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Abstract

Modeling of financial market data for detecting important market characteristics as well as their ab-
normalities plays a key role in identifying their behavior. Researchers have proposed different types of
techniques to model market data [1]. One such model proposed by Sergie Maslov, models the behavior
of a limit order book. Being a very simple and interesting model, it has several drawbacks and limitations.

This paper analyses the behavior of the Maslov model and proposes several variants of it to make the
original Maslov model more realistic. The price signals generated from these models are analyzed by
comparing with real life stock data and it was shown that the proposed variants of the Maslov model are
more realistic than the original Maslov model.



Chapter 1

Introduction

This paper is based on the research done by Sergie Maslov [2]. We propose two modifications (M1,M2) to
the original Maslov model to make the model more realistic and their behavior in relation to the original
Maslov model and range of real financial data is analyzed.

In Chapter 2, we discuss the Maslov original model along with the proposed modifications. Chapter
3 discusses our contribution in this research and Chapter 4 deals with the results we have obtained.
The conclusion chapter summarizes the research findings and highlights the implication of the work and
future extensions. In the Appendix, we discuss some important time series and financial data comparison
techniques and their relevance to our study.

The following data sets are used in the analysis

Original Maslov simulation data, and modified Maslov data:A comprehensive description of these data
is included in Chapter 2 along with the relevant information regarding the generation of these
datasets.

DowJons index data (1998-2009):This is the second oldest market index in the US. This index gives an
indication of how the prices of 30 large publicly owned companies traded in United States behave.

S&P 500 Index data (1998-2009):This is a price index which consists of 500 large-cap common stocks
actively traded in the United States.

General Electric (1962-2009):General Electric Company is a multinational American technology and
services company. In 2009 it was named as the world’s largest company. We used daily, weekly and
monthly returns of GE stocks traded in 2009 for our analysis.

MRO (2009): Marathon Oil is a leading integrated energy company with exploration and production ac-
tivities based on countries including United States, Angola, Indonesia, and Norway.

DELL - Nasdaq trades in February 2007:Dell Inc is a multinational technology corporation residing in
the US. This company designs, develops, manufactures, sells, and supports personal computers and
other computer-related products. We used price returns of DELL stocks traded in the month of
February 2007 for our analysis.
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Chapter 2

Maslov Model and its Variants

2.1 Maslov Limit Order Market Model( M0)

Maslov model (denoted byM0) [2] simulates the behavior of a limit order book using a single stock with
one trader submitting limit and market orders based on random logic. This model can be considered as
a very basic layer of a complex financial market. As explained below, the author has used a very simple
approach to model the market behavior of a limit order book. We define the behavior of Maslov’s model
using the following general notation:

P0 : Starting Last Traded Price

LTP : Last Traded Price

MO : Market Order

LO : Limit Order

∆ : Price Off-set

BBP : Best Bid Price

BAP : Best Ask Price

θ : Order Size

p0 : Probability of a buy order, with (1 -p0) the probability of a sell order.

p1 : Probability of a limit order given that it is a buy order and (1 -p1) is the probability of a market order
given that it is a buy order.

p2 : Probability of a limit order given that it is a sell order and (1 -p2) is the probability of a market order
given that it is a sell order.

The Maslov model simulates buy orders with probabilityp0 (p0 = 0.5), and sell orders with probability
1 - p0. Depending on whether the order type is buy or sell, a limit order takes place with probabilities
p1 andp2 respectively (wherep1 = p2 = 0.5). The price of a limit buy order is assumed to be LTP -∆,
where the price off-set (∆) is assumed to be a uniformly distributed discrete random variable in the range
1 ≤ ∆ ≤ 4. The price of a sell limit order is assumed to be LTP +∆ i.e., the Maslov model assumes

2



2.1 Maslov Limit Order Market Model(M0) Maslov Model and its Variants

that limit order buyers determine the buying price at a price slightly (∆) lower than the last traded price &
limit order sellers at a price slightly (∆) higher than the last traded price.

The Maslov model basically considers three transactions namely buy orders, sell orders, and matching
of a buy and a sell order.

An execution of a buy/sell matching transaction takes place in the following two cases.

• When a sell market order (MO) is submitted and is matched with the best price (highest) of the buy
side of the book(i.e., BBP).

• When a buy market order (MO) is submitted and is matched with the best price (lowest) of the sell
side of the book(i.e., BAP).

The order book of the Maslov model is maintained according to the following rules.

• Once a buy/sell matching transaction is taken place, the two orders are removed from the order book
immediately.

• Traders can trade a fixed number of shares at a time i.e.,θ is constant.

• If a buy market order is submitted when there are no sell orders in the order book, the buy market
order is converted to a buy limit order & vice-versa.

• All the limit orders are assumed to be “good till canceled”.

See Figure 2.1 and Algorithm 1 for additional details.
LTP generated from the Maslov model is recorded with time and it’s behavior is analyzed. The Maslov

model enforces thatBBP ≤ LTP ≤ BAP which which is not always observed in the behavior of a real
stock market. Moreover, both limit buy and sell orders narrow the spread (the difference between the best
ask price and best bid price) while market orders widen it. This results in a repetition of “cone shapes” in
the price signal(See the Figure 4.2(a) on page 4.2(a)). When the spread is high, some sudden large drops
and jumps in the price signal can be seen.

The original Maslov paper [2] analyzes the behavior of a stock market limit order book by relating its
behavior to some real financial market movements. Some of the features the author analyzes arefat tail
property of the probability distribution of price fluctuations, crossovers between two power law regions in
the same distribution, long range correlations of the volatility, and the Hurst exponent of the price.

