
Partner selection mechanisms for agent cooperation

Toktam Ebadi, Maryam Purvis, Martin Purvis
University of Otago, Dunedin, New Zealand

E-mail:{tebadi, tehrany,mpurvis}@infoscience.otago.ac.nz

Abstract

In a multi-agent system, a single agent may not be

capable of completing complex tasks. Therefore
agents are required to form a team to fulfill the task
requirements. In this paper an agent model is
introduced that facilitates cooperation among agents.
A multi-threaded multi-agent simulation framework is
designed to test the model. The experimental results
demonstrate that the model is significantly useful in
achieving cooperation under various environmental
constraints. It also allows agents to adjust their
teammate selection strategies according to
environmental constraints.

1. Introduction

Typically, agents deployed in open environments
may have different expertise and desires and act as
self-interested entities to achieve their corresponding
goals. In such systems, it is not possible to specify a
priori the contexts in which an agent might need to
interact with another for its service requirements. In
addition, in a dynamic environment it is critical for
agents to be able to adapt to changes in the
environment by identifying the most influential aspects
of multiple constraints.

This paper introduces a multi-dimensional model
for partner selection based on attitudes and capabilities.
In this model all agents are self-interested autonomous
entities, and there is no central mechanism to control
the system. The model allows autonomous agents to
interact with each other and facilitates cooperation
when required. The scenario studied in this paper is
the following:
• Agents have different capabilities required for

different tasks;
• The capabilities are designed in such a way that each

agent is expert at only one capability, so cooperation
of a team of robots is required to complete a task;

• Tasks are heterogeneous and have various
requirements. In addition tasks have time stamps
which indicate the expiry time of tasks.

In this scenario, agents are required to find a teammate
and complete a task before time expires. Agents
working on a task receive some reward if they perform
the task before the time expires. The reward is based
on the quality of work that the team has provided.
Quality of work represents the degree to which the task
is completed, which is proportional to the team
capabilities undertaking the task. In addition to
capabilities, agents have attitudes. The attitudes of an
agent impact the behaviour of the agent for teammate
selection [1]. Here, the behaviour of an agent towards
teammate selection is referred to as the “decision
strategy” of the agent.

A multi-threaded Java framework was designed to
examine the proposed model. In this framework all the
messages are asynchronous, and agents may accept or
reject to help the requesting agent based on their
attitudes. The framework deploys robotic agents in
which each agent represents a robot. The simulation
results demonstrate the effect of agents’ attitudes and
teammate selection strategies on rewards achieved by
agents when cooperation is required. They also show
that by using this multi-dimensional preference model
agents can adapt to changes in the environment by
adjusting their attitudes. Moreover, the effect of
referrals on agent’s performance is studied.

The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 describes
the environment and agent model. Section 4 details
different strategies that agents may employ. Section 5
describes the simulation framework. Section 6
describes the learning mechanism. In Section 7 the
experimental results are discussed, and section 8
concludes and outlines future work.

2. Related Work

Airiau et. al. [2] proposed a peer-to-peer approach
to bring agents with complementary interests and

competences together. Agents team up to form self-
sustaining teams of agents that can share their
knowledge. Dutta et. al. [3] showed that by deploying
a simple learning mechanism, self-interested agents
with complementary expertises can learn to recognize
cooperation possibilities and develop stable and
mutually beneficial partnerships. However in these
works the distribution of task types are uniform, and
agents behaviors are fixed.

 Sen et. al. [4] deployed a simple reinforcement
learning mechanism in a large population of interacting
agents. Their results show that simple reinforcement
learning produces robust results relating to team
formation. In their work favorable partnerships are
predefined, and agents learn to recognize them. Ahn
et. al. [5] introduced the concept of attitudes as a
mechanism for choosing a partner. Attitudes define
how an agent selects a partner by considering different
situations. They also show how learned attitudes help
in teammate selection.

