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Abstract

In normative multi-agent systems, the question of “how an agent identifies a
norm in an agent society” has not received much attention. This paper aims
at addressing this question. To this end, this paper proposes an architecture
for norm identification for an agent. The architecture is based on observation
of interactions between agents. This architecture enables an autonomous agent
to identify the norms in a society using the Candidate Norm Inference (CNI)
algorithm. The CNI algorithm uses association rule mining approach to identify
sequences of events as candidate norms. When a norm changes, the agent using
our architecture will be able to modify the norm and also remove a norm if it
does not hold in its society. Using simulations we demonstrate how an agent
makes use of the norm identification framework.
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1. Introduction

Most works on norms in normative multi-agent systems have concentrated
on how norms regulate behaviour (e.g. [1, 2]). These works assume that the
agent somehow knows (a priori) what the norms of a society are. For example,
an agent may have obtained the norm from a leader [3] or through an institution
that prescribes what the norms of the society should be [4, 5, 6].

Only a few researchers have dealt with how an agent may infer what the
norms of a newly joined society are [7, 8]. Recognizing the norms of a society is
beneficial to an agent. This process enables the agent to know what is permissi-
ble within a society and what is not. As the agent joins and leaves different agent
societies, this capability is essential for the agent to modify its expectations of
behaviour, depending upon the society of which it is a part. As the environment
changes, the capability of recognizing a new norm helps an agent to derive new
ways of achieving its intended goals. Such a norm identification mechanism can
be useful for software agents that need to adapt to changing environment. In
open agent systems, instead of possessing predetermined notions of what are
the norms, agents can infer and identify norms through observing patterns of
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interactions and their consequences. This work aims to answer the question of
how agents infer norms in a multi-agent society. To that end, we propose an
internal agent architecture for norm identification. The architecture is based on
observation of interactions between agents. It enables an autonomous agent to
identify the norms in a society using the Candidate Norm Inference (CNI) algo-
rithm presented here. When a norm changes, the agent using our architecture
will be able to modify their internal representation of norms and also remove a
norm if it does not hold in its society. Using simulations we demonstrate how
an agent makes use of the norm identification framework.

The paper is organized as follows. Section 2 provides a background on norms
in human societies and how the concept of norms is investigated in the field of
normative multi-agent systems (NorMAS). Section 3 provides an overview of
the norm identification framework. Section 4 describes the components of the
framework. In sections 5 and 6 experimental results on norm identification are
presented. Section 7 provides a discussion on the work that has been achieved
and the issues that need to be addressed in the future. Concluding remarks are
presented in section 8.

2. Background and related work

2.1. Background on norms in human societies
Due to multi-disciplinary interest in norms, several definitions for norms

exist. Ullman-Margalit [9] describes a social norm as a prescribed guide for
conduct or action which is generally complied with by the members of the so-
ciety. She states that norms are the resultant of complex patterns of behaviour
of a large number of people over a protracted period of time. Elster notes the
following about social norms [10]. “For norms to be social, they must be shared
by other people and partly sustained by their approval and disapproval. They
are sustained by the feelings of embarrassment,anxiety, guilt and shame that a
person suffers at the prospect of violating them. A person obeying a norm may
also be propelled by positive emotions like anger and indignation ... social norms
have a grip on the mind that is due to the strong emotions they can trigger”.

Based on the definitions provided by various researchers, we note that the
notion of a social norm is generally made up of the following three aspects:

• Normative expectation of a behavioural regularity: There is a general
agreement within the society that a behaviour is expected on the part of
an agent (or actor) by others in a society, in a given circumstance.

• Norm enforcement mechanism: When an agent does not follow a norm, it
could be subjected to a sanction. The sanction could include monetary or
physical punishment in the real world which can trigger emotions (embar-
rassment, guilt, etc.) or direct loss of utility. Other kind of sanctions could
include agents not being willing to interact with an agent that violated
the norm or the decrease of its reputation score.
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• Norm spreading mechanism: Examples of norm spreading mechanisms
include the notion of advice from powerful leaders, imitation and learning
on the part of an agent.

Many social scientists have studied why norms are adhered to. Some of the
reasons for norm adherence include:

• fear of authority or power

• rational appeal of the norms

• emotions such as shame, guilt and embarrassment that arise because of
non-adherence.

• willingness to follow the crowd

2.2. Normative multi-agent systems
The definition of normative multi-agent systems as described by the re-

searchers involved in the NorMAS 2007 workshop is as follows [11]. A normative
multi-agent system is a multi-agent system organized by means of mechanisms
to represent, communicate, distribute, detect, create, modify and enforce norms,
and mechanisms to deliberate about norms and detect norm violation and ful-
fillment.

Researchers in multi-agent systems have studied how the concept of norms
can be applied to artificial agents. Norms are of interest to multi-agent sys-
tem (MAS) researchers as they help in sustaining social order and increase the
predictability of behaviour in the society. Researchers have shown that norms
improve cooperation and collaboration [12, 13]. Epstein has shown that norms
reduce the amount of computation required to make a decision [14]. However,
software agents may tend to deviate from norms due to their autonomy. So,
the study of norms has become important to MAS researchers as they can build
robust multi-agent systems using the concept of norms and also experiment on
how norms may evolve and adapt in response to environmental changes.

Research in normative multi-agent systems can be categorized into two
branches. The first branch focuses on normative system architectures, norm
representations, norm adherence and the associated punitive or incentive mea-
sures. Lopez et al.[15] have designed an architecture for normative BDI agents.
Boella et al.[16] have proposed a distributed architecture for normative agents.
Some researchers have used deontic logic to define and represent norms [5, 16].
Several researchers have worked on mechanisms for norm compliance and en-
forcement [17, 4, 18]. A recent development is the research on emotion-based
mechanisms for norm enforcement [19, 20]. Conte and Castelfranchi [21] have
worked on an integrated view of norms. Their work tries to bridge the gap
between the prescriptive view of norms and the emergence of conventions from
mere regularities using the cognitive abilities of an agent.

The second branch of research is related to emergence of norms. Several re-
searchers have worked on both prescriptive (top-down) and emergent (bottom-
up) approaches to norms. In a top-down approach an authoritative leader or
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a normative advisor prescribes what the norm of the society should be [22].
In the bottom-up approach, the agents come up with a norm through learning
mechanisms [12, 23]. Researchers have used sanctioning mechanisms [18] and
reputation mechanisms [24] for enforcing norms. An overview of different mech-
anisms used by researchers for the research on norms is provided by Savarimuthu
and Cranefield [25].

The work reported in this paper falls under the bottom-up approach in
the study of norms. Many researchers in this approach have experimented
with game-theoretical models for norm emergence [18, 12]. Agents using these
models learn to choose a strategy that maximizes utility. The agents in these
works do not possess the notion of “normative expectation”. Several researchers
have proposed architectures for normative systems. For a comparison of these
architectures refer to Neumann’s article [26]. These architectures assume that
norms exist in the society and the focus is on how the norms can be regulated
in an institutional setting. Very few have investigated how an agent comes to
know the norms of the society. Our objective in this work is to propose an
architecture where agents can identify what the norms of the society are.