Maslov model addresses the following empirical theories and produces evidence to prove them using
the numerical results produced by the model.

• The histogram of the short time lag increments of market price has a different Gaussian shape with
sharp maximum and broad wings.

So, according to the current consensus on the shape of the distribution, it shows the characteristics
of a Pareto-Levy distribution [3, 4] up to a certain value, with a power low exponent of1 + α ∼
2.4 − 2.7, and then it crosses over either to a steeper power law with an exponent of1 + α ∼ 3.7 -
4.3 or to an exponential decay. In both these cases, this crossover ensures a finite variance (second
moment) of the distribution.

• When computed with time scales less than several trading days, the graph of price vs. time have a
Hurst exponent ( [2, 5])H ∼ 0.6− 0.8, which is different to the value corresponding to the ordinary
random walk which isH ∼ 0.5.

3



2.1 Maslov Limit Order Market Model(M0) Maslov Model and its Variants

• The volatility of price(second moment of price fluctuations) should exhibit a correlated behavior.
It should show some clustering of volatility i.e., having regions of high amplitude data separated
by relatively low amplitude regions visible in time vs. price increments plot. Volatility clustering
affects the shapes of the autocorrelation function of the volatility (price increments) as a function
of time. The autocorrelation function of price increments should decay according to the power law
with a very small exponent in the range 0.3 - 0.4 and with no apparent cut-off.

The Maslov paper [2] presents the following empirical evidence to support the above empirical theo-
ries.

• It compares the price vs. time graph and price increments vs. time graph with ordinary random
walk graphs with similar attributes and shows that both graphs are drastically different from a ran-
dom walk. Unlike a random walk, the author has observed some price increment clustering where
the regions with high volatility that are separated by some quiet regions. He computes the Hurst
exponent of the price graph using the Fourier transform of the price signal by taking the average
over many runs of the model. He also claims that the relationship of the Fourier transform of
the autocorrelation function of the price signal and the value of the Hurst exponent is of the form
S(f) ∼ f−(1+2H). Maslov results show that the log-log plot of S(f) of a price signal of length218,
averaged over multiple realizations resulted in a value of the Hurst estimate approximately equal to
0.25. This corresponds to the decay ofS(f) ∼ f−3/2. But the value he obtained differs from the
short term Hurst exponentH ∼ 0.6− 0.7, corresponding to real stock prices.

• Maslov argues that the amplitude of price fluctuations generated from his model has long range
correlations while signs of price fluctuations having short range correlations. He has used the au-
tocorrelation function of the absolute values of price incrementsS(t)abs to show this correlation
behavior. According to him, the autocorrelation function of the absolute values of price increments
behaves according to the power law tail with an exponent ofS(t)abs ∼ t−1/2. He also derives the
Fourier transform ofS(t)abs which has a clear form off−1/2. The exponent he has got for his sim-
ulation was not very different from 0.3 which is the corresponding value for real data such as S&P
500 stock index. Then he analyses correlations of signs of price fluctuations (changes) using Fourier
transform of auto correlation function and the results shows that the behavior is much closer to fre-
quency independent forms such as white noise characteristics. He compares this with real stock
prices to show that real data also has similar long range (lag is less than 30 minutes) correlations of
signs of price increments.

• The histogram of price increments measured over time lags 1, 10, and 100 provides strong support
for non-Gaussian distribution which is very close to the shape of real stock prices. As the lag
increases the peak of the histogram gradually softens (gets closer to Gaussian), while the wings
remain strongly non-Gaussian. Also his analysis on the log-log plot of the histogram of lag 1 for
data collected during3.5 × 107 time steps shows that log-log plot has two distinguishable power
low regions separated by a large crossover approximately around 1. According to Maslov the reason
behind this is unknown. Exponents of these two regions are measured to be1 + α = 0.6± 0.1 and
3±0.2. A similar crossover of two power low regions was reported in real stock price fluctuations in
NYSE with the exponents ranging between1.4−1.7 and4−4.5. Power low exponent of the far tail,
1 + α = 3, stays right at the borderline, separating the Pareto-Levy region with power low exponent
1 + α < 3, where the distribution has an infinite second moment(i.e., variance). According to
the author, although his model shows very long range correlations in price fluctuations, one should
not expect convergence of a price fluctuation distribution to a Pareto-Levy or Gaussian as lag is
increased.
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2.1 Maslov Limit Order Market Model(M0) Maslov Model and its Variants

We propose the following modifications to the original Maslov model(M0) in order to make the original
Maslov model more realistic.

2.1.1 Modified Maslov Model 1(M1)

In M1, the probabilities (p0,p1,p2) and the price determination logic remain as per Maslov original model(M0)
but∆ is assumed to be a uniformly distributed discrete random variable in the range−1 ≤ ∆ ≤ 2 (Refer
the Algorithm 2 and Table 2.1) where asM0 assumes∆ to be in the range1 ≤ ∆ ≤ 4.

Maslov model does not allow the order price to overlap with the contra side of the order book; which
prevents probable trades of aggressive limit orders. In real markets when a trader wants to buy at the market
price, he/she simply submits a market order with the awareness of the top of the book price, but before his
order arrives to the market, there can be some other orders that hit the book which would remove several
top most price points. As a result, our trader might get an unexpected price. Hence market orders involve
some risk. Therefore some traders submit LOs with the price of top of the book in contra side instead of
submitting a market order in order to minimize the risk. This ensures him that he would not receive the
worst price even though he would miss the best price that he wanted to get. In order to incoperate this
behavior we select the values for∆ in the range−1 ≤ ∆ ≤ 2, which would allow the model to go into
either side of the LTP when determining the next LOP. This strategy allows the model to have aggressive
limit order matchings. This type of trading cannot takes place in the original Maslov modelM0.

