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Abstract 

 
In a multi-agent system, a single agent may not be 

capable of completing complex tasks.  Therefore 
agents are required to form a team to fulfill the task 
requirements.  In this paper an agent model is 
introduced that facilitates cooperation among agents.  
A multi-threaded multi-agent simulation framework is 
designed to test the model.  The experimental results 
demonstrate that the model is significantly useful in 
achieving cooperation under various environmental 
constraints.  It also allows agents to adjust their 
teammate selection strategies according to 
environmental constraints. 

  
1. Introduction 
 

Typically, agents deployed in open environments 
may have different expertise and desires and act as 
self-interested entities to achieve their corresponding 
goals.  In such systems, it is not possible to specify a 
priori  the contexts in which an agent might need to 
interact with another for its service requirements.  In 
addition, in a dynamic environment it is critical for 
agents to be able to adapt to changes in the 
environment by identifying the most influential aspects 
of multiple constraints.  

This paper introduces a multi-dimensional model 
for partner selection based on attitudes and capabilities.  
In this model all agents are self-interested autonomous 
entities, and there is no central mechanism to control 
the system.  The model allows autonomous agents to 
interact with each other and facilitates cooperation 
when required.  The scenario studied in this paper is 
the following:  
• Agents have different capabilities required for 

different tasks; 
• The capabilities are designed in such a way that each 

agent is expert at only one capability, so cooperation 
of a team of robots is required to complete a task; 

• Tasks are heterogeneous and have various 
requirements.  In addition tasks have time stamps 
which indicate the expiry time of tasks.   

In this scenario, agents are required to find a teammate 
and complete a task before time expires.  Agents 
working on a task receive some reward if they perform 
the task before the time expires.  The reward is based 
on the quality of work that the team has provided.  
Quality of work represents the degree to which the task 
is completed, which is proportional to the team 
capabilities undertaking the task.  In addition to 
capabilities, agents have attitudes.  The attitudes of an 
agent impact the behaviour of the agent for teammate 
selection [1].  Here, the behaviour of an agent towards 
teammate selection is referred to as the “decision 
strategy” of the agent.   

A multi-threaded Java framework was designed to 
examine the proposed model.  In this framework all the 
messages are asynchronous, and agents may accept or 
reject to help the requesting agent based on their 
attitudes.  The framework deploys robotic agents in 
which each agent represents a robot.  The simulation 
results demonstrate the effect of agents’ attitudes and 
teammate selection strategies on rewards achieved by 
agents when cooperation is required.   They also show 
that by using this multi-dimensional preference model 
agents can adapt to changes in the environment by 
adjusting their attitudes.  Moreover, the effect of 
referrals on agent’s performance is studied.   

The rest of the paper is organized as follows.  
Section 2 discusses related work.  Section 3 describes 
the environment and agent model.  Section 4 details 
different strategies that agents may employ.  Section 5 
describes the simulation framework.  Section 6 
describes the learning mechanism.  In Section 7 the 
experimental results are discussed, and section 8 
concludes and outlines future work.  
 
2. Related Work 
 

Airiau et. al. [2] proposed a peer-to-peer approach 
to bring agents with complementary interests and 



competences together.  Agents team up to form self-
sustaining teams of agents that can share their 
knowledge.  Dutta et. al. [3] showed that by deploying 
a simple learning mechanism, self-interested agents 
with complementary expertises can learn to recognize 
cooperation possibilities and develop stable and 
mutually beneficial partnerships.  However in these 
works the distribution of task types are uniform, and 
agents behaviors are fixed.  

 Sen et. al. [4] deployed a simple reinforcement 
learning mechanism in a large population of interacting 
agents.  Their results show that simple reinforcement 
learning produces robust results relating to team 
formation.  In their work favorable partnerships are 
predefined, and agents learn to recognize them.  Ahn 
et. al. [5] introduced the concept of attitudes as a 
mechanism for choosing a partner.  Attitudes define 
how an agent selects a partner by considering different 
situations.  They also show how learned attitudes help 
in teammate selection.  

