is what matters.
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makes a very significant difference to the number of behaviours. For instance, for a uniform
goal-plan tree with depth 3 and j = k = 2 adding failure handling took the number of successful
behaviours from 128 to 6,332,669,231,104.

To put our analysis results in context, we now briefly compare the behaviour space of BDI
agents (with no concurrency) with concurrent systems. Consider a uniform goal-plan tree of
depth 3 with k = j = 3, then we have 1,594,323 successful executions without failure handling,
and around 1.02× 10107 successful executions with failure handling. On the other hand, the
number of ways of interleaving n parallel executions, each of length ` is (see e.g. [21, Section
3]) (n`)!/(`!)n and if we consider the interleavings of two sequential processes with 13 steps16

then there are 10,400,600 possibilities (26!/13!×13!). For three processes with 13 steps there are
≈ 8.45×1016 interleavings and for four processes≈ 5.36×1028. In other words, given a certain
number of actions, the number of possible behaviours generated by putting these actions into a
goal-plan tree (with failure handling) considerably exceeds the number of behaviours obtained
by interleaving the concurrent execution of the actions.

What does the analysis in this paper tell us about the testability of BDI agent systems? Before
we can answer this question, we need to consider what is being tested. Testing is typically carried
out at the levels of individual components (unit testing), collections of components (integration
testing) and the system as a whole.

Consider testing of a whole system. The behaviour space sizes depicted in tables 1 and 2
suggest quite strongly that attempting to obtain assurance of a system’s correctness by testing the
system as a whole is not feasible. In fact, the situation is even worse when we consider not only
the number of possible executions but also the probability of failing: the space of unsuccessful
executions is particularly hard to test, since there are many unsuccessful executions (more than
successful ones), and the probability of an unsuccessful execution is low, making this part of the
behaviour space hard to “reach”.

Furthermore, as shown in section 3.6, although making assumptions about the possible num-
bers of action failures that can occur in a given execution reduces the number of possible be-
haviours, there are still many many behaviours, even for relatively small trees (e.g. j = k = d =
3).

So system testing of BDI agents seems to be impractical. What about unit testing and inte-
gration testing? Although unit and integration testing are useful, it is not always clear how to
apply them usefully to agent systems where the interesting behaviour is complex and possibly
emergent. For example, given an ant colony optimisation system [25], testing a single ant doesn’t
provide much useful information about the correct functioning of the whole system. Similarly,
for BDI agents, when testing a sub-goal it can be difficult to ensure that testing covers all the
situations in which the goal may be attempted. Likewise, when testing an agent without the rest
of the system (including other agents that it interacts with) it can be hard to ensure adequate
coverage of different possibilities.

We do need to acknowledge that our analysis is somewhat pessimistic: real BDI systems do
not necessarily have deep or heavily branching goal-plan trees. Indeed, the tree described in
section 4 has a smaller behaviour space than the abstract goal-plan trees analysed in section 3.

16A goal-plan tree of depth 3 with k = j = 3 involves executing 13 actions (for ` = 1).
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However, even though smaller, it is still quite large, and this did cause problems in validation:

“One of the big challenges during the test phase was to keep the model consistent
and to define the right context conditions that result in the correct execution for all
scenarios. Therefore more support for dependency analysis, automated simulation
and testing of the process models is needed” [24, p42].

However, overall the conclusion seems to be that BDI systems are verifiable through testing to
the extent that they refrain from exploiting the BDI representation and its features!

Future Work
There is room for extending the analysis of section 3. Firstly, our analysis is for a single goal
within a single agent. Multiple agents that are collaborating to achieve a single high-level goal
can be viewed as having a shared goal-plan tree where certain goals and/or plans are allocated
to certain agents. Of course, in such a “distributed goal plan tree” there is concurrency. Further-
more, we have only considered achievement goals. It would be interesting to consider other types
of goals [26]. Secondly, our analysis has focussed on BDI agents, which are just one particular
type of agent. It would be interesting to consider other sorts of agent systems, and, more broadly,
other sorts of adaptive systems.

More importantly, having highlighted the infeasibility of verifying BDI agent systems through
testing, we need to find other ways of verifying such systems.

An approach that has some promise is the automatic generation of test cases for agent systems
[27, 6]. However, the size of the behaviour space suggests that the number of tests cases needed
may be very large, and that testing for failed plan execution is difficult. One interesting, and
potentially promising, avenue is to use formal techniques to help guide the test generation process
(e.g. symbolic execution or specification-guided testing) [28].