2.1.2 Modified Maslov Model 2(M2)

In M2, ∆ is assumed to be a uniformly distributed discrete random variable in the range1 ≤ ∆ ≤ 4 and
the probabilities are assumed to bep0,p1,p2 = 0.5 as per the original Maslov modelM0. The difference in
M2 is that for buy orders it is assumed that LOP = BAP−∆ and for sell orders LOP = BBP +∆. When the
contra side is empty, limit buy and sell order prices are defined to be LTP−∆ and LTP+∆ respectively
(See the Algorithm 3 and Table 2.1).

This modification is introduced taking in to account of the behavior of a rational market and it’s traders.
This is also based on observed patterns of traders who are trading in a market. The logic behind this
modification is that the top of the book price of the contra side being used to determine the limit order
price of a side.

Input : ∆ = 1, 2, 3, 4
Output : LOP

/* Buy ? */
if (Buy)then

LOP = LTP -∆;
end
/* Sell */
else

LOP = LTP +∆;
end

Algorithm 1 : Algorithm for determining Limit Order Prices ofM0.
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2.1 Maslov Limit Order Market Model(M0) Maslov Model and its Variants

Figure 2.1: Flow Diagram ofM0.

Input : ∆ = −1, 0, 1, 1
Output : LOP

/* Buy ? */
if (Buy)then

LOP = LTP -∆;
end
/* Sell */
else

LOP = LTP +∆;
end

Algorithm 2 : Algorithm for determining Limit Order Prices ofM1

6



2.1 Maslov Limit Order Market Model(M0) Maslov Model and its Variants

Input : ∆ = 1, 2, 3, 4
Output : LOP

/* Buy ? */
if (Buy)then

/* Sell Side Empty ? */
if (Sell Side Empty)then

LOP = LTP -∆;
end
else

LOP = BAP -∆;
end

end
/* Sell */
else

/* Buy Side Empty ? */
if (Buy Side Empty)then

LOP = LTP +∆;
end
else

LOP = BBP +∆;
end

end
Algorithm 3 : Algorithm for determining Limit Order Prices ofM2
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Chapter 3

Methodology

The contribution of our research is twofold.

• Analyze the behavior of time series and financial measures for theM0 and its variantsM1 andM2.

• Compare these behaviors with real data.

In order to add some realness to the original Maslov modelM0, we have been experimenting with
various forms of simple variations. These experiments were based on the price determination logic of the
limit orders. In order to make the models simple, we refrained from introducing any complex patterns or
special behaviors. Here the starting price (P0) is selected as 1000. Price and time data were recorded over
10000 time steps after initial time steps of 1000 and all the results were computed and averaged over five
hundred simulations.

We used two measures to analyze the behavior of the datasets that were used in our research: the Hurst
exponent and fitting a probability distribution to logarithmic price returns.

The following sections ( 3.1 and 3.2)) describe the two main measures used to explain the behavior of
the selected datasets.

3.1 Hurst Exponent

Hurst exponent (normally denoted by H) is used in areas such as applied mathematics, fractals and chaos
theory, long memory processes, and spectral analysis. It has different but related meanings in different
contexts.

Hurst exponent is a measure of whether the data is a pure random walk or has underlying trends
and hence, it is considered as a measure of predictability of a series. Random Gaussian process with
an underlying trend should have some degree of autocorrelation. If this autocorrelation has a very long
(infinite) decay or long range correlations, it is referred to as a long memory process with a Hurst exponent
value0.5 < H < 1.0.

This long memory behavior could be due to a sudden impact that affects a process. In such process,
although the impact is sudden, the underlying process takes some time to come back to its normal behavior.
This is due to the memory which is carried through with the process itself. For example, although a large
buy or sell order can cause a sudden change in stock price, stock price behavior takes some time to come
back to its normal operation. Hurst estimate can be used as an indication of this type of behavior of
processes. It can always be used to compare behaviors of memory-less processes like random walks [6].

It is a measure of “dependence index” in fractal geometry. It is a measure of relative tendency of how
close it is to the mean or cluster in a direction. So it is a measure of persistence (i.e., the characteristic or

9



3.1 Hurst Exponent Methodology

tendency of underlying series to continue in its current direction). If the Hurst exponent value is between
0.5 and 1, the process can be considered as a persistence series (which has positive autocorrelation) mean-
ing that if the process has an increment between times t-1 and t, then there is a high possibility of having
an increment between times t and t+1 as well. If H is between 0 and 0.5, it is an anti-persistence series
(which has negative auto-correlation). In other words, if the process shows an increase between times t-1
and t, there is a high possibility of having a decrease in between t and t+1. If it is equal or closer to 0.5,
this implies that it is a random and unpredictable series. This behavior is called “mean reversion” [6, 7].

Hurst exponent is related to fractal dimension as well. Fractal shapes can be identified as shapes which
can be made with a large number of similar basic shapes. Some examples of this type of fractal shapes are
fern leaf and Sierpinski pyramid. Fractal dimension D is a statistical quantity which gives an indication
on how completely a fractal shape appears to fill the space. This fractal dimension is used to measure
the roughness of the coast line. Hurst estimation directly relates to the fractal dimension such that D =
2 - H and lies in between 0 and 1 with higher values indicating a smoother trend, less volatility, and less
roughness. In fact, the Hurst exponent was developed in the field of hydrology as a result of an attempt to
obtain the optimum dam size for the Nile River by analyzing changing rain and drought conditions over
a long period of time. It has been showed that the height of the Nile River measured annually over many
years gave a value of H = 0.77 [6].