We note that our work parallels the work that is being carried out by the
researchers involved in the EMIL project [7]. Researchers involved in the EMIL
project [7] are working on a cognitive architecture for norm emergence. They
aim to deliver a simulation-based theory of norm innovation, where norm in-
novation is defined as the two-way dynamics of an inter-agent process and an
intra-agent process. The inter-agent process results in the emergence of norms
where the micro interactions produce macro behaviour (norms). The intra-agent
process refers to what goes inside an agent’s mind so that it can recognize what
the norms of the society are. This approach uses cognitive agents that examine
interactions between agents and are able to recognize what the norms could be.
The agents in this model need not necessarily be utility maximizing like the
ones in the learning models. The agents in the model will have the ability to
filter external requests that affect normative decisions and will also be able to
communicate about norms with other agents. Agents just employing learning
algorithms lack these capabilities.

The work reported here differs from this work in three ways. Firstly, in our
architecture we have chosen “reaction” or “signalling” (positive and negative)
to be a top-level construct for identifying potential norms when the norm of
a society is being shaped. We note that a sanction not only may imply a
monetary punishment, it could also be an action that could invoke emotions
(such as an agent yelling at another might invoke shame or embarrassment on
another agent), which can help in norm spreading. Agents can recognize such
actions based on their previous experience. Secondly, based on association rule
mining [27], we propose an algorithm for norm inference, called the Candidate
Norm Inference (CNI) algorithm, which can be adapted by an autonomous agent
for flexible norm identification. Thirdly, we identify two different sets of norms
in an agent’s mind: candidate norms and identified norms.
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3. Overview of the framework for norm identification

In this section we provide an overview of the norm identification framework
(called the norm engine) that we propose for an agent to infer norms in the
agent society in which it is situated. Figure 1 shows the architectural diagram
of the norm identification framework. An agent’s norm engine is made up of
several components. The circles represent information storage components. The
rounded boxes represent information processing components, and the diamonds
represent decision making components, and the lines represent the flow of in-
formation between the components.

An agent employing this architecture follows a six-step process.
Step 1: An agent actively perceives the events in the environment in which

it is situated.
Step 2: When an agent perceives an event, it stores the event in its belief

base. The events observed by an observer are of two types: regular events and
signalling events. In the context of enjoying a public park, a regular event is
an event, such as an agent moving to another location in a park or sitting on a
bench. Special events are signalling events that agents understand to be either
encouraging or discouraging certain behaviour. For example when an agent
litters in the park, another agent can discourage the littering action by shouting
at the litterer. The signal in this context is the shouting action. We assume
that an agent has the ability to recognize signalling events based on its previous
experience.

Step 3: When a special event occurs, the agent stores the special event in the
special events base. It should be noted that all events are stored in an agent’s
belief base but only special events are stored in the special events base.

Step 4: If the perceived event is a special event an agent checks if there
exists a norm in its personal norm (p-norm) base or the group norm (g-norm)
base. An agent may possess some p-norms1 based on its past experience or
preference. A p-norm may vary across agents, since a society may be made up
agents with different backgrounds and experiences. A g-norm is a norm which
an agent infers, based on its personnel interactions as well as the interactions
it observes in the society. An agent infers g-norms using the norm inference
component.

When a special event occurs an agent may decide to invoke its norm in-
ference component to identify whether a previously unknown norm may have
resulted in the occurrence of the special event. In the context of a park sce-
nario, when an agent observes an agent yelling at another agent, it invokes the
norm inference component to find out what events that had happened in the
past may have triggered the occurrence of the special event. In other words an
agent is interested to find out whether the special event can be explained by
the existence of a norm in the society. The invocation of the norm inference

1A p-norm is the personal value of an agent. For example an agent may consider that
littering is an action that should be prohibited in a society. This personal value may not be
shared by the agents in a society.

5



Figure 1: Architecture of the norm identification framework of an agent

component may result in the identification of a g-norm, in which case it is added
to the g-norm base.

An agent, being an autonomous entity, can also decide not to invoke its norm
inference component for every occurrence of a special event but may decide
to invoke it periodically. When it invokes the norm inference component, it
may find a new g-norm which it adds to its g-norm base. If it does not find
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a g-norm, the agent may change some of its norm inference parameters and
repeat the process again in order to find a g-norm or may wait to collect more
information.

At regular intervals of time an agent re-evaluates the g-norms it currently
has, to check whether those norms hold. When it finds that a g-norm does not
apply (e.g. if it does not find any evidence of sanctions), it deletes the norm
from the g-norm base. The operational details of the norm inference component
are explained in Section 4.2.

Steps 5: When an event occurs, an agent checks if that event calls for the
application of a norm that it may have, either in its p-norm or g-norm bases. An
agent invokes its norm applicability assessment component to decide whether
a norm applies and what action it should take when the perceived event is in
breach of a norm. This decision may depend upon several factors, such as an
agent’s utility (e.g. personality and goals). When an agent observes that a norm
has been violated, it may decide either to sanction or to ignore the violation
based on its utility.

Step 6: When an agent intends to perform a particular action, it may invoke
the norm applicability assessment component to check if the action violates its
norms (p- and g-norms). When making a decision about norms, an agent may
be selfish and may want to maximize its utility and may not follow the norm in
the absence of norm enforcers. Another agent may be altruistic and may even
bear the cost of punishing another agent that violates the norm. Some agents
may be opportunistic norm followers, and they may violate a norm in certain
situations. Based on its decision-making factors, an agent can decide whether
to perform the action or refrain from the action.

The focus of the rest of the paper is on the norm inference component. The
next section describes in details steps 1 to 4 described in this section.

4. Components of the framework

This section describes the components of the norm inference mechanism
based on the observation of interaction between agents. The components that
will be discussed are a) event storage components and b)the norm inference
component. We will describe the role of the components in the context of a
park scenario.

4.1. Event storage components
Let us assume that an agent is situated in a public park. The agents are

aware that they are in a park, and interactions happen within the park context.
Additionally each agent also knows other related information about the environ-
ment, such as the location of the rubbish bins. Let us also assume that a norm
does not exist to start with but a few of the agents have a notion of what an
appropriate action should be in a particular circumstance (a p-norm). In this
architecture an agent would first observe the interactions that occur between
the agents in the society. The interactions could be of two types. The first
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type of interaction is the one in which the agent itself is involved and is called a
personnel interaction (an action that an agent does in an environment or a mes-
sage that is exchanged with another agent). The second type of interaction is an
interaction between other agents that is observed by an observer agent, referred
to as an observed interaction. The agent records these interactions (events) in
its belief base. An agent in the society can assume one or more of the three
roles: a participant (P) that is involved in a personal interaction, an observer
(O) and a signaller (S).