The present work employs the concept of attitudes 
in a multi-agent scenario, in which each agent 
represents a mobile robot.  The attitudes of an agent 
impact its teammate selection strategy.  Here each 
robot is able to interact with only those robots which 
are within the same spatial region.  In most previous 
work, either agents are able to interact with all other 
agents of the system, or all agents are provided with 
the same set of tasks and neighbors to provide uniform 
conditions for all agents [6].  However, in real multi-
robot systems this assumption is usually not viable.  In 
scenarios such as earthquakes or fires, there may be no 
possibility for global control over the number and 
distribution of tasks.  The current work assumes a 
random distribution of tasks and agents to provide a 
realistic scenario in which the density of tasks and 
agents in different regions of the environment is 
variable.  

 Some other works assume that there is a pool of 
partner agents for the selection of teammates [5]. This 
assumption wastes some of the resources, since some 
agents are idle waiting most of the time.  Our work 
assumes that all agents are active entities and can 
participate in either finding a task and partner or 
accepting an offer to become a teammate of another 
agent.  We consider and emphasize the importance of 
the relative locations of the robots in connection with 
their partners as an additional dimension for selection 
of a teammate.   
 
3. Environmental and Agent model 
 

We simulated an environment where agents seek 
help from each other to complete a task.  For simplicity 

it is assumed that a team is made up of two agents.  
However, the model could be easily extended to 
include more agents in a team.  Each agent 
participating in performing a task is rewarded by a 
monitoring agent who oversees the simulation 
environment.  The goal of each individual agent is to 
maximise its own reward.   
 
3.1. Environment 

 
The environment is divided into several spatial 

regions.  A RFID tag is assumed to be deployed in 
each region and holds some information with respect to 
the geographical coordinates of the region and also the 
presence of tasks.  The RFID tag of each region is 
called the environment tag.   Agents are able to identify 
their own positions by reading the coordinate 
information of the nearest environment tag. 

  
3.2. Agent Model 
 
In this model each agent is equipped with a RFID tag 
and a RFID reader.  Each agent is capable of 
communicating with other agents that are within the 
reading radio range of its RFID reader.  The agent 
RFID tag holds the agent’s identification number, 
position, and capabilities.  The information on a RFID 
tag of an agent could be read by any other agent that 
has this agent within its visibility field.  The position 
information enables agents to estimate their distance 
from their neighbors when selecting teammates.  As 
agents move into an environment, they update their 
position information by reading the nearest 
environment RFID tag.    
 
3.2.1. Capability 
 

Robots have different capabilities that are useful in 
satisfying different task requirements.  The capabilities 
of each robot are fixed and do not change over time.  In 
this work two capabilities are assigned to each robot, 
capability x and capability y, and their values 
representing the quality level may range from 0 to 1. 
 
• Capability x [0,1]: quality of capability x of robot. 
• Capability y [0,1]:  quality of capability y of robot.  

 
3.2.2. Attitude 
 
   In addition to capabilities, each agent has attitudes 
that impact its decision-making.  Social and behavioral 
psychologists sometimes describe attitudes as a 
predictor of behavior [1].  In that case attitudes can 
define the preferences of an agent for teammate 



selection. In the current work each agent has the 
following attitudes: 
 
• att_nearness: Attitude toward nearness: This refers 

to the agent’s inclination to seek teammates that are 
physically close to the task.  

•  att_quality: Attitude toward quality: This refers to 
the agent’s inclination to find teammates that provide 
high quality of service. 

• att_response time: Attitude toward response time.  
This refers to agent’s inclination to find a teammate 
as quickly as possible.  

 
In this study each attitude is represented by a number 
between 0 and 1.  For example, when an agent has a set 
of attitudes [0.2, 0.8, 0.0], it indicates that the agent has 
a low attitude toward nearness, a high attitude toward 
(predilection for) quality and no attitude toward 
response time.  If an agent has a high attitude toward 
quality, then it prefers agents which will provide the 
highest quality with respect to the task requirements.      
 
3.3. Task 

 
Tasks are distributed in the environment and have 

different requirements that should be satisfied by the 
different capabilities of the robots.  If there is a task in 
a region, then the corresponding environment RFID tag 
provides the task information.  This information 
includes task position and task requirements.  A task 
can be selected by an agent if no other agent is working 
on it.  In this work we assume that each task has a set 
of two requirements rx and ry in which we have: 
 

• rx [0,1.5]: quality required for x dimension of task. 
• ry [0,1.5]: quality required for y dimension of  task. 