The present work employs the concept of attitudes
in a multi-agent scenario, in which each agent
represents a mobile robot. The attitudes of an agent
impact its teammate selection strategy. Here each
robot is able to interact with only those robots which
are within the same spatial region. In most previous
work, either agents are able to interact with all other
agents of the system, or all agents are provided with
the same set of tasks and neighbors to provide uniform
conditions for all agents [6]. However, in real multi-
robot systems this assumption is usually not viable. In
scenarios such as earthquakes or fires, there may be no
possibility for global control over the number and
distribution of tasks. The current work assumes a
random distribution of tasks and agents to provide a
realistic scenario in which the density of tasks and
agents in different regions of the environment is
variable.

 Some other works assume that there is a pool of
partner agents for the selection of teammates [5]. This
assumption wastes some of the resources, since some
agents are idle waiting most of the time. Our work
assumes that all agents are active entities and can
participate in either finding a task and partner or
accepting an offer to become a teammate of another
agent. We consider and emphasize the importance of
the relative locations of the robots in connection with
their partners as an additional dimension for selection
of a teammate.

3. Environmental and Agent model

We simulated an environment where agents seek
help from each other to complete a task. For simplicity

it is assumed that a team is made up of two agents.
However, the model could be easily extended to
include more agents in a team. Each agent
participating in performing a task is rewarded by a
monitoring agent who oversees the simulation
environment. The goal of each individual agent is to
maximise its own reward.

3.1. Environment

The environment is divided into several spatial

regions. A RFID tag is assumed to be deployed in
each region and holds some information with respect to
the geographical coordinates of the region and also the
presence of tasks. The RFID tag of each region is
called the environment tag. Agents are able to identify
their own positions by reading the coordinate
information of the nearest environment tag.

3.2. Agent Model

In this model each agent is equipped with a RFID tag
and a RFID reader. Each agent is capable of
communicating with other agents that are within the
reading radio range of its RFID reader. The agent
RFID tag holds the agent’s identification number,
position, and capabilities. The information on a RFID
tag of an agent could be read by any other agent that
has this agent within its visibility field. The position
information enables agents to estimate their distance
from their neighbors when selecting teammates. As
agents move into an environment, they update their
position information by reading the nearest
environment RFID tag.

3.2.1. Capability

Robots have different capabilities that are useful in
satisfying different task requirements. The capabilities
of each robot are fixed and do not change over time. In
this work two capabilities are assigned to each robot,
capability x and capability y, and their values
representing the quality level may range from 0 to 1.

• Capability x [0,1]: quality of capability x of robot.
• Capability y [0,1]: quality of capability y of robot.

3.2.2. Attitude

 In addition to capabilities, each agent has attitudes
that impact its decision-making. Social and behavioral
psychologists sometimes describe attitudes as a
predictor of behavior [1]. In that case attitudes can
define the preferences of an agent for teammate

selection. In the current work each agent has the
following attitudes:

• att_nearness: Attitude toward nearness: This refers

to the agent’s inclination to seek teammates that are
physically close to the task.

• att_quality: Attitude toward quality: This refers to
the agent’s inclination to find teammates that provide
high quality of service.

• att_response time: Attitude toward response time.
This refers to agent’s inclination to find a teammate
as quickly as possible.

In this study each attitude is represented by a number
between 0 and 1. For example, when an agent has a set
of attitudes [0.2, 0.8, 0.0], it indicates that the agent has
a low attitude toward nearness, a high attitude toward
(predilection for) quality and no attitude toward
response time. If an agent has a high attitude toward
quality, then it prefers agents which will provide the
highest quality with respect to the task requirements.

3.3. Task

Tasks are distributed in the environment and have

different requirements that should be satisfied by the
different capabilities of the robots. If there is a task in
a region, then the corresponding environment RFID tag
provides the task information. This information
includes task position and task requirements. A task
can be selected by an agent if no other agent is working
on it. In this work we assume that each task has a set
of two requirements rx and ry in which we have:

• rx [0,1.5]: quality required for x dimension of task.
• ry [0,1.5]: quality required for y dimension of task.

The requirements range is somewhat arbitrarily chosen
to range between 0 and 1.5. Therefore, agents are
required to cooperate in order to satisfy their
requirements. rx

and ry are satisfied by capabilities x
and y of an agent respectively.