When the agents move around the park and enjoy the environment, they may
become hungry and eat food. Some agents may litter (i.e. drop the rubbish
on the ground), and some agents may drop the litter in a rubbish bin. The
actions that can be performed by an agent are move, eat and litter. Some
agents consider littering to be an activity that should be discouraged, so they
choose to signal other agents through actions such as yelling and shaking their
heads in disapproval. We assume that an agent has a filtering mechanism which
categorizes actions such as yell and shake-head as signalling actions. Signalling
events can either be positive (e.g. rewards) or negative (sanctions)2. These
signalling actions are stored in the special events base. The signalling agents
can be considered as norm proposers3

Let us assume that the agents can observe each other within a certain visibil-
ity threshold (e.g. agents can only see other agents in a three cell neighbourhood
in a grid environment). An observer records another agent’s actions until it dis-
appears from its vicinity. When such an agent observes the occurence of an
event that is in breach of one of its norms, the agent may become emotionally
charged and perform a sanctioning action, such as shaking its head vigorously in
disapproval. Hence, an agent observing this can infer that someone involved in
an interaction may have violated a norm. Even though an observer may know
that a sanctioning event has occurred, it may not know the exact reason for
sanctioning (i.e. it may not know the norm). It will infer norms using the norm
inference mechanism.

In order to understand what an agent stores, let us assume that an agent
perceives other agents’ actions. An event that is perceived consists of an event
index, an observed action, and the agent(s) participating in that event. For
example an agent observing another agent eating will have the representation of
do(1,eat,A). This implies the observer believes that the first event was generated
by agent A which performs an action eat. A sample representation of events
observed by an agent is given below.

2In this work we focus on the negative signals (i.e. sanctions)
3A norm proposer is an agent that comes up with a norm and recommends the norm to

other agents. These norms when created are the “proposed norms”. A proposed norm may
be created by a designer, leader or entrepreuneur [25]. A proposer may or may not sanction
other agents for not following the norms. An authoritative leader may choose to sanction
agents that do not follow the proposed norm. A norm entrepreneur may choose to sanction
the members of his group for not following the norm. In the off-line design approach there
may be penalties for not following the norm.
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do(1, eat, A)

do(2, litter, A)
do(3,move, B)
do(4,move, A)

do(5, sanction, B, A)

(1)

An agent records these events in its belief base. Event 5 is a sanctioning
event, where agent B sanctions agent A. The agents have a filtering mechanism,
which identifies signalling events and stores it in the special events base. It
should be noted that special events, such as yell and disapproval shake, are
categorized by an agent as sanctioning events and they are stored in the special
events base under the sanction event4.

4.2. Norm inference component
An agent may choose to invoke its norm inference component based on its

preference. For example, it can invoke the component every time it perceives a
signalling action, or it may invoke this component periodically.

The norm inference component of an agent is made up of two sub-components.
The first sub-component makes use of the Candidate Norm Inference (CNI) al-
gorithm to generate candidate norms. Candidate norms are the norms that an
agent considers to be potential candidates to become the norms in a society.
The second sub-component is the norm verification component, which verifies
whether a candidate norm can be identified as a norm in the society.

This sub-section is organized as follows. Firstly we explain the parameters
of the CNI algorithm. Secondly we describe the internal details of the CNI
algorithm using the park littering example.

4.2.1. Definitions of parameters used in the algorithm
The parameters that are used in the Candidate Norm Inference algorithm

are explained below.
History Length (HL): An agent keeps history of the observed interactions

for certain window of time. This period of time is represented by the History
length (HL) parameter. For example, if HL is set to 20, an agent will keep the
last 20 events it observes in it its memory.

Event Sequences (ES): An event sequence is the record of actions that
an agent observes in the history. For example the event sequence observed by
an agent where HL=5 is given in expression (1).

Special Events Set (SES) : An agent has a set of events it identifies to
be special. These events are the signalling events. For example, the special

4Recognizing and categorizing a sanctioning event is a difficult problem. In our architecture
we assume such a mechanism exists (e.g. based on an agent’s past experience)
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event set can contain events such as yell, or nod in disapproval (SES = { yell,
disapproval nod }). An agent also has the capability to categorize events into
two types, sanctions and rewards. For example the actions mentioned above
can be identified as sanctioning actions.

Unique Events Set (UES): This set contains the number of distinct events
that occur within a period of time. For example, a unique events set for the
example given in expression (1) contains5 the following events, UES = { eat,
litter, move, sanction }.

Event Pruning Threshold (EPT): When an agent observes events, not
all events may be relevant for identifying potential norms. For example, in a park
scenario, an agent’s move action which occurs frequently may not be relevant to
a norm. To exclude these events from the norm inference mechanism, an agent
has the EPT threshold. For example if the threshold is set to 0.5 (in a scale of
0 to 1), the agent will exclude all events that have the Occurrence Probability
(OP) which is greater than 0.5. Occurrence Probability of event E is given by
the following formula.

OP (E) = (Number of occurrences of E) / (Total number of events in ES)

In the example shown in expression (1), OP(eat) = 0.2, OP(litter) = 0.2,
OP(move)=0.4 and OP(sanction)=0.2. An agent can choose to increase or
decrease the EPT threshold in order to find a norm.

Window size (WS): When an agent wants to infer norms, it looks into its
history, a certain number of recent events that precede a sanction. For example,
if the WS is set to 3, an agent constructs an Event Episode (EE) with three
events that precede a special event. Construction of event episodes is described
in the next sub-section. It should be noted that an EE is a subset of ES.

Norm Identification Threshold (NIT): When coming up with candidate
norms, an agent may not be interested in events that have a lower probability of
being a norm. For example, if an agent sets NIT to be 50 (in a scale from 0 to
100), it indicates it is interested to find all sub-episodes of an event episode that
have 50% chance of being a candidate norm (i.e. being the reason for generating
a sanction).

Norm Inference Frequency (NIF): An agent may choose to invoke a
norm inference component every time it observes a special event, or may invoke
the component periodically. An agent has a parameter called norm inference
frequency (NIF) that specifies what the time interval between two invocations
of the norm inference component are. An agent, being an autonomous entity,
can change this parameter dynamically. If it sees that the norm in a society is
not changing, then it can increase the waiting period for the invocation of the
norm inference component. Alternatively, it can reduce the time interval if it
sees the norm is changing.

5Assume that event occurrences can be modelled as simple propositions
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4.2.2. Candidate Norm Inference (CNI) algorithm

There are three main steps involved in the Candidate Norm Inference algo-
rithm (see algorithm 1). First, event episodes are created. Second, commonly
occurring events are pruned. Third, the Candidate Norm List (CNL) is gener-
ated using a modified version of the WINEPI algorithm [28].

Algorithm 1: Candidate Norm Inference algorithm (main algorithm)

foreach invocation of the norm inference component do1

Create event episodes ; /* see Algorithm 2 */2

Prune event episodes ; /* see Algorithm 3 */3

Create Candidate Norm List (CNL) ; /* see Algorithm 4 */4

end5

Creating event episodes
An agent records other agents’ actions in its belief base. We call these events

that were recorded in the belief base as event sequences (ES). An agent has a
certain history length (HL). Let us assume that there are three agents A, B
and C as given in expression (1). Agent A eats, litters and moves, while agent
B moves and then sanctions. Agent C observes these events and categorizes
them based on which agent was responsible for creating an event. The set {A}
followed by a right arrow (→) indicates the categorization of events performed
by agent A as observed by agent C. A hyphen separates one event from the
next.