 
The requirements range is somewhat arbitrarily chosen 
to range between 0 and 1.5.  Therefore, agents are 
required to cooperate in order to satisfy their 
requirements.  rx 

and ry are satisfied by capabilities x 
and y of an agent respectively.  

 
3.4. Reward Mechanism 
 

Each task requires agents with certain capabilities 
and has an associated reward.  The reward is 
distributed equally to the agents that participated in 
completing a task within a specified time constraint. 
When agent Ai 

works on a task t with n number of 
agents as a team and the team completes the tasks, then 
each agent participating in completing the task receives 
the following reward: 
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R(t) is the original reward associated with each task. 
If the team can satisfy only some part of the task 

because the capabilities of all the participating agents 
in completing the task is less than the task requirement, 
then the reward that each agent Ai receives is defined 
as follow: 
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Where  
   (Ak)x ,(Ak)y: Capability x and y provided by kth team member 

    rx ,ry: x and y requirements of task 
   R(t): Total reward for completing task t 
   n: the number of agents in the team 

For example assume that two agents complete a task 
which offers the total reward of 7.  Then the amount of 
reward that each agent receives is 3.5.  Accordingly, if 
two agents just finish 80% of that task, then each agent 
receives a reward of 2.8.   
 
4. Agent decision strategies 
 

In order to select a teammate, each agent ranks all 
its available neighbors based on their expected 
performance and selects the best one.  We examine 
four primary strategies that an agent can employ for 
selecting a partner.  The decision strategy of each agent 
depends on the attitudes of the agent.  Table 1 shows 
the different attitudes of agents and their corresponding 
decision strategy.  

 
         Attitudes          strategy 
(nearness,quality,response_time) 

(0,high,0)         Best_possible 
(low,high,0)        Best_available  
(high,0,0)       Nearest_available  
(0,0,high)       Impatient 

 
4.1. Best_possible teammate strategy 

 
An agent that employs this strategy only selects 

another agent as its teammate if the two agents as a 
team can complete the task.  It is formally represented 
as: 

Aix+ Ajx≥rx  and  Aiy+ Ajy≥ry

  

 

Where Aix, Aiy and Ajx, Ajy are the x and y capabilities of 
agent Ai and Aj respectively.  rx and ry refer to the x and 
y requirements of a task respectively.  The agent ranks 
its neighboring agents that satisfy the above conditions 
based on their usefulness value and selects the top 



ranked agent as its teammate.  The helpfulness value 
for each agent is calculated based on the agent’s 
distance to the task.   
 

HAj =distAj 

In this equation distAj is the distance rating of partner 
agent Aj (0≤dist≤1).   

 

4.1.1. Referral 
 

An agent with best_possible strategy does not select 
a partner unless the two agents as a team could 
complete the task.  An agent with this strategy may 
simply fail to achieve some reward due to not having 
an agent with complementary capabilities within its 
visibility field.  So the referral mechanism could be 
employed to improve the performance of agents with 
best_possible strategy.   

Referral systems are multi-agent systems whose 
members may follow a cooperative protocol by 
providing referrals to another agent, thus sharing their 
knowledge about service providers and enabling 
improved service selection.  In current work, when an 
agent does not have the required capabilities then the 
agent checks its visibility range and if it could see any 
agent with the required capabilities then it sends a 
referral to the requested agent.  An agent refers to 
another agent if the agent itself does not have the 
required capabilities and task time has not expired.  If 
there is less than half the required time left to solve the 
task, then the agent dose not send a referral and 
removes the request from its request queue.   
 
4.2 Best_available teammate strategy 
 

 

Agents that employ this strategy gain some rewards 
by partially completing tasks.  These agents may select 
teammates that only have some of the expertise 
required by the task, and they receive a partial reward 
for the part of the task that is completed.  For each 
available agent in the neighborhood, the quality of the 
capabilities is calculated based on the following 
equation in which Q is the quality of capabilities of 
agents Ai and Aj.  