For brown noise (Sometimes referred to as random walk or Gaussian noise), the estimated Hurst Expo-
nent is around 0.5. For white noise, the value of the Hurst Exponent is around 0 and for the popular Levy
stable processes and truncated Levy processes with parameterα andγ Hurst Exponent =γ/α for γ < α
and 1 forγ = α (See Appendix A.2 for Stable Pareto Distributions).

In financial world, many economists and statisticians have been trying to model the stock market
behavior using various models. One basic model used for this is the random walk model. In order to
model stock market behavior using this model, they have assumed that the distribution of stock returns
follow a normal distribution. Under that assumption, methods like Value at Risk (risk of loss measured on
a specific portfolio of financial asset) have been developed. But later some argued that the distribution of
price returns does not follow a normal distribution and because of this, the rescaled range analysis or Hurst
Exponent analysis was introduced. For example, daily return on stocks behave according to the Gaussian
distribution. In terms of correlation, return of yesterday may not have any relationship with the return
today. However, when the return period increases, the distribution gets closer to a log-normal distribution.
Here the extreme values or tails of the distribution follow a power law. These longer return time series
shows some amount of autocorrelation and a non-random Hurst exponent. It is observed that the return
period increases as the value of the Hurst exponent increases and gets closer to 1 (correlation increases and
shows long memory behavior). Many researchers (mainly Peters, 1991) [8] have proved that stock returns
have characteristicH > 0.5, so that their behavior is distinct from random walk and is not generated by a
stochastic process generating non-correlated values. This was referred to as long term memory behavior
in stock returns [5, 7].

There are various methods in practice to estimate the Hurst exponent value. Widely used methods are
rescaled-ranged computation, wavelet based method, and graphical methods.

The rescaled range is a statistical measure of the variability of a time series. In other words, it is a
statistical technique used to detect the presence or absence of trend in time series by finding the Hurst
exponent. It is computed by dividing the range of the values by the standard deviation over the same
portion of time series. If the maximum, minimum, and standard deviation values of time series of size n
are x, y, and S respectively, which have a range, R = x - y, the rescaled range of the series is defined as
R/S. When we increase the number of observations n, the rescaled range value also increases. The slope
of the doubly logarithmic plot of rescaled range (R/S) vs. sample size (n) gives the Hurst exponent H [6].

Wavelet based method is also used to estimate the Hurst exponent in many cases. In graphical method,
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3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

price auto-correlation function and Fourier transform of price auto-correlation function is used. Fourier
transform of price auto-correlation function of the price signal S has a relationship with the Hurst exponent
H of the formS ∼ f (1+2H). The slope of the doubly logarithmic plot of this is related to the Hurst exponent
as2H + 1[2, 5]. In a long memory process, the decay of the autocorrelation function follows a power law.
The Hurst exponent relates to the power exponent as 1 -α/2 [2].

The Hurst exponent is non deterministic so it is only an estimation based on observed data. The only
way to test the estimated value is by comparing it with a dataset with known Hurst exponent.

In our research, the Hurst exponent values are estimated using the re-scaled range computation method.
Re-scaled range method was chosen after experimenting for consistency and accuracy with the other two
main methods. Here, the logarithmic price returns were used in order to reduce the overall market move-
ment and all the aforementioned measures were computed for all the selected datasets and compared the
values with each type of data available. All the results were computed and averaged over five hundred
simulations.

3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns

Researchers have shown that extreme high values of stock return values follow a simple power law distri-
bution (Pareto-Levy distribution) and they have proposed various ways to estimate the parameters of this
distribution and to find the exact range of order statistics which follows this distribution, by estimating
cut-off valueγ (See Appendix A.2). In order to get accurate estimates of parameters. There should be a
minimum number of order statistics values, which is at least 50 [9].

Both arithmetic and logarithmic stock returns (daily, weekly, and monthly) can be modeled using the
Pareto Levy distribution (See Appendix A.2). In addition to stock prices, indexes variations, volumes and
volatility decay distributions may also be modeled using the same distribution [9, 10, 11, 12, 13, 14].

Since we cannot deduce a closed form of the Stable-Pareto distribution (See Appendix A.2), we can-
not fit it directly to a financial data series. Therefore, we use some closed form versions of that distribution
to fit for the data set. The most commonly used distribution to fit extreme variations of financial data is
the simple power law distribution and some of its variations. Power-law distributions include continuous
distributions such as simple power law, power law with cut-off, exponential distribution, stretched expo-
nential distribution, log-normal and discrete distributions such as power law, Yule distribution, exponential
distribution, Poisson distribution used for financial data analysis [9].

The following sections ( 3.2, 3.2, and 3.2) describe various methods that could be used to fit the
Pareto-Levy distribution [9, 15, 16, 17, 18, 19, 20].

We assumed that extreme values of logarithmic price returns follow the given power-law distribution
(Pareto-Levy distribution) and estimated the parameters.

f(x) = αγαx−(1+α), (x > γ)
Whereα, γ are parameters of the distribution.
Graphical Methods
The most commonly used method to fit this distribution is simple histogram analysis. The probability

density function of the Pareto-Levy distribution followsln(f(x)) = −(1 + α) ∗ ln(x) + constant form.
This is actually a straight line in log-log plot of the histogram of data between ln(f(x)) and ln(x). So slope
S of the straight line is related to the exponent of the power law distribution as S = (1+α). The starting
value that straitens the log-log plot is taken as the estimated value forγ.

The following steps were used to findα andγ values.