{A} → do(1, eat, A)− do(2, litter, A)− do(4,move, A)
{B} → do(3,move, B)− do(5, sanction, B, A)

When an agent observes a special event (e.g. sanction), it extracts the
sequence of actions from the recorded history (event sequences (ES)) that were
exchanged between the sanctioning agent and the sanctioned agent. In the
example shown above, the observer infers that something that agent A did may
have caused the sanction. It could also be something that agent A failed to do
might have caused a sanction. In this work we concentrate on the former. Agent
C then extracts the following sequence of events that took place between A and
B based on the information retrieved from its history. We call the retrieved
event sequence that precedes a sanction as the event episode (EE).

{A,B} → do(1, eat, A)− do(2, litter, A)− do(4,move, A)− do(5, sanction, B, A)

To simplify the notation here, only the first letter of each event will be
mentioned from here on(e.g. e for eat). Thus the event episode for interactions
between agents A and B shown above will be represented as(

{A,B} → e− l −m− s
)
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There might be a few sanctioning events at any given point of time that an
agent observes. A sample event episode list (EEL) that contains events that are
observed by an agent preceding an action where WS=3 is given below.

(
e− l −m− s, l − e− l − s,m− e− l − s, e− l − e− s, e− l − e− s
l − e− l − s, e− e− l − s,m− e− l − s, e− l −m− s, e− l − e− s

)
(2)

The pseudocode for creating an event episode list (EEL) is given in Algo-
rithm 2. For every special event in the event sequence (ES), an agent creates an
event episode (EE) with n events that precede the special event where, n=WS6.
EE is then added to the event episode list (EEL).

Algorithm 2: Pseudocode to create Event Episode List
Input: Event Sequence (ES), Window Size (WS)
Output: Event Episode List (EEL)
foreach invocation of the norm inference component do1

foreach special event in ES do2

Create an Event Episode (EE) with the last n events that precede3

the special event where n=WS;
Store EE in EEL;4

end5

end6

Pruning event episodes
Once an agent creates the EEL, it will prune the EEL. The objective of

pruning is to eliminate those events that may not be relevant to the norm.
For example, in the park scenario, an agent may observe that the action move
happens 75% of the time. An agent can assume that commonly occurring events,
such as move, may not be a reason for the sanction. So the agent prunes
those commonly occurring events from its EEL. Commonly occurring events
are identified using the occurrence probability (OP) of the event in the event
sequence (ES). If the occurrence probability of an event in ES is greater than
or equal to the norm pruning threshold (NPT), then the event will be removed
from the EEL. Hence, the pruned event episode list (PEEL) will only contain
events that do not occur frequently. An agent can vary the NPT depending
upon its needs (e.g. if an agent does not find a norm, it can decrease its NPT).
Pruning reduces the search space of an agent in identifying candidate norms.

The pseudocode for creating the pruned event episode list (PEEL) is given
in Algorithm 3. First, an unique event set (UES) is created. For every event in
the event sequence (ES), if the event does not already exist in the UES and if
the event is not a special events set (SES) then it is added to the unique event

6In this example, we have assumed that an agent considers three events (n=3) that precede
a signal (a sanction). The value of n can change and an agent being a computation machine
should be able to handle a large number of possible events.
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set (lines 1 to 5). Second, events that should be pruned are identified and stored
in the removable events set (RES). If the occurrence probabilities of an event
in the UES is greater than NPT, it is added to the RES (lines 6 to 11). Third,
the events that are present in the removable event set are pruned from the EEL
(lines 12 to 18).

Algorithm 3: Pseudocode to create Pruned Event Episode List
Input: Event Episode List (EEL), Unique Event Set (UES), Norm

Pruning Threshold (NPT)
Output: Pruned Event Episode List (PEEL)
/* construct Unique Event Set (UES) */
foreach event E in ES do1

if E /∈ Unique Event Set (UES) and E /∈ Special Event Set (SES)2

then
Add E to UES;3

end4

end5

/* construct Removable Event Set (RES) */
foreach event E in Unique Event Set (UES) do6

Calculate OP(E);7

if OP(E) ≥ NPT then8

Add event to Removable Event Set (RES);9

end10

end11

/* construct Pruned Event Episode List (PEEL) */
foreach Event Episode (EE) in EEL do12

foreach event E in an EE do13

if event E in RES then14

Remove event from EE;15

end16

end17

end18

Assuming that NPT is set to 50 and the OP (m) is greater than 50 in an
ES, then the PEEL corresponding to the EEL shown in expression (2) is given
below.

(
e− l − s, l − e− l − s, e− l − s, e− l − e− s, e− l − e− s
l − e− l − s, e− e− l − s, e− l − s, e− l − s, e− l − e− s

)
(3)

Generating candidate norms list (CNL)
The pseudocode for generating the Candidate Norms List (CNL) is given by

Algorithm 4. Algorithm 4 is a modified version of the WINEPI algorithm [28],
an association rule mining algorithm7. The WINEPI algorithm analyses event

7Association rule mining [27] is one of the well known fields of data mining where relation-
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sequences and identifies frequently occurring episodes in a particular window of
time.

As norms in this work are sequences of events that precede a signalling
event, we have used a modified version of the WINEPI algorithm to identify
candidate norms. For example littering action may happen 100% of the time
before the occurrence a sanctioning event. In this case, the WINEPI algorithm
can be used to identify the relationship between the littering action and the
sanctioning action. We have modified the WINEPI algorithm such that it gen-
erates sub-episodes using “permutation with repetition”. The pseudo code of
the modification is given in algorithm 5.

Algorithm 4 works in several iterations. The number of iterations is equal
to Window Size (WS). The sub-episodes for the first iteration are of length one.
The sub episode list (SEL) for iteration one contains all the events in the UES.
For example, for the events listed in expression (3), the SEL at the first iteration
will contain events e and l. For each of the sub-episodes in SEL, the occurrence
probabilities are calculated. If the occurrence probability of a sub-episode in
the pruned event episode list is greater than or equal to the norm inference
threshold (NIT), the event is added to the Candidate Norms List (lines 7 to
11). For example, if the occurrence probabilities of events e and l are greater
than or equal to NIT, then these will be added to CNL. Each candidate norm is
also added to a temporary list which is used for creating the SEL for the next
iteration. The SEL for the next iteration (SELnext) is created using Algorithm
5 and is assigned to (SELcurrent).

Each sub-episode in the second iteration will have two events. In the second
iteration a sub-episode in SEL will be added to CNL if two conditions are
satisfied (lines 12 to 16).

• Each event in the sub-episode should already exist in the CNL.

• The occurrence probability of the sub-episode in the pruned event episode
list (PEEL) should be greater than or equal to NIT.