Another promising approach that has attracted some interest is model checking17 of agent
systems [29, 30, 31]. However, more work is needed: Raimondi and Lomuscio [31] verify
systems where agents are defined abstractly, i.e. not in terms of plans and goals; the MABLE
agent programming language [29] is actually an imperative language augmented with certain
agent features, not a BDI language; and the work of Bordini et al. [30] does not include failure
handling.
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A Expanding Goal-Plan Trees
The process of expanding a goal-plan tree into a sequence of actions when using failure handling
can be specified precisely by the following Prolog code19.

To execute a goal we select a plan and execute it. If the plan’s execution fails, then we recover
by “re-posting”, i.e. trying the goal again but excluding the plan that has already been tried.

exec(goal([]),[]).
exec(goal(Plans), A) :- remove(Plans,P,Rest), exec(P,A1),

if(failed(A1), recover(Rest,A1,A), eq(A,A1)).
recover(Plans,ActS,R) :- exec(goal(Plans),R1), append(ActS,R1,R).

To execute a plan we simply execute its body one step at a time. If any step fails, then we
fail, otherwise we continue to execute the remaining steps.

19Written in the W-Prolog variant (http://www.winikoff.net/wp)
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exec(plan([]), []).
exec(plan([S|Ss]), R) :- exec(S,A1),

if(failed(A1), eq(R,A1), continue(Ss,A1,R)).
continue(Ss,A1,R) :- exec(plan(Ss),A2), append(A1,A2,R).

An action can either (non-deterministically) succeed or fail.

exec(act(A), [A]).
exec(act(A), [A,fail]).

An action sequence is failed if its last element is ”fail”

failed(S) :- append(X,[fail],S).

We make use of two library predicates: append and remove.

append([],X,X).
append([X|Xs],Y,[X|Z]) :- append(Xs,Y,Z).
% remove(A,B,C) iff removing element B from list A leaves list C
remove([X|Xs],X,Xs).
remove([X|Xs],Y,[X|Z]) :- remove(Xs,Y,Z).

We collect all possible executions for a given goal-plan tree as follows:

go(A) :- sample(P), exec(P,A).
go :- sample(P), exec(P,A), print(A), nl, fail.
go2(A) :- sample2(P), exec(P,A).
go2 :- sample2(P), exec(P,A), print(A), nl, fail.

Where the following trees are encoded by sample (left) and sample2 (right). The trees cor-
respond to j = 2, k = ` = 1, d = 1 for sample and d = 2 for sample2.

goal

plan

b

plan

a

goal

plan

dgoal

plan

h

plan

g

c

plan

bgoal

plan

f

plan

e

a

The result of go is the following output, where a letter indicates the execution of an action,
and a 8 indicates failure. As predicted by our formulae, there are 4 successful executions and 2
unsuccessful executions:
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a a 8 b a 8 b 8

b b 8 a b 8 a 8

The result of go2 is the following 162 possibilities (consisting of 64 successful, and 98
unsuccessful executions).

a e b a f b 8 c h d c g d 8 a e b c h d 8 a f b 8

a e b 8 c g d a f b 8 c h d 8 c g d 8 a e b 8 c h d 8 a f 8 e b
a e b 8 c g d 8 a f b 8 c h 8 g d c g d 8 a e 8 f b c h d 8 a f 8 e b 8

a e b 8 c g 8 h d a f b 8 c h 8 g d 8 c g d 8 a e 8 f b 8 c h d 8 a f 8 e 8

a e b 8 c g 8 h d 8 a f b 8 c h 8 g 8 c g d 8 a e 8 f 8 c h d 8 a 8

a e b 8 c g 8 h 8 a f b 8 c 8 c g d 8 a f b c h 8 g d
a e b 8 c h d a f 8 e b c g d 8 a f b 8 c h 8 g d 8 a e b
a e b 8 c h d 8 a f 8 e b 8 c g d c g d 8 a f 8 e b c h 8 g d 8 a e b 8

a e b 8 c h 8 g d a f 8 e b 8 c g d 8 c g d 8 a f 8 e b 8 c h 8 g d 8 a e 8 f b
a e b 8 c h 8 g d 8 a f 8 e b 8 c g 8 h d c g d 8 a f 8 e 8 c h 8 g d 8 a e 8 f b 8