• Consider only positive logarithmic price returns.

11



3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

• Plot a histogram with a suitable class size.

• Divide the frequencies of each class by n to get probability values, where n is the sample size.

• Plot log(probabilities) against the log(mid values) of each class.

• Least squares linear regression is used to estimate the slope of the doubly logarithmic plot.

• Computeα using the slope and estimateγ using the graphical method.

• Repeat the same steps for negative price returns.

Some other alternative methods for estimating the cut-off value are

• Using the value which straightens the log-log plot of probability density or cumulative density func-
tions

• Identifying the point beyond which the plot of estimated power exponent and the minimum value
(cut-off) is stable (This is basically known as the Hill plot) [9].

Maximum Likelihood Method with Goodness of Fit Tests
When fitting a probability distribution to the price increments and logarithmic return values, we used

the Pareto Levy stable distribution (A simple power law distribution, See the Algorithm 6).
We have used maximum likelihood estimation [21] combined with goodness of fit test [12] for param-

eter estimation. Maximum Likelihood method is a statistical method used to fit a statistical model to the
dataset in order to provide estimates for models parameter. Maximum likelihood Hill estimator method
is used to estimate the power exponent valueα of the distribution and selected goodness of fit tests [12]
were carried out to get the best fitted parameter (α) along with the cut-off value (γ). Normally power-law
exponent (α) is assumed to be greater than one because exponent less than one is not normal and cannot
exist in nature [9].

Maximum likelihood method is considered as the most accurate and robust method in practice. Max-
imum Likelihood Method is more accurate than the Least Square regression method when fitting these
distributions. This is because Least Square regression method (or graphical method in other words) is
considered as a subjective method.

Parameters were estimated for each run and were averaged over five hundred runs.
In terms of goodness of fit methods, distance between empirical distribution and theoretical distribution

is used to find the best fitted values of a distribution. Values obtained by Goodness of Fit tests or in other
words the above mentioned distances are known as test statistic values. There are number of ways of
calculating these test statistics. For non normal data, commonly used method is Kologorov-Smirnov (KS)
method. There exists some other goodness of fit methods which compute the best fitting parameters for
a dataset such as Kuiper, Cramer-Von-Mises/Watson and Anderson-Darling tests. Sometimes modified
goodness of fit statistics gives more accurate results than normal statistics. Modification to goodness of fit
statistics is done by weighting data to avoid some insensitiveness around extreme limits. In these extreme
limits of data, distribution tends to get close to zero or one. So re-weighting assures uniform sensitivity
across the whole range of test statistic values.

Cramer-Von-Mises test is minimum distance estimation method used to find goodness of fit by com-
paring probability distribution (theoretical) with a given empirical distribution function. Here the test
statistics values are used in hypothesis testing to find the best fitted parameters. This test can be performed

12



3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

in between two empirical distributions, and it is called the Cramer-Von-Mises two sample test [9]. Ac-
cording to many researchers, re-weighted KS and Kuiper methods are not much different from standard
KS statistics [9, 12].

In our research, Anderson-Darling minimum value test [10, 17] and hypothesis testing with Cramer-
Von-Mises/Watson statistics were used (See Algorithms 4) [16, 12].

/* Test Statistics Formulas of Goodness of Fit Tests */

Anderson−Darling(A2) = −n− [Σi(2i− 1)(logzi + log(1− zn+1−i))]/n (3.1)

Cramer − V on−Mises(W 2) = 1/12n + Σi(zi − (2i− 1/2n))2 (3.2)

Watson(U2) = W 2 + n(z − 1/2)2 (3.3)

Where, zi = F (xi) (3.4)

n = samplesize (3.5)

(3.6)

Algorithm 4 : Test Statistics Formulas of Goodness of Fit Tests

In Anderson-Darling minimum value test the minimum distance between empirical distribution and
theoretical distribution or in other words minimum test statics value is used to find the best fitting param-
eters of the distribution (See the Figure 3.1 on page 14).

In Cramer-Von-Mises/Watson test, P-Value associated with the test statistics is used for hypothesis
testing (See the Figure 3.2 on page 15) [11]. Here the test statistics are often compared with tabulated
critical values (corresponding to significance levels) to take the decision of ruling out a hypothesis. Also,
hypothesis testing is involved with comparing probability value (p-value) associated with the critical value
to take that decision. The NULL hypothesis (i.e., the empirical and theoretical distributions are identical)
is rejected if the calculated test statistics is greater than the critical value obtained from a critical values
table [12] for a given significance level or, if the calculated p-value is lower than the significance level.

P-value is defined as the probability of test statistic values which is larger than the critical level. P-
Value can be obtained by analyzing the empirical distribution and a larger number of synthetic distributions
which have been derived from the power law distribution we used to fit, with the estimated exponent and
cut-off. This means compare the empirical test statistic value with test statistic values of each synthetic
distribution and its own distribution, and selecting the fraction of synthetic statistics which exceeds the
empirical test statistics as the P-Value of the empirical distribution. If the P-Value is large and close to one,
the difference between empirical and theoretical distributions can be only due to statistical fluctuations. If
the value is small the theoretical distribution cannot be fit to the dataset [11, 12].

KS method is more accurate for small number of observations; roughly around 1000. A major draw-
back in Anderson-Darling method is that it estimates large numbers as the cut-off valueγ. Even though
it is considered as a better method compared with KS statistics in terms of the sample size, it is more
suitable for distributions with larger number of samples in the tail of the distribution. When the cut-off (γ)
value is large, the number of samples taken in to consideration for fitting is less, so it leads to an increase
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3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

in the statistical error of the estimated values and badly affects the ability of validating the most suitable
distribution for dataset [9].