In a similar fashion, the algorithm computes all candidate norms. The max-
imum length of a candidate norm (and the number of iterations) is equal to
WS.

ships between items in a database are discovered. For example, interesting rules such as 80%
of people who bought diapers also bought beers can be identified from a database. There are
several well known algorithms that can be used to mine interesting rules such as Apriori [29]
and WINEPI [28]
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Algorithm 4: Pseudocode to create Candidate Norms List (CNL)
Input: Pruned Event Episode List (PEEL), Unique Event Set (UES),

Window Size(WS), Norm Inference Threshold(NIT)
Output: Candidate Norms List (CNL)
begin1

iterNum = 1;2

Sub-Episode List (SELcurrent) = UES3

while iterNum ≤ WS do4

SELtemp =∅;5

foreach Sub-Episode(SE) in SEL that appears in PEEL do6

if iterNum = 1 then7

if OP(SE) ≥ NIT then8

Add SE to CNL, Add SE to SELtemp;9

end10

end11

else12

if each event in SE ∈ CNL and OP(SE) ≥ NIT then13

Add SE to CNL, Add SE to SELtemp;14

end15

end16

end17

Construct SELnext using SELtemp ; /* algorithm 5 */18

if iterNum < WS then19

iterNum = iterNum + 1;20

SELcurrent = SELnext;21

end22

else return CNL;23

end24

end25

Algorithm 5: Pseudocode to create Sub-Episode List
Input: Candidate norms list (tempList)
Output: Sub Episode List (SEL)
foreach candidate norm in tempList do1

Generate Sub-Episodes (SE) of length n using other candidate norms2

(allowing repetition of events);
Add each generated SE to SEL;3

end4

Let us assume that an agent is interested in three events in an event sequence
that precede a sanction (i.e. event episodes of length three). Let us assume that
NIT is set to 50%, and the unique event set is {e,l}. As an example let us
consider the pruned event episode list (PEEL) given in expression (3). In the
first iteration, SELcurrent contains sub-episodes of length one which are e and
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l. For each sub-episode an agent calculates the occurrence probability. The
occurrence probabilities for both sub-episodes in this case are 100%. So, the
agent adds both of these sub-episodes to its candidate norm list. For the second
iteration, the agent has to calculate sub-episodes of length two that have NIT
greater than 50%. It uses Algorithm 5 to calculate the next sub-episode list
(SELnext). For this purpose it uses the candidate norms that were found in the
previous iteration (SELtemp in algorithm 4).

Algorithm 5 creates sub-episodes for the subsequent iteration based on the
candidate norms from the previous iteration. In the running example, in the
second iteration the algorithm creates sub-episodes of length two based on sub-
episodes of length one. Allowing repetition of events, the algorithm creates the
following sub-episodes {ee, el, le, ll} and adds them to the SELnext

8. Then, the
probabilities of these 4 sub-episodes are calculated. Occurrence probabilities of
{ ee, el, le, ll } are { 10%, 100%, 50%, 0% }. As NIT is set to 50%, el and le are
added to the candidate norms list. These two sub-episodes will be considered
for the creation of SEL for the third iteration using Algorithm 5. For the third
iteration the contents of the SEL are {ele, lel}.

In iteration three, the occurrence probabilities of {lel,ele} are {20%, 30%}.
As the occurrence probabilities of the sub-episodes of length three are below
NIT these events will not be added to the candidate norms list. As the number
of iterations is equal to WS, the algorithm returns the candidate norm list to
the agent. In the end, the candidate norms list will have the following entries
whose occurrence probabilities are greater than or equal to NIT: {e,l,el,le}. If
the agent sets the NIT to 100% then the CNL will contain e, l and el.

It should be noted that algorithm 4 is a modified version9 of the WINEPI
algorithm [28]. The modification is given in Algorithm 5 can identify candidate
norms that are obtained by considering “permutations with repetition” when
constructing sub-episodes. We note that algorithm 4 can be replaced with other
association rule mining algorithms. Hence, it forms the replaceable component
of the CNI algorithm.

Having compiled a set containing candidate norms, the agent passes this
information to the norm verification and identification component.

4.2.3. Norm verification and identification
In order to find whether a candidate norm is a norm of the society, the

agent asks another agent in its proximity. This happens periodically (e.g. once

8Permutations with repetitions are considered because an agent does not know whether
littering once (l) is a reason for sanction or littering twice (ll) is the reason for the sanction.
It could be that littering once may be allowed but an agent littering twice may be punished

9Some well known algorithms in the data mining field can be used for mining frequently
occurring episodes (i.e mining association rules) [29, 28]. A limitation of the well-known
Apriori [29] algorithm is that it considers combinations of events but not permutations (e.g.
it does not distinguish between event sequences el and le). WINEPI [28] addresses this
issue, but it lacks support for identifying sequences that are resultants of permutations with
repetition (e.g. from sub-episodes of length one, e.g. e and l, the algorithm can generate
sub-episodes of length two which are el and le, but not ee and ll).
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in every 10 iterations).
When two agents A and B interact, A chooses its first candidate norm (say

el) and asks B if it knows whether el is a norm of the society. If the response
is affirmative, A stores this norm in its set of identified norms. If not, A moves
on to the second candidate norm in its list10.

In the case of the running example, the sub-episode e has the highest prob-
ability for selection and it is chosen to be communicated to the other agent.
It asks another agent (e.g. an agent who is the closest) whether it thinks that
the given candidate norm is a norm of the society. If it responds positively, the
agent infers prohibit(e) to be a norm. If the response is negative, this norm is
stored in the bottom of the candidate norm list. It then asks whether l is the
reason for sanction. If yes, littering is considered to be prohibited. Otherwise,
the next event in the candidate norm list is chosen. This process continues until
a norm is found or no norm is found, in which case the process is re-iterated
once a new signal indicating a sanction is generated. When one of the candi-
date norms has been identified as a norm of the society, the agent still iterates
through the candidate norm list to find any co-existing norms.

Note that an agent will have two sets of norms: candidate norms and iden-
tified norms. Figure 2 shows these two sets of norms. Once an agent identifies
the norms of the system and finds that the norms identified have been stable
for a certain period of time, it can forgo using the norm inference component
for a certain amount of time (based on the norm inference frequency (NIF)). It
invokes the norm inference component periodically to check if the norms of the
society have changed, in which case it replaces the norms in the identified list
with the new ones (or deletes the norms which are no more applicable).

Figure 2: Two sets of norms

10Other alternative mechanisms are also possible. For example, an agent could ask for all
the candidate norms from another agent and can compare them locally.
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4.3. Norm applicability assessment component
An agent invokes the norm applicability assessment component under two

circumstances. Firstly, when an event occurs it should check if it violates its
p-norms or g-norms. An agent invokes its norm applicability assessment com-
ponent to decide whether a norm applies and what action it should take when
the perceived event is against the norm. This decision may depend upon sev-
eral factors such as an agent’s utility (e.g. personality and goals). When an
agent observes that a norm has been violated, it may decide either to sanction
or to ignore the violation based on its utility. Secondly an agent may invoke
this component if it intends to perform an action. The agent will check if its
intended action violates its norms (p- and g-norms). When making a decision
about norms, an agent may be selfish and may want to maximize its utility
and may not follow the norm in the absence of norm enforcers. Another agent
may be altruistic and may even bear the cost of punishing another agent that
violates the norm. Some agents may be opportunistic norm followers and they
may violate a norm in certain situations. Based on its decision making factors
an agent can decide whether to perform the action or refrain from the action.