3.4. Reward Mechanism

Each task requires agents with certain capabilities
and has an associated reward. The reward is
distributed equally to the agents that participated in
completing a task within a specified time constraint.
When agent Ai

works on a task t with n number of
agents as a team and the team completes the tasks, then
each agent participating in completing the task receives
the following reward:

n

tR
tR

iA

)(
)(=

R(t) is the original reward associated with each task.
If the team can satisfy only some part of the task

because the capabilities of all the participating agents
in completing the task is less than the task requirement,
then the reward that each agent Ai receives is defined
as follow:

n

tR

r

A

r

A
tR

y

n

k yk

x

n

k xk
Ai

)(
*)

)()(
()(11 ∑∑ == +=

Where
 (Ak)x ,(Ak)y: Capability x and y provided by kth team member

 rx ,ry: x and y requirements of task
 R(t): Total reward for completing task t
 n: the number of agents in the team

For example assume that two agents complete a task
which offers the total reward of 7. Then the amount of
reward that each agent receives is 3.5. Accordingly, if
two agents just finish 80% of that task, then each agent
receives a reward of 2.8.

4. Agent decision strategies

In order to select a teammate, each agent ranks all
its available neighbors based on their expected
performance and selects the best one. We examine
four primary strategies that an agent can employ for
selecting a partner. The decision strategy of each agent
depends on the attitudes of the agent. Table 1 shows
the different attitudes of agents and their corresponding
decision strategy.

 Attitudes strategy
(nearness,quality,response_time)

(0,high,0) Best_possible
(low,high,0) Best_available
(high,0,0) Nearest_available
(0,0,high) Impatient

4.1. Best_possible teammate strategy

An agent that employs this strategy only selects

another agent as its teammate if the two agents as a
team can complete the task. It is formally represented
as:

Aix+ Ajx≥rx and Aiy+ Ajy≥ry

Where Aix, Aiy and Ajx, Ajy are the x and y capabilities of
agent Ai and Aj respectively. rx and ry refer to the x and
y requirements of a task respectively. The agent ranks
its neighboring agents that satisfy the above conditions
based on their usefulness value and selects the top

ranked agent as its teammate. The helpfulness value
for each agent is calculated based on the agent’s
distance to the task.

HAj =distAj

In this equation distAj is the distance rating of partner
agent Aj (0≤dist≤1).

4.1.1. Referral

An agent with best_possible strategy does not select
a partner unless the two agents as a team could
complete the task. An agent with this strategy may
simply fail to achieve some reward due to not having
an agent with complementary capabilities within its
visibility field. So the referral mechanism could be
employed to improve the performance of agents with
best_possible strategy.

Referral systems are multi-agent systems whose
members may follow a cooperative protocol by
providing referrals to another agent, thus sharing their
knowledge about service providers and enabling
improved service selection. In current work, when an
agent does not have the required capabilities then the
agent checks its visibility range and if it could see any
agent with the required capabilities then it sends a
referral to the requested agent. An agent refers to
another agent if the agent itself does not have the
required capabilities and task time has not expired. If
there is less than half the required time left to solve the
task, then the agent dose not send a referral and
removes the request from its request queue.

4.2 Best_available teammate strategy

Agents that employ this strategy gain some rewards
by partially completing tasks. These agents may select
teammates that only have some of the expertise
required by the task, and they receive a partial reward
for the part of the task that is completed. For each
available agent in the neighborhood, the quality of the
capabilities is calculated based on the following
equation in which Q is the quality of capabilities of
agents Ai and Aj.

Q =r x *(A ix + Ajx)+ r y *(Aiy + Ajy)

 Aix, Aiy, Ajx, and Ajy are the values for x and y
capabilities of agents Ai and Aj respectively and rx and
ry refer to x and y requirements of the task. The total x
capabilities of the agents are paired with x-requirement
of the task, and the total y capabilities of agents is
paired with y-requirement of the task. So if for
example the task has a high rx then, this equation
weighs capability x of agents more heavily.