Apart from those methods Anderson-Darling statistics were used in a similar way to the Cramer-Von-
Mises test for hypothesis testing and found that the results are similar to the Cramer test. In order to
increase the accuracy of the testing method, Anderson-Darling minimum value test was performed after
removing the outliers (values greater thanQ1 + 3 ∗ IQR) (See Appendix A.1) from the minimum value
selection range. In Hypothesis testing, if the method does not reject the hypothesis, we assumed all data
follows the given distribution and estimated the parameters from the whole dataset. Estimated values were
analyzed in all theses methods and their accuracy is investigated in each case.

After analyzing dataset parameters such as sample size and data distribution, and considering their ad-
vantages and disadvantages, we chose the set of fitted parameter values using the Cramer-Von-Mises/Watson
goodness of fit test combined with maximum likelihood Hill estimator method [11] to analyze extreme
values of logarithmic price returns in our datasets.

Figure 3.1: Anderson Darling Method
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3.2 Fitting Pareto Levy Distribution to Logarithmic Price Returns Methodology

Figure 3.2: Cramer-Von-Mises test
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Chapter 4

A Comparison of Maslov, Variants and Real
Data

4.1 Numerical Results

When analyzing price time plots ofM0 and its variants, it can be clearly observed that inM0 there is an
abnormal cone shape behavior of prices, which is not visible in real stock prices(See Figures 4.2 and 4.3).
Apart from that the daily price deviation (i.e., the difference of daily high price and the daily low price)
is very high inM0 with compared toM1 andM2 (See the Figure 4.2).M2 showed the lowest deviation
compared to the other two models (See Figure 4.9). The cone shapes that can be observed inM0 are a
resultant of the behavior of limit and market orders with empty book states. Limit orders build the book
while market orders are consuming the book. Once it gets empty, formation of the cone shape stops and
the next order price is determined with respect to the LTP and again it starts to build the cone with limit
and market orders.

In Figures 4.4 and 4.5, we have given the histograms of price increments and logarithmic price returns
for combined prices of one hundred runs of Maslov model and its variants. We can clearly observe the
sharp peak and fat tail characteristics in these graphs which can be seen in financial data graphs.

Also when analyzing the price density plots (See Figures 4.6 and 4.7) of all three models we can
clearly see thatM0 has a multi modal price density plot which is a resultant of layered price values in the
price time graph. But when we analyzed this among one hundred simulations, all three models showed
similar characteristics. Real price graph of DELL data in NASDAQ (Figure 4.8) shows multi modal
characteristics but the range of price deviations is not as high as per Maslov models. The bi-modal char-
acteristic ofM0 andM1 price density plots leads to a much flatter distributed density plot thanM2, which
has high price concentration around the starting value. In the spread histogram ofM2, it is observed that
the spread values are low when compared toM0 andM1.

When analyzing the spread histogram plot of three Maslov variants in Figure 4.9, we can clearly
observe that theM2 model shows a clear difference compared toM0 andM1. In M2, the number of small
size spread values is high compared to other two.

The Hurst exponent estimate, Pareto exponent estimate for negative and positive returns (including
their standard errors) and auto correlation decay values have been computed using the aforementioned
techniques forM0 and its variants are listed in Tables 4.1, 4.2 and 4.3 and the corresponding values for
real data samples are listed in Table 4.5 and 4.7.

When comparing the behavior of the Hurst exponent, we can clearly see that in all the Maslov models,
the Hurst exponent value is lower than the value obtained for real data samples. But inM2, we can see this
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

value is much lower than that ofM0 andM1. We can observe that in both real data and Maslov data when
the return period increases the value of the Pareto exponent reduces.

In the auto correlation decay exponent, we can see that all indexes show a value slightly less than than
0.4 while real prices show values closer to 0.3. In all Maslov models, there is no clear distinction in values
but they are much closer to price returns than index return values.

In terms of the Pareto exponentα, we can see that the values of the Pareto exponent are slightly higher
in all the Maslov Models when compared with real data. Specially in modification two, this value is much
higher than the other Maslov versions (See the Tables 4.3 and 4.5).

Figure 4.1: Closing price box-plots of Maslov model and it’s variants.

Model Prices Price Logarithmic
Increments Price Returns

M0 0.19 0.31 0.31
Std Err 0.00 0.00 0.00

M1 0.10 0.36 0.36
Std Err 0.00 0.00 0.00

M2 0.08 0.28 0.28
Std Err 0.00 0.00 0.00

Table 4.1: Hurst Exponent Estimates: This table summarizes values obtained for the Hurst exponent for
prices, price increments, and logarithmic price returns of three Maslov variants for 500 samples
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) M0 (b) M1

(c) M2

Figure 4.2: Price Vs. Time graphs over three Maslov variants using the same random seeds, withp0 =
1000.
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Figure 4.3: Price Vs. Time graph :DELL NASDAQ(1st of February 2007)
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) M0 (b) M1

(c) M2

Figure 4.4: Histograms of price increments over three Maslov variants when data belonging to 100 time
series samples are combined. Price increment isPt − Pt− 1. We assumeP0 = 1000 and simulate a time
series of 10000 observations
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) M0 (b) M1

(c) M2

Figure 4.5: Histograms of logarithmic price returns over three Maslov variants (All the logarithmic price
return values are multiplied by 1000). Logarithmic Price Return islog(Pt)− log(Pt− 1). We assumeP0

= 1000 and simulate a time series of 10000 observations.
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) M0 (b) M1

(c) M2

Figure 4.6: Price density plots over three Maslov variants. For single time series shown in Figure 4.2.
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) M0 (b) M1