a e b 8 c h 8 g 8 a f 8 e b 8 c g 8 h d 8 c g d 8 a 8 c h 8 g d 8 a e 8 f 8

a e b 8 c 8 a f 8 e b 8 c g 8 h 8 c g 8 h d c h 8 g d 8 a f b
a e 8 f b a f 8 e b 8 c h d c g 8 h d 8 a e b c h 8 g d 8 a f b 8

a e 8 f b 8 c g d a f 8 e b 8 c h d 8 c g 8 h d 8 a e b 8 c h 8 g d 8 a f 8 e b
a e 8 f b 8 c g d 8 a f 8 e b 8 c h 8 g d c g 8 h d 8 a e 8 f b c h 8 g d 8 a f 8 e b 8

a e 8 f b 8 c g 8 h d a f 8 e b 8 c h 8 g d 8 c g 8 h d 8 a e 8 f b 8 c h 8 g d 8 a f 8 e 8

a e 8 f b 8 c g 8 h d 8 a f 8 e b 8 c h 8 g 8 c g 8 h d 8 a e 8 f 8 c h 8 g d 8 a 8

a e 8 f b 8 c g 8 h 8 a f 8 e b 8 c 8 c g 8 h d 8 a f b c h 8 g 8 a e b
a e 8 f b 8 c h d a f 8 e 8 c g d c g 8 h d 8 a f b 8 c h 8 g 8 a e b 8

a e 8 f b 8 c h d 8 a f 8 e 8 c g d 8 c g 8 h d 8 a f 8 e b c h 8 g 8 a e 8 f b
a e 8 f b 8 c h 8 g d a f 8 e 8 c g 8 h d c g 8 h d 8 a f 8 e b 8 c h 8 g 8 a e 8 f b 8

a e 8 f b 8 c h 8 g d 8 a f 8 e 8 c g 8 h d 8 c g 8 h d 8 a f 8 e 8 c h 8 g 8 a e 8 f 8

a e 8 f b 8 c h 8 g 8 a f 8 e 8 c g 8 h 8 c g 8 h d 8 a 8 c h 8 g 8 a f b
a e 8 f b 8 c 8 a f 8 e 8 c h d c g 8 h 8 a e b c h 8 g 8 a f b 8

a e 8 f 8 c g d a f 8 e 8 c h d 8 c g 8 h 8 a e b 8 c h 8 g 8 a f 8 e b
a e 8 f 8 c g d 8 a f 8 e 8 c h 8 g d c g 8 h 8 a e 8 f b c h 8 g 8 a f 8 e b 8

a e 8 f 8 c g 8 h d a f 8 e 8 c h 8 g d 8 c g 8 h 8 a e 8 f b 8 c h 8 g 8 a f 8 e 8

a e 8 f 8 c g 8 h d 8 a f 8 e 8 c h 8 g 8 c g 8 h 8 a e 8 f 8 c h 8 g 8 a 8

a e 8 f 8 c g 8 h 8 a f 8 e 8 c 8 c g 8 h 8 a f b c 8 a e b
a e 8 f 8 c h d a 8 c g d c g 8 h 8 a f b 8 c 8 a e b 8

a e 8 f 8 c h d 8 a 8 c g d 8 c g 8 h 8 a f 8 e b c 8 a e 8 f b
a e 8 f 8 c h 8 g d a 8 c g 8 h d c g 8 h 8 a f 8 e b 8 c 8 a e 8 f b 8

a e 8 f 8 c h 8 g d 8 a 8 c g 8 h d 8 c g 8 h 8 a f 8 e 8 c 8 a e 8 f 8

a e 8 f 8 c h 8 g 8 a 8 c g 8 h 8 c g 8 h 8 a 8 c 8 a f b
a e 8 f 8 c 8 a 8 c h d c h d c 8 a f b 8

a f b a 8 c h d 8 c h d 8 a e b c 8 a f 8 e b
a f b 8 c g d a 8 c h 8 g d c h d 8 a e b 8 c 8 a f 8 e b 8
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a f b 8 c g d 8 a 8 c h 8 g d 8 c h d 8 a e 8 f b c 8 a f 8 e 8

a f b 8 c g 8 h d a 8 c h 8 g 8 c h d 8 a e 8 f b 8 c 8 a 8

a f b 8 c g 8 h d 8 a 8 c 8 c h d 8 a e 8 f 8

a f b 8 c g 8 h 8 c g d c h d 8 a f b
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