For teammate selection each agent considers all
available local agents and ranks them based on their
helpfulness value. Given the quality of capabilities,
the agent calculates the helpfulness of each possible
partner as follows:

 nearnessattjqualityatt

i

j iAi
A
A AdistAQH

__
** +=

In this equation Ai att-quality and Ai att-nearness are the

attitude of agent Ai toward quality and nearness
respectively. The agent’s attitude toward quality is
associated with the quality that the agent can provide
with respect to task requirements, and an agent’s
attitude toward nearness is associated with the distance
rating of the potential partner. According to this
equation, an agent that uses this Best_available
strategy weighs quality of work more than distance.
An agent selects a teammate that has the highest value
of H.

4.3 Nearest_available strategy

An agent that employs this strategy selects an agent
that has the least distance to the task and receives a
partial reward for completing some parts of a task.
Agents with this strategy receive partial rewards
proportional to the completed part of the task.

4.4 Impatient teammate strategy

Agents that employ this strategy do not wait to
receive responses from all the requested agents, but
select the first agent that responds to their requests as
their teammate.

5. Framework description

A multi-agent framework was designed to test the
proposed model. The framework was implemented
using Java language, with each agent having its own
thread of execution and all the messages of the system
being asynchronous. The concurrency feature of the
system provides a better testing environment for real
agent applications. The framework allows agents to
run multiple auctions over various tasks concurrently.

In this system each agent has two queues: a request
queue and a response queue. The request queue stores
the requests from other agents and the response queue
stores the positive responses of other agents. Initially
each agent observes its environment and stores the
task’s and agent’s information in its memory. If there
is a task within its visibility field, then the agent selects
the task and changes the status of the task to
unavailable for other agents. In cases where there are

several tasks, each agent selects a task that has the least
distance to the agent. After finding a task, agents start
looking for teammates. In order to find a teammate,
the agent sends a request message to all available
agents in its neighborhood and waits for a certain
amount of time to receive their responses (note that
agents with Impatient strategy do not wait). Since
tasks have time stamps, agents are required to send
their requests to their neighbors in the order of their
helpfulness. This is to make sure that the agents who
have higher helpfulness values will receive the request
before others and therefore they have enough time to
respond. This is especially critical when time
constraints of tasks are very tight and the requesting
agent waits for a short time.

Algorithm 1 Agents partner selection mechanism

1. Observe; the information of available agents and tasks
2. t=Find a task
3. If (t!=null){

 Send a request; to all available neighbors
 Wait (time); if applicable

4. While (agent.teammate=null AND time≤(task time/2)){
 selectedResponse=Select the best response

 selectedRequest=Select the best request
 if (selectedResponse.teammate!=null){
 If (H(selectedResponse)≥H(selectedRequest)

 Team up; with selectedResponse
 else{

 send response to the selectedRequest
 requestQueue.remove(selectedRequest)
 wait(time)

 }}
else
 responseQueue.remove(selectedResponse)
 }
responseQueue.clear
requestQueue.clear

 }
5. if(t!=null AND task time expired)

 drop t
6. If(t!=null AND teammate!=null)

 moveTowardTask
 else

 moveRandomly

When the waiting time is over, then the agent starts

processing the received responses and requests. The
agent ranks its response queue and request queue based
on the helpfulness value of agents. If there is a request
with a higher helpfulness value than all the responses,
then the agent sends a response to the requesting agent.
If the requesting agent does not select this agent within
a short time, then the agent repeats the explained
process (while loop in the above algorithm) until it
finds a teammate or time expires (in this framework
agents spend 1/3 of the task time on finding a
teammate and the rest for moving toward a task). An
agent only considers a request if more than half the

time required by the task is left, otherwise it removes
that request from its request queue. The algorithm 1
shows the pseudo-code which each agent runs
constantly.

Although this is a concurrent system, the CPU runs
the threads sequentially and in a random order.
Moreover, the amount of time that is spent on
executing each thread is different. In order to make
sure that all threads are approximately run for the same
amount of time by the CPU, all the threads were set
with a high priority. In addition, at the end of each
simulation run, a thread waits for 50 milliseconds.
This puts the current thread to sleep and allows the
CPU to run the next thread. This is especially
important when the time constraints of tasks are very
tight and the response should be given quickly.