A detailed discussion of the norm applicability assessment component is
outside the scope of this paper, as the main focus of the paper is on norm
identification (the rounded rectangle in lower left part of Figure 1).

5. Experiments on norm identification

In this section we demonstrate how the agents that make use of the proposed
architecture are able to infer the norms of the society.

We have implemented a Java-based simulation environment to demonstrate
how norms can be identified by agents in a multi-agent society. A toroidal grid
represents a social space where agents can move. An agent enjoys the park by
moving from one location to another. An agent can move in one of the four
directions (up, down, left and right). There are three types of agents in the
system: the learning litterers (LL), the non-litterers (NL) and the non-littering
punishers (NLP). An agent’s visibility is limited to a particular zone. The
snapshot given in Figure 3 shows different types of agents in a grid environment
situated in four different societies. The agents are represented as circles. The
letters that appear above an agent specify the agent number and the action it
is currently performing. When an agent infers a norm, a solid square appears
inside the circle with the same colour as that of the signalling agent. The
signalling agent is a norm proposer which punishes other agents probabilistically
based on its p-norm. For experiments 1 to 5, all the agents make use of the
norm inference mechanism.

5.1. Experiment 1 - Norm identification and verification
The objective of this experiment is to demonstrate that agents that use

the norm inference architecture can generate candidate norms and also identify
norms through the verification process. Agents in a society can verify that
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Figure 3: Snapshot of the simulation environment

certain norm holds in a society by asking other agents in the society. There
were 100 agents in the agent society (50 NL, 46 LL and four NLP agents). The
NLP agents punished agents that littered.

5.1.1. Norm identification
In order to demonstrate that the norm identification component works, we

conducted experiments by varying the NIT and keeping all the other param-
eters constant. For a particular agent, when NIT was set to 25%, the agent
inferred 7 candidate norms {e,el,l,ee,le,lel,eee} whose occurrence probabilities
were {1,0.5,0.5,0.41,0.25,0.25,0.25}. When NIT was set to 50%, the agent in-
ferred 3 candidate norms {e,el,l} whose occurrence probabilities were {1,0.5,0.5}.
Note that the candidate norms that are identified when NIT was set to 50% is
a sub-set of the candidate norms that were identified when NIT was set to 25%.
When NIT was set to 100%, the agent inferred only one candidate norm {e}.

5.1.2. Norm verification
In our experimental set-up an agent can ask one other agent in its vicin-

ity(randomly chosen) about a candidate norm. If that agents answers positively,
then the agent will promote the norm to the identified norm list.

In our experimental set-up, when seeking norm verifications, an agent can
use one of the following approaches. It can either ask a) a sanctioning agent
or b) any agent that possesses a norm (e.g. the agent may have obtained the
norm from a sanctioning agent). As the probability of the other agent being
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a non-sanctioning agent is higher than being a punishing agent (0.96 vs. 0.04),
the norm identification is faster (see Figure 4) when any agent that has norm
can recommend the norm to other agents (approach b) as opposed to norm
recommendation only by the sanctioning agents (approach a).

This simple experiment reflects what happens in human societies. An agent
entering a new society asks other agents in a society whether a suspected norm
currently holds in a society. The experiments that are reported in the rest of
the paper use norm recommendations from any agent.

Figure 4: Norm verification - enquiring about a norm to a punisher vs. any agent in the society

We also conducted experiments with two types of punishers in the society,
one that punishes eating activity and the other that punishes littering. The
results were similar to the one shown in Figure 4.

5.2. Experiment 2 - Dynamic norm change (from society’s view point)
Agents in a society should have the ability to infer norms when norms change.

A new norm can be established when a punisher leaves the society and a new
punisher joins the society or when a punisher agent comes up with a new norm
replacing the old one. This experiment demonstrates that agents can change
norms based on inference. Figure 5 shows three lines corresponding to agents
with a) no norms, b)a norm against eating and c)a norm against littering. There
were 100 agents in a society. The sanctioning agents could move into a society
and also leave a society. Depending upon the presence of a sanctioning agent
the norm of the society changes. It can be observed that around iteration 225,
all agents have inferred the norm against eating and around iteration 585, all
agents have inferred the norm against littering. It should be noted that after
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iteration 585, both the norms coexist in the society (assuming that a norm could
be said to have emerged if 75% of the agents possess the norm).

Figure 5: Norm change from the view point of a society

5.3. Experiment 3 - Dynamic norm change (from individual agent’s view point)
Let us assume that an agent moves across four different societies which may

have different kinds of norms. An agent in our architecture will be able to infer
different types of norms (a norm against eating, a norm against littering and
a norm against both eating and littering). Figure 6 shows the result of norm
inference for an agent. It can be observed that an agent is able to infer the
change of norm when it moves from one society to another.

Figure 6: Norm change - an individual agent’s point of view

5.4. Experiment 4 - Adaptability of an agent
Norm Identification Frequency (NIF) and Norm Identification Threshold

(NIT) are two parameters that an agent can vary based on it its success in
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recognizing a norm in the society. Norm Identification Frequency (NIF) refers to
how often an agent invokes the norm inference component to obtain a candidate
norm list. For example if NIF is set to five, an agent invokes the norm inference
components once in five iterations. Norm Identification Threshold (NIT) refers
to the threshold that an agent sets in order to obtain a candidate norm list. For
example if NIT is set to 50% for an agent, the agent is interested to obtain a
candidate norm list where the probability of norm occurrence of a sub-episode
is greater than or equal to 50%.

An agent in our set-up starts with NIF=5. When it does not find any norm
it retains the same NIF value. Once it has found all the norms in the society
(i.e. there are no new norms to be found after a certain number of iterations),
it increases its NIF value by a step function (an increase of 5 in our case). The
new value of NIF will be 10 which implies that the agent will infer norms only
once in 10 iterations. This continues till a norm changes (i.e. a new norm is
found). When a new norm is found, the NIF is set to back to 5. Figure 7
shows how the NIF changes by keeping NIT to be constant (50% in our case).
It should be noted that when an agent moves into a new society, the NIF is set
to 5.

Figure 7 shows two lines corresponding to an agent moving in one society
and within four societies with static punishers. All these societies have only one
type of punisher (i.e. only one type of norm). It can be observed that when
the agent moves within one society, it infers the norm, and hence its NIF value
increases (as the norm does not change). In the case of the agent moving in four
different societies, the agent’s NIF increases after it has found a norm, as long
as it is in the same society where it found the norm. When the agent moves
to a new society11, the agent’s NIF is set to the base value, and then it starts
increasing once it has found the norm again. The “sudden jumps in values
(that resemble vertical lines)” that occur in regular intervals indicate that an
agent has moved from one society to another. It should be noted that when the
punishers are moving within the societies (not shown in the figure), the NIF
values (i.e. the NIF line) of the agent is different from when the punishers were
static. This is because when the punishers move from society 1 to 2, agents in
society 1 are not able to recognize the norm when they infer the norm the next
time (as there is no evidence of sanctions).