(c) M2

Figure 4.7: Price density plots Over three Maslov variants when data belonging to 100 time series samples
each with 10000 observations are combined
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) Price density plot for DELL prices on1st of
February 2007

(b) price density plot for DELL prices in Febru-
ary 2007

Figure 4.8: First graphs shows the price density plot for DELL on1st of February 2007 and the second
graph shows the same plot for the whole month of February
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

Sample Negative Pareto Distribution Positive Pareto Distribution
Mean Mode Variance Mean Mode Variance

M0 0.0018 0.001 7.6388*10−6 0.0018 0.001 7.6388*10−6

M1 0.008 0.004 N/A* 0.0103 0.005 N/A*

M2 0.0091 0.007 8.4805*10−6 0.0092 0.007 9.2909*10−6

Table 4.4: Probability Distribution Analysis: This table summarizes mean, mode, and variance values of
the fitted Pareto distributions of negative and positive logarithmic returns over three Maslov variants.
(*: Variance does not exist whenα < 2.)

(a) M0 (b) M1

(c) M2

Figure 4.9: Spread histograms over three Maslov variants when data belonging to 100 time series samples
each with 10000 observations are combined
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

Sample Negative Pareto Distribution Positive Pareto Distribution
Mean Mode Variance Mean Mode Variance

Dow-Jons
Daily 0.033 0.02 0.001 0.016 0.01 0.0002

Weekly 0.099 0.07 0.002 0.037 0.02 0.004
Monthly 0.22 0.02 N/A* 0.070 0.04 0.006

S&P 500
Daily 0.016 0.01 0.0001 0.030 0.02 0.0003

Weekly 0.034 0.02 0.001 0.031 0.02 0.0004
Monthly 0.0916 0.05 0.019 0.063 0.04 0.002

General Electrics
Daily 0.072 0.04 0.009 0.059 0.04 0.001

Weekly 0.117 0.06 0.169 0.095 0.06 0.004
Monthly 0.267 0.11 N/A* 0.125 0.08 0.007

MRO
Daily 0.041 0.02 N/A* 0.086 0.02 N/A*

DELL
0.931 0.39 N/A* 1.699 0.75 N/A*

Table 4.6: Probability Distribution Analysis: This table summarizes mean, mode, and variance values of
the fitted Pareto distributions of negative and positive logarithmic returns of selected real data samples.
(*: Variance does not exist whenα < 2.)
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4.1 Numerical Results A Comparison of Maslov, Variants and Real Data

(a) DELL Nasdaq, LTP Above Best Ask (b) DELL Nasdaq, LTP Below Best Bid

(c) Maslov

Figure 4.10: Last Traded Price, Best Bid and Best Ask behavior of real data (DELL-Nasdaq) and Maslov
variants
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Chapter 5

Conclusion

Maslov [2] simulates the behavior of a limit order book using a single stock with one trader submitting
limit and market orders based on random logic. In our research we analyzed the properties of this model
and compared its behavior to real data. In order to produce more realistic behavior the Maslov model, we
propose two variants of it and discuss their behavior in relation to the original Maslov model and some
real data samples.

Our numerical analysis reveals that the behavior of the Maslov model deviates from real financial data
and the modified versions (specially the second modificationM2) showed a much closer relationship to
the same. We could observe it mainly from the behavior of price vs time graph (See the Figure 4.2 on
page 18). In analyzing the behavior of the Maslov model & it’s variants time series techniques such as the
Hurst exponent analysis and Histogram analysis were used.

The next step in our research involves introducing some complex behaviors to the model such as
considering the market conditions before computing the limit order price and introducing evolutionary
strategies to the order generation logic.
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Appendix

A.1 Methods for Time Series Analysis

In order to analyze the model data and financial data, we used various time series analysis and comparison
techniques [22].

A time series is a collection of data items observed through repeated measurements over a certain
period of time. There are two main types of time series available in practice, namely stock series and flow
series. Stock series is a measure of certain attributes at a point in time. For example, the monthly labor
force survey is a stock measure because it indicates whether a person is employed in that particular month
or not. Flow series is a measure of activity over a given period. For example, manufacturing is a flow
series measure, because daily manufactured amounts are summed to give a total value for production for
that particular period of time [22, 23].

Systematic effects and calendar related effects which can occur in any kind of time series are called
seasonal effects. For example, a sharp increase in stock trading can occur around December in response to
the Christmas period. Natural Conditions (unexpected weather patterns such as snow in summer), Business
and Administrative decisions (Start and end of the school term) and Social and Cultural aspects (Christmas)
can cause seasonal variations in time series data. Seasonal effects can be identified by regularly spaced
peaks/troughs which have a consistent direction and approximately the same magnitude every year, relative
to the trend. Another form of seasonal effect is the trading day effect, that is the number of trading days
in a given month depends on holidays (the exact date of holidays such as Easter changes) which leads to
different effects for the same reason in different periods.

Seasonal adjustment is removing seasonal effects from a time series. But when a time series is domi-
nated by the trend or irregular(random) components, the seasonality adjustments for that particular series
may be inappropriate, and it is very difficult to identify and remove seasonality from a series. Hence most
often introduction of an artificial seasonal element to the series is recommended [22, 23].

The trend of a time series is defined as the long term movement without any calendar related and
irregular effects. The irregular component of a time series or the residual part is what remains after the
seasonal and trend components are removed. Random variations of a time series are fluctuations which
are not systematic or predictable. In a highly irregular series, this behavior could mask the trend and
seasonality behaviors and dominates the series.