6. Learning attitude toward time and
quality

In dynamic environments agents are required to
adapt to new conditions in order to maximize their
rewards. In this work agents can adapt to new
conditions by changing their attitudes. Agents change
their attitudes based on the feedback that they receive
from the environment. For instance there might be
some conditions when agents receive a low reward
because time is very tight. In this situation agents
should learn to decrease their attitude toward quality
and increase their attitude toward nearness. A simple
reinforcement learning mechanism is employed to alter
the agent’s attitudes. To demonstrate the effect of
learning, agents with best_available strategy are
deployed.

An agent performs with its current set of attitudes
for a certain amount of time and stores a copy of the
attitudes and the total reward received. Then the agent
increases its attitude toward one dimension and
decreases values in the other dimensions. Then the
agent performs for the same amount of time with its
new set of attitudes. If the reward that the agent
receives is more than the reward gained by its previous
set of attitudes, then it continues to change its attitudes
the same way; otherwise, it increases its attitude
toward the other dimension. The following
reinforcement learning formula is used to update the
agent’s attitudes:

 at+1=at+β(R(at+1)-R(at))
In this equation at+1 is the new value for attitude. at

is
the previous attitude of the agent. R(at+1) is the actual
reward received for new attitudes and R(at) is the
actual reward received by previous attitudes. β is the
learning rate.

7. Experiments

A series of experiments was conducted to study the
performance of the proposed model. The simulation
environment is a grid of 100 by 100 cells in which each
cell refers to one square of the grid. There are 120
robots with different capabilities. Robots can only
move vertically and horizontally one cell at a time.
There are 1000 tasks with different requirements
placed randomly in the environment. The reward for
each task is a fixed number (7). All times are in
milliseconds.

7.1. The effect of time on agents’ reward

In this experiment there are four groups of agents in

which each group employs one strategy
(best_available, best_possible, nearest available and
impatient). Four different runs of simulation were run
under various time constraints, where in each run,
agents with one strategy were deployed. The total
reward achieved by each group was measured under
various time constraints of 500, 1000, 2000 and 3000
milliseconds.

 Figure. 1 Effect of agent’s strategy on agents reward.

Figure 1 shows that when time is very tight (500),
agents which employ nearest-available strategy
outperform the other groups. In this situation, all
groups perform somewhat impatiently due to lack of
enough time. Therefore, agents with nearest_available
strategy who select the closest available teammate
perform better than other groups. This is due to the
fact that agents have enough time to move toward their
task and work on it. However, other groups of agents
may select a teammate that might be further away and
therefore the team may fail to reach the task position
before time expires. When time is a bit more relaxed
but still relatively tight (1000), then impatient strategy
outperforms other strategies. An Impatient agent
selects the first responding agent as its teammate and
does not wait for others to respond. This increases
their chance of completing a task before expiry time.

When time is more relaxed (1000 and 2000)
best_available strategy outperforms the other
strategies. This is the result of selecting high-quality
teammates. The agents with best_possible strategy
perform worse under various time constraints. This is
the effect of perfectionist attitudes of these agents.
This approach is useful when there is more incentive in
completing a job (refer to next experiment).

7.2. The effect of referral on performance of
agents with best_possible strategy

In some situations the tasks are required to be done
completely. For instance, if the task is to clean a
minefield, then partially completing tasks is not
appropriate. Therefore for certain scenarios agents are
required to complete the tasks as opposed to partial
completion. In order to improve the performance of
agents with best_possible strategy a referral
mechanism is deployed.

Three runs of simulation were run. In the first run
(no. of hops=1) no referral was deployed. In the
second run (no. of hops=2) if the requested agent does
not have the required capabilities but it could see an
available agent with the required capabilities, then it
sends a referral to the requesting agent.

Figure. 2 Effect of referral on agents’ performance.

In the third run (no. of hops=3), the requested agent
may ask its neighbors whether they could see an agent
with the required capabilities. The time constraint was
set to be very relaxed, so agents have enough time to
send and process referrals and the reading range of the
agents was 5. Figure 2 demonstrates that when agents
deploy referrals (no. of hops=2 and no. of hops=3)
their performances improve.