An agent in our set-up starts with NIT=50%. When an agent invokes the
norm inference component (NIF value is met), it initially uses the default NIT
value. When the norms do not change the agent increases the NIT value by a
step function (an increase of 5 in our case). When no norm is found then it
decreases the NIT value by a step function (a decrease of 5 in our case). An
agent increases its NIT because it can reduce extra computation that is needed
to infer a candidate norm. For example if the same set of norms are obtained
when an agent has NIT=100%, there is no reason why an agent should retain

11We assume that the agent knows when it enters a new society. For example, the agent
may know the physical boundaries of the society in which it is situated

22



Figure 7: Norm verification - enquiring about a norm to a punisher vs. any agent in the
society

the value of NIT=50% where it has to perform some additional computation
to infer the same norm (based on the CNI algorithm). An agent reduces the
NIT, because it wants to explore the search space of candidate norms that is
below its initial threshold value. Note that when an agent moves into a new
society, the NIT is set to 50%. Figure 8 shows how the NIT changes by keeping
NIF constant (NIF=5 in our case). The vertical lines that occur periodically
indicate that an agent has moved from one society to another. The initial value
of NIT is set to 50%, because an agent should not start from scratch to infer a
candidate norm (i.e. from NIT=0%) in order to avoid extra computation.

It can be noted from Figure 8 that when an agent moves within one society
with one type of norm, its NIT threshold gradually reaches the value of 100, as
it is able to infer the norms with a high level of support. In the case of the agent
moving across societies, an agent’s NIT value starts increasing when the agent
has identified the norm, but it drops to 50 when it moves from one society to
another. For the same set-up when the punishers are moving, the agent may
not be able to infer the norms when the punishers move into a new zone. So,
the NIT line showing the movement of an agent with static punishers is different
from the scenario involving dynamic punishers (not shown in the figure).

An agent can vary both NIF and NIT. Figure 9 shows how both of these
variables change in an agent. The circled region is of interest, because it shows
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Figure 8: Norm verification - enquiring about a norm to a punisher vs. any agent in the
society

that an agent did not infer a norm initially (iteration 80 to 111). So the NIT
line drops. It inferred the norm around iterations 111 to 133, which is indicated
by the upwards trend. Then the agent did not infer the norm between iterations
134 to 139. Hence there is a drop in the NIF line. In iteration 140, the agent
has moved to a new zone. The NIF line is similar to the one shown in Figure
7. The line that appears in the bottom shows when an agent moves from one
society to another.

Experiments 3, 4 and 5 have demonstrated that an agent can dynamically
change its norm inference behaviour. An agent, being an autonomous entity,
can decide when to increase or decrease these parameters.

5.5. Experiment 5 - Using norm history
When an agent moves from one society to another, it can record the norm of

the society it is leaving, so that the information can be used when it comes back
to the same society. The experimental result shown in Figure 10 demonstrates
that the percentage of agents that have identified a particular norm in an agent
society is high when agents store the norm (possess history) of the society. The
recorded history can be used when an agent re-enters the society that it has
previously been to.
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Figure 9: Norm verification - enquiring about a norm to a punisher vs. any agent in the
society

Note that researchers have demonstrated agents that record history will be
better off than agents that do not have a norm history [30]. The objective of
this experiment is to compare how much better the agent will be if it records
the norms of the society that it leaves. It can be seen that on average about
80% of the agents can infer norms when history was stored while only 50% of
the other agents on average inferred norms (for the same experimental set-up).
A higher percentage of agents inferred norms when using their history, because
the agents that come in with history information can start asking other agents
in the society whether a norm holds (norm verification). If an agent does not
have a norm history, it first has to infer the norm (i.e. invoke the norm inference
component) and then ask another agent for norm verification, which is slower
than using the norms in the norm history at the verification stage.

Using history is useful when the punishers are not moving (i.e. the norms in
the society are stable). If the punishers are moving then the norms may change
(i.e. when there are different types of punishers). If the norms change then the
mechanism may not be very useful. If there are a large number of separate
societies, then the agent may not come back to a previously inhabited society.
In this case, the history information may not be useful. However, the agent is
better off keeping the history if it comes back to a society it has previously been
to, since it does not have to start inferring the norms from scratch.
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Figure 10: Norm verification - enquiring about a norm to a punisher vs. any agent in the
society

6. Experiments based on the utility of an agent

An agent being an autonomous entity, may choose to maximize its utility.
Such utilitarian agents may choose to become a part of a society that maximizes
their utility. In this section we describe two experiments that we have conducted
using utilitarian agents. The objectives of experiments are two-fold.

1. To demonstrate that the utility of a norm-abiding agent is better in a
normative society than a society with no norms.

2. To demonstrate that when agents are capable of norm inference, the norm
establishment in a society is faster than when agents do not infer norms.

6.1. Experimental set-up
Let us assume that there are two societies: a normative society and a society

with no norms. There are three types of agents: learning litterers (LL), non-
litterers (NL) and non-littering punishers (NLP) in both the societies. An agent
has a utility value which we call the satisfaction level (S) which varies from 0
to 100.

An agent’s satisfaction level (S) decreases in the following situations:

• When a non-litterer observes a littering action its satisfaction level de-
creases (-1).
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• When a litterer is punished, its utility decreases (-1).

• For all agents, littering activity results in the decrease of the utility. This
is because each littering activity ruins the commons area (-1/number of
agents in the society).

An agent’s satisfaction level (S) increases (i.e. it gains utility) in the following
situations:

• When a litterer litters, it gains utility in a society (+1).

• When a non-litterer does not see any littering action in a society, its utility
increases (+1).

At the start of experiments, an agent moves across two societies (society
1 and 2). All the agents start with a satisfaction level of 50. This value can
increase or decrease based on the society the agent is in. When the agents move
into a new society the satisfaction level is set to 50. When an agent has been to
both the societies, an agent chooses the society for which it has a higher utility.

6.2. Experiment 1 - Norm abiding agents are better off in a normative society
Using the experimental set-up described in the previous section, we experi-

mented how the agents organized themselves into two societies based on utility.
In one of the societies the punishers were present (society 2). In the other so-
ciety the punishers were absent. In this experiment, the agents do not make
use of norm inference mechanism. They are utility maximizers (i.e. they would
move to a society that yields better utility).

At the start of the experiment, the agents moved in both societies. At
regular intervals of time (say every 50 iterations) each agent decides which
society to choose. The agent evaluates its satisfaction level based on the societies
it inhabited. The litterers’ utility in society 1 is better than society 2 because
in society 2 they are punished. So they move towards society 1. As the litterers
move towards society 1, the non-litterers move towards society 2 because their
utility in that society is better due to the absence of litterers. It can be observed
in Figure 11 that at the end 160 iterations, the litterers have moved from society
2 to society 1. When there are litterers in society 1, the non-litterers move to
society 2. It can be observed that at the end of 350 iterations all the non-litterers
have moved into society 2.