It is very hard to compare two time series with periodic data, because of the inaccuracy and time
delays in the identification of turning points and structural shifts. Turning points are the points of time
where the direction of the underlying trend of the series changes. For example, it is very difficult to locate
the time point where a consistently decreasing series begins to rise steadily. When comparing two time
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series values, we may miss these turning points and leads to an inaccurate results [22, 23].
We can use decomposition methods to separate out these parts from a time series. The main decom-

position models are additive or multiplicative, but there are some other forms in practice such as pseudo
additive. An additive model is suitable if the amplitudes of both the seasonal and irregular components do
not vary as the level of the trend varies. A multiplicative model is suitable if the amplitudes of both the
seasonal and irregular variations increase as the level of the trend increases. A multiplicative model cannot
be used when the original time series contains very small or zero values for each of its components. In
this case, a pseudo additive model (a combination of additive and multiplicative models) is used. Pseudo
additive model assumes that seasonal and irregular variations are both dependent on the trend but inde-
pendent of each other. The pseudo-additive model continues the convention of the multiplicative model to
have both the seasonal factor and the irregular factor centered around one [22, 23].

Extreme values or outliers are the values of a time series which are unusually different compared to
other data. These values could distort the overall underlying movement of a time series by affecting the
trend. It is necessary to detect and correct for outliers in order to improve modeling of the three time series
components (trend, seasonal and irregular).

Quantile filtering is a common way of extracting outliers from a time series. The set of values beyond
the limit Q1 + 3 ∗ IQR are considered to be outliers of a series whereQ1, Q2, andQ3 are the first, second,
and third quartiles of the dataset.The inter quartile range(IQR = Q3 − Q1) is defined as the spread of
the middle 50% of the data and is often used as a measure of spread. This is also known as the mid
spread, and is a measure of statistical dispersion of data, calculated by difference between the third and
first quartiles [22, 23].

Trend breaks can be possible due to economic policy decisions, changes in population behavior and
changes in the way an attribute is measured. Seasonal breaks are changes in the seasonality of a series,
which do not affect the level or the trend of the series. They may be affected by social traditions, adminis-
trative practices or technological innovations [22, 23].

In terms of detection and correction of these effects, forward factors and concurrent analysis are two
main approaches to derive seasonal and trading day factors. The forward factors method is basically an
annual analysis of the latest available data to predict the seasonal and trading day factors for the next
year. Concurrent analysis is re-estimating seasonal factors as each new data point becomes available. This
method is more computationally intensive than the forward factor method, but the seasonal factors will
be more responsive to dynamic changes. Methods of adjustment can be divided in to two main methods:
indirect or aggregate method of adjustment and direct or disaggregate method of adjustment. The indirect
method seasonally adjusts each of the lower component series individually, then sums all the values to
obtain the seasonally adjusted series for the total. The direct method of adjustment involves summing up
of all the original series to form a total series and then seasonally adjusting the total series directly. If the
component series has very different seasonal patterns, then the indirect seasonal adjustment is appropriate.
However if seasonality is low and difficult to identify in the individual series, then using direct seasonal
adjustment can remove any residual seasonality from the aggregate series [22, 23].

Stationarity of a time series is a main characteristic that is analyzed in time series analysis. Most
techniques used in time series forecasting expect stationarity condition to be satisfied. i.e, a time series
must follow a first and second order stationary process. First Order Stationarity implies that its expected
value remains the same at any time. For example, a financial time series becomes first order stationary
when its trend component is removed by some mechanism such as differencing. A series is second order
stationary, if it is first order stationary and the covariance between two time seres values is a function
of time difference only. In case of financial time series, they can be made second order stationary if we
remove its variance by applying some kind of mechanism such as taking the square root [22, 23].

Filtering techniques are used to extract useful information such as the cyclic component from a time

34



A.1 Methods for Time Series Analysis Appendix

series. These filters are a direct implementations of input-output relationships. Differencing and filtering
are used as data pre-processing techniques before applying effective and efficient time series modeling
methods [22, 23].

A.1.1 Smoothing Techniques

Smoothing is a technique used to reduce the variability of a dataset. Smoothing reduces variance by av-
eraging over the periodogram of neighboring frequencies and introduces bias because the expectation of
neighboring periodogram values is not identical to the selected frequency. Over smoothing is a serious
issue. Tapering corrects the bias introduced from the finiteness of the data. The expected value of the peri-
odogram at a certain frequency is not quite equal to the spectral density. It can be affected by the spectral
density at neighboring frequencies. For the spectral density which is more dynamic, more tapering is re-
quired. Smoothing introduces bias, but reduces variance. Tapering decreases bias and introduces variance
and also attempts to remove the influence of side lobes that are introduced by the spectral window [22, 23].

Exponential smoothing: Exponential smoothing is a technique that can be applied to time series data
to prepare smoothed data and to make forecasts. In exponential smoothing, the weighted average
of the time series are calculated by assigning exponentially decreasing weights with time. i.e., the
exponentially smoothed value for time period t isSt = αxt−1 + (1− α)st−1, whereα is smoothing
factor and1 < α < 2.

Exponential smoothing is a commonly used technique in financial market and economic data.

Simple moving average:The simplest way to smooth a time series is to calculate a simple (unweighted)
moving average. The smoothed value is just the mean of the last k observations of the series. One
main disadvantage of this technique is that it cannot be used to smooth the first k -1 terms of the time
series. When calculating the simple moving average for period k, unlike in exponential smoothing,
is this equal weight is given for each observation.

Weighted moving average:This calculated as a weighted moving average using a set of weighting fac-
tors. Sum of all the weight factors should be equal to one