7.3. The effect of learning and adaptation

The aim of this experiment is to show how agents

can adapt to dynamic changes in the environment. In
this experiment agents with the best_available strategy
are deployed, and the time constraint of tasks is set to a

low value of 500 milliseconds. Two runs of simulation
were performed. In the first run agents do not learn,
and in the second run learning is employed. Since time
is very tight, agents with best_available strategy
eventually change their attitudes by using the learning
mechanism described previously. So they increase
their attitude towards nearness and decrease their
attitude towards quality. By changing the attitudes
agents eventually adapt nearest_available strategy.

 Figure. 3 Reward of agents within each period of time.

Figure 3 shows the total reward achieved in each
period of time (every 1000 milliseconds). It shows that
the learning mechanism improved the reward of agents
and decreased the total time required to complete the
tasks.

8. Conclusion

This paper has presented a multi dimensional model
for partner selection based on capabilities and attitudes.
A multi-threaded Java framework was designed to test
the proposed model. The designed framework
provided a realistic environment for testing the model.
In this model each agent may accept a request to
provide a resource or reject it based on the agent’s
attitude and strategy. All messages are asynchronous,
thus agents do not wait for the response after the
waiting time expires. We have evaluated the model by
using a grid type simulation environment. The result
shows that nearest_available strategy is useful when
time constraints of tasks are extremely tight. Impatient
strategy is suitable for situations when time is
relatively tight. best_available strategy is preferable in
situations when time constraints of tasks are more
relaxed and there is enough time for agents to find a
high quality teammate. Best_possible strategy is
preferable in situations where tasks are required to be
fully accomplished as opposed to be performed
partially. The experiments demonstrated that, by using
the referral mechanism, an agent’s performance in
terms of the number of completed tasks was improved.
The referral mechanism allows agents to find their

required resources if there is any agent with the
required expertise close to the location of the
neighboring agents. We kept the number of hops that a
message can be transferred relatively low to keep the
agents’ information local. We demonstrated that
referrals improved the performance of agents but under
very relaxed time constraints. Note that referrals are
probably not appropriate for emergency situations. It
was also shown that, by using a simple reinforcement
learning mechanism, agents had the ability to adapt
their partner selection strategy to the changes of the
environment. The result indicated that adapting
attitudes could significantly improve the performance
of the agents.

An interesting approach for future work could be
considering different rewards for various tasks
depending on the size of the tasks. In addition a cost
could be associated with giving a referral. This is
interesting, since it may hamper the agent’s self-
interest. Moreover, it is valuable to study whether
agents of each group may have a preference for agents
of other groups (strategies). Another interesting aspect
could be studying the effect of deceptive referrals
where only the referrals of trustworthy agents should
be considered.

9. References

[1] Tesser, A. and Shaffer, D., Attitudes and Attitude Change.
Annual Review of Psychology, 1990. 41(1): p. 479-523.
[2] Airiau, P., Sen, S. and Dasgupta, P., Effect of joining
decisions on peer clusters, in Proceedings of the fifth
international joint conference on Autonomous agents and
Multiagent systems. 2006, ACM: Hakodate, Japan. p. 609-
615.
[3] Dutta, P.S., Moreau, L. and Jennings, N.R. Finding
interaction partners using cognition-based decision
strategies. in Proceedings of the IJCAI-2003 workshop on
Cognitive Modeling of Agents and Multi-Agent Interactions.
2003.
[4] Sen, S., Gursel, A. and Airiau, S. Learning to identify
beneficial partners. in the Proceedings of the Workshop on
Adaptive and Learning Agents at the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems.
2007. USA.
[5] Ahn, J., DeAngelis, D. and Barber, S. Attitude Driven
Team Formation using Multi-Dimensional Trust. in
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT'07). 2007.
[6] Dutta, P.S. and Sen, S., Forming stable partnerships.
Cognitive Systems Research, 2003. 4(3): p. 211-221.
[7] Banaei-Kashani, F. and Shahabi, C. Criticality-based
analysis and design of unstructured peer-to-peer networks
as" Complex systems. in Cluster Computing and the Grid,
2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM
International Symposium on. 2003.