 
Q =r x *(A ix + Ajx )+ r y *(Aiy + Ajy )

  Aix, Aiy, Ajx, and Ajy are the values for x and y 
capabilities of agents Ai and Aj respectively and rx and 
ry refer to x and y requirements of the task. The total x 
capabilities of the agents are paired with x-requirement 
of the task, and the total y capabilities of agents is 
paired with y-requirement of the task.  So if for 
example the task has a high rx then, this equation 
weighs capability x of agents more heavily.     

For teammate selection each agent considers all 
available local agents and ranks them based on their 
helpfulness value.  Given the quality of capabilities, 
the agent calculates the helpfulness of each possible 
partner as follows: 
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In this equation Ai att-quality and Ai att-nearness are the 

attitude of agent Ai toward quality and nearness 
respectively.  The agent’s attitude toward quality is 
associated with the quality that the agent can provide 
with respect to task requirements, and an agent’s 
attitude toward nearness is associated with the distance 
rating of the potential partner.  According to this 
equation, an agent that uses this Best_available 
strategy weighs quality of work more than distance.   
An agent selects a teammate that has the highest value 
of H.   

 
4.3 Nearest_available strategy 
 

An agent that employs this strategy selects an agent 
that has the least distance to the task and receives a 
partial reward for completing some parts of a task. 
Agents with this strategy receive partial rewards 
proportional to the completed part of the task. 

 
4.4 Impatient teammate strategy 
 

Agents that employ this strategy do not wait to 
receive responses from all the requested agents, but 
select the first agent that responds to their requests as 
their teammate.   
 
5.  Framework description 
  

A multi-agent framework was designed to test the 
proposed model.  The framework was implemented 
using Java language, with each agent having its own 
thread of execution and all the messages of the system 
being asynchronous.  The concurrency feature of the 
system provides a better testing environment for real 
agent applications.  The framework allows agents to 
run multiple auctions over various tasks concurrently.   

In this system each agent has two queues: a request 
queue and a response queue.  The request queue stores 
the requests from other agents and the response queue 
stores the positive responses of other agents.  Initially 
each agent observes its environment and stores the 
task’s and agent’s information in its memory.  If there 
is a task within its visibility field, then the agent selects 
the task and changes the status of the task to 
unavailable for other agents.  In cases where there are 



several tasks, each agent selects a task that has the least 
distance to the agent.  After finding a task, agents start 
looking for teammates.  In order to find a teammate, 
the agent sends a request message to all available 
agents in its neighborhood and waits for a certain 
amount of time to receive their responses (note that 
agents with Impatient strategy do not wait).  Since 
tasks have time stamps, agents are required to send 
their requests to their neighbors in the order of their 
helpfulness.  This is to make sure that the agents who 
have higher helpfulness values will receive the request 
before others and therefore they have enough time to 
respond.  This is especially critical when time 
constraints of tasks are very tight and the requesting 
agent waits for a short time.   

 
Algorithm 1 Agents partner selection mechanism   

1. Observe; the information of available agents and tasks   
2. t=Find a task 
3. If (t!=null){ 

  Send a request; to all available neighbors 
  Wait (time); if applicable 

4. While (agent.teammate=null AND time≤(task time/2)){ 
             selectedResponse=Select the best response 

                    selectedRequest=Select the best request 
   if (selectedResponse.teammate!=null){ 
                            If (H(selectedResponse)≥H(selectedRequest)  

          Team up; with selectedResponse 
         else{ 

                           send response to the selectedRequest 
                          requestQueue.remove(selectedRequest) 
                          wait(time) 

          }} 
else 
        responseQueue.remove(selectedResponse) 
    } 
responseQueue.clear 
requestQueue.clear 

           } 
5. if(t!=null AND task time expired) 

 drop t 
6. If(t!=null AND teammate!=null) 

    moveTowardTask 
             else 

  moveRandomly 
 

 
When the waiting time is over, then the agent starts 

processing the received responses and requests.  The 
agent ranks its response queue and request queue based 
on the helpfulness value of agents.  If there is a request 
with a higher helpfulness value than all the responses, 
then the agent sends a response to the requesting agent.  
If the requesting agent does not select this agent within 
a short time, then the agent repeats the explained 
process (while loop in the above algorithm) until it 
finds a teammate or time expires (in this framework 
agents spend 1/3 of the task time on finding a 
teammate and the rest for moving toward a task).  An 
agent only considers a request if more than half the 

time required by the task is left, otherwise it removes 
that request from its request queue.  The algorithm 1 
shows the pseudo-code which each agent runs 
constantly. 