We also conducted experiments by making the punishers move across soci-
eties at certain intervals of time. In this set-up, we ran the experiments for 1500
iterations. In the first 500 iterations, the punishers were in society 2, and in
the second 500 iterations the punishers moved to society 1. In the third 500
iterations the punishers moved back to society 2.

In the first 500 iterations, the agents were separated into two groups as
described above. After 500 iterations, when the punishers move to society 1,
the utility of litterers in that society starts decreasing, so, the litterers move
to society 2. When they move to society 2, the non-litterers’ utility decreases,
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so they move to society 1. Again it was observed that the two societies were
separated based on the personality of the agents (society 1 with non-litterers and
society 2 with litterers). After 1000 iterations when the punishers have moved
to society 2, the same process continues. Society 1 now has all the litterers and
society 2 has non-litterers.

This experiment demonstrates that norm-abiding agents are better off in the
normative society where the norm violation is punished by sanctioning agents,
and the non-litterers are better off to be in a society with no norms. This
experiment also demonstrates that a normative agent is adaptive, as it moves
from one society to other if its utility decreases in the society.

Figure 11: Separation of agents into two groups based on utility

6.3. Experiment 2 - Utilitarian vs. Hybrid strategies for agents
In the previous experiment the agents employed the utilitarian strategy. In

this experiment the agents use the norm inference mechanism. At the same time
they also computed utility. We call this strategy a hybrid strategy. Except for
the change of the strategy the experimental set up was similar to the previous
experiment. We observed that the overall separation of the two groups is faster
when the agents are able to apply the norm-inference mechanism along with
the utilitarian mechanism. This is because when the litterers in society 2 infer
that there is a norm against littering, then they will decide not to litter in the
society (to minimize the decrease in their utility) and also decide to move to
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another society. When a non-litterer in society 2 infers that there is a norm then
it decides to stay in that society as it knows that it would be better off in this
society (as the punishers will punish the littering agents). So, the separation
of agents into two societies is faster when a norm inference mechanism is used
along with the norm inference mechanism.

Figure 12 shows the number of litterers and non-litterers in two societies
with the two types of strategies for the non-littering agents. It can be noted
that when the hybrid strategy was employed by the agents, the separation of
agents into two separate groups was faster than when the agents used just the
utilitarian strategy. The hybrid strategy resulted in the littering agent moving
from society 2 to society 1 faster than when using utilitarian society. In this
experiment, the system using hybrid strategy converged 100 iterations before
the system that used utilitarian strategy. As the litterers moved to society 2,
the non-litterers moved to society 1.

Figure 12: Comparison of utilitarion vs. normative-utilitarian strategies

7. Discussion

In this section we describe the main contributions of this paper, its limita-
tions and the future work.
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7.1. Contributions
The main contributions of this paper are the following:

1. The question of “how an agent comes to find out what the norms of society
are” has not received much attention in the field of normative multi-agent
systems. We have made progress in that regard by proposing a norm iden-
tification architecture from the perspective of a single agent (i.e. internal
agent architecture for norm identification). Most researchers agree that
there will be some form of sanction or reward once a norm is established
(e.g. [10, 31]). Hence, the notion of a reaction (positive or negative ac-
tion) has been considered to be a top level entity in our work. We have
assumed that even when a norm is being created, the notion of sanction
is important for norm identification.

2. The proposed architecture uses Candidate Norm Inference (CNI) algo-
rithm to identify potential norms. The CNI algorithm makes use of a
modified version of the association rule mining algorithm called WINEPI.
To our knowledge this is the first work that makes use of a association
rule mining approach for norm identification. An adaptive agent can infer
norms by varying different parameters of the algorithm.

3. Through simulations we have shown how the architecture allows for detec-
tion (i.e. identification), communication (i.e. verification) and modifica-
tion (i.e. dynamic change of norms) of norms. We have also demonstrated
that the norm inference mechanism is beneficial for an agent as it learns
about a norm faster than just using a utilitarian strategy.

We believe this architecture can be used in several settings. For example,
the norm identification architecture can be used to infer norms in Massively
Multi-player Online Role Playing Games (MMORPGs). Players involved in
massively multi-player games perform actions in an environment to achieve a
goal. They may play as individuals or in groups. When playing a cooperation
game (e.g. players forming groups to slay a dragon), individual players may
be able to observe prescriptions or proscriptions of actions that are allowed
within the group. The normative architecture proposed in this paper can be
used to identify norms that are being formed. Secondly, in virtual environments
such as Second Life, norms can be inferred using this architecture. Thirdly,
software agents engaging in e-commerce activities such as buying and selling
goods, can infer norms using this architecture. Even though this paper focuses
on prohibition norms, the same architecture can be used for identifying the
violation of obligations. In this case, instead of looking for sequence of actions
that could have caused a sanction, an agent can look for the absence of an event
or a set of events that could have caused a sanction. In the e-commerce scenario
it could be the absence of a pay action within certain period of time that could
be a reason for a sanction.

7.2. Limitations and future work
The following are some of the limitations of this work.
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Firstly, the issue of false positives and negatives has not been explicitly
demonstrated in this work (e.g. a rogue agent punishing random actions). How-
ever, we believe this issue can be resolved at the norm verification stage (i.e.
punishing agents can communicate the reason for punishment to the agents that
ask for norm verification). Secondly, even though the cost of sanctions on the
part of littering agents were considered, the cost of punishment on the punish-
ing agents has not been considered. We assume that the punishers have other
utility functions for punishing (e.g. a leader who wants to promote a smoother
functioning of the society, or an altruistic agent who does not care about its
diminishing utility). Thirdly, this work identifies co-existing norms (e.g. norm
against eating coexisting with norm against littering). The architecture does
not explain how an agent may be able to identify conflicting norms and how
these conflicting norms can be handled by the agent12. Fourthly, we recognize
that it can be difficult to always associate sanctions or rewards with the events
that immediately precede them. For example, speeding might result in a fine
that is sent to an agent after a couple of days. An observer might not be able
to recognize this sanction. In this work, we have only considered those norms
where the sanctions can be recognized by an observer and the events that caused
the sanction occurred within a window of time (which can be varied by an agent)
before the sanction. We intend to address these limitations in the future. In
the future we will also investigate what an agent does with the norms once it
has identified the norms (i.e. the norm applicability assessment component).

8. Conclusion

This paper addresses the question of how agents may infer a norm when
joining a new society. To this end, this paper proposes the internal agent archi-
tecture for norm identification. An agent employing this architecture will make
use of Candidate Norm Inference (CNI) algorithm to infer what the norms of
the society are. The CNI algorithm identifies candidate norms based on an as-
sociation rule mining approach. The architecture enables an agent to flexibly
identify norms based on varying different parameters associated with the algo-
rithm. Using experimental results it has been demonstrated that norm inference
mechanism can be beneficial to an agent.
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