Although this is a concurrent system, the CPU runs 
the threads sequentially and in a random order.  
Moreover, the amount of time that is spent on 
executing each thread is different.  In order to make 
sure that all threads are approximately run for the same 
amount of time by the CPU, all the threads were set 
with a high priority.  In addition, at the end of each 
simulation run, a thread waits for 50 milliseconds.  
This puts the current thread to sleep and allows the 
CPU to run the next thread.   This is especially 
important when the time constraints of tasks are very 
tight and the response should be given quickly.   

 
6. Learning attitude toward time and 
quality 
 

In dynamic environments agents are required to 
adapt to new conditions in order to maximize their 
rewards.  In this work agents can adapt to new 
conditions by changing their attitudes.  Agents change 
their attitudes based on the feedback that they receive 
from the environment.  For instance there might be 
some conditions when agents receive a low reward 
because time is very tight.  In this situation agents 
should learn to decrease their attitude toward quality 
and increase their attitude toward nearness.  A simple 
reinforcement learning mechanism is employed to alter 
the agent’s attitudes.  To demonstrate the effect of 
learning, agents with best_available strategy are 
deployed. 

An agent performs with its current set of attitudes 
for a certain amount of time and stores a copy of the 
attitudes and the total reward received.  Then the agent 
increases its attitude toward one dimension and 
decreases values in the other dimensions.  Then the 
agent performs for the same amount of time with its 
new set of attitudes.  If the reward that the agent 
receives is more than the reward gained by its previous 
set of attitudes, then it continues to change its attitudes 
the same way; otherwise, it increases its attitude 
toward the other dimension.  The following 
reinforcement learning formula is used to update the 
agent’s attitudes: 
 
 at+1=at+β(R(at+1)-R(at)) 
In this equation at+1 is the new value for attitude.  at 

is 
the previous attitude of the agent.  R(at+1) is the actual 
reward received for new attitudes and R(at) is the 
actual reward received by previous attitudes.  β is the 
learning rate.     



7. Experiments 
 

A series of experiments was conducted to study the 
performance of the proposed model.  The simulation 
environment is a grid of 100 by 100 cells in which each 
cell refers to one square of the grid.  There are 120 
robots with different capabilities.  Robots can only 
move vertically and horizontally one cell at a time.  
There are 1000 tasks with different requirements 
placed randomly in the environment.  The reward for 
each task is a fixed number (7).  All times are in 
milliseconds.    
 
7.1. The effect of time on agents’ reward  

 
In this experiment there are four groups of agents in 

which each group employs one strategy 
(best_available, best_possible, nearest available and 
impatient).  Four different runs of simulation were run 
under various time constraints, where in each run, 
agents with one strategy were deployed.  The total 
reward achieved by each group was measured under 
various time constraints of 500, 1000, 2000 and 3000 
milliseconds.   

 

 
  Figure. 1 Effect of agent’s strategy on agents reward. 

 
Figure 1 shows that when time is very tight (500), 
agents which employ nearest-available strategy 
outperform the other groups. In this situation, all 
groups perform somewhat impatiently due to lack of 
enough time.  Therefore, agents with nearest_available 
strategy who select the closest available teammate 
perform better than other groups.   This is due to the 
fact that agents have enough time to move toward their 
task and work on it.  However, other groups of agents 
may select a teammate that might be further away and 
therefore the team may fail to reach the task position 
before time expires.  When time is a bit more relaxed 
but still relatively tight (1000), then impatient strategy 
outperforms other strategies. An Impatient agent 
selects the first responding agent as its teammate and 
does not wait for others to respond.  This increases 
their chance of completing a task before expiry time.  

When time is more relaxed (1000 and 2000) 
best_available strategy outperforms the other 
strategies.  This is the result of selecting high-quality 
teammates.  The agents with best_possible strategy 
perform worse under various time constraints.  This is 
the effect of perfectionist attitudes of these agents.  
This approach is useful when there is more incentive in 
completing a job (refer to next experiment).    
 
7.2. The effect of referral on performance of 
agents with best_possible strategy 
 

In some situations the tasks are required to be done 
completely.  For instance, if the task is to clean a 
minefield, then partially completing tasks is not 
appropriate.  Therefore for certain scenarios agents are 
required to complete the tasks as opposed to partial 
completion.  In order to improve the performance of 
agents with best_possible strategy a referral 
mechanism is deployed.  

Three runs of simulation were run.  In the first run 
(no. of hops=1) no referral was deployed.  In the 
second run (no. of hops=2) if the requested agent does 
not have the required capabilities but it could see an 
available agent with the required capabilities, then it 
sends a referral to the requesting agent.     

  

 
Figure. 2 Effect of referral on agents’ performance. 
 
In the third run (no. of hops=3), the requested agent 
may ask its neighbors whether they could see an agent 
with the required capabilities.  The time constraint was 
set to be very relaxed, so agents have enough time to 
send and process referrals and the reading range of the 
agents was 5.  Figure 2 demonstrates that when agents 
deploy referrals (no. of hops=2 and no. of hops=3) 
their performances improve.  
 
7.3. The effect of learning and adaptation 

 
The aim of this experiment is to show how agents 

can adapt to dynamic changes in the environment.  In 
this experiment agents with the best_available strategy 
are deployed, and the time constraint of tasks is set to a 



low value of 500 milliseconds.  Two runs of simulation 
were performed.  In the first run agents do not learn, 
and in the second run learning is employed.  Since time 
is very tight, agents with best_available strategy 
eventually change their attitudes by using the learning 
mechanism described previously.  So they increase 
their attitude towards nearness and decrease their 
attitude towards quality.  By changing the attitudes 
agents eventually adapt nearest_available strategy.  
 

 
 Figure. 3 Reward of agents within each period of time. 
 
Figure 3 shows the total reward achieved in each 
period of time (every 1000 milliseconds).  It shows that 
the learning mechanism improved the reward of agents 
and decreased the total time required to complete the 
tasks.  
 
8. Conclusion 
  

This paper has presented a multi dimensional model 
for partner selection based on capabilities and attitudes.  
A multi-threaded Java framework was designed to test 
the proposed model.  The designed framework 
provided a realistic environment for testing the model.  
In this model each agent may accept a request to 
provide a resource or reject it based on the agent’s 
attitude and strategy.  All messages are asynchronous, 
thus agents do not wait for the response after the 
waiting time expires.  We have evaluated the model by 
using a grid type simulation environment.  The result 
shows that nearest_available strategy is useful when 
time constraints of tasks are extremely tight.  Impatient 
strategy is suitable for situations when time is 
relatively tight.  best_available strategy is preferable in 
situations when time constraints of tasks are more 
relaxed and there is enough time for agents to find a 
high quality teammate.  Best_possible strategy is 
preferable in situations where tasks are required to be 
fully accomplished as opposed to be performed 
partially.  The experiments demonstrated that, by using 
the referral mechanism, an agent’s performance in 
terms of the number of completed tasks was improved.  
The referral mechanism allows agents to find their 

required resources if there is any agent with the 
required expertise close to the location of the 
neighboring agents.  We kept the number of hops that a 
message can be transferred relatively low to keep the 
agents’ information local.  We demonstrated that 
referrals improved the performance of agents but under 
very relaxed time constraints.  Note that referrals are 
probably not appropriate for emergency situations.  It 
was also shown that, by using a simple reinforcement 
learning mechanism, agents had the ability to adapt 
their partner selection strategy to the changes of the 
environment.  The result indicated that adapting 
attitudes could significantly improve the performance 
of the agents.    

An interesting approach for future work could be 
considering different rewards for various tasks 
depending on the size of the tasks.  In addition a cost 
could be associated with giving a referral.  This is 
interesting, since it may hamper the agent’s self-
interest.  Moreover, it is valuable to study whether 
agents of each group may have a preference for agents 
of other groups (strategies).  Another interesting aspect 
could be studying the effect of deceptive referrals 
where only the referrals of trustworthy agents should 
be considered.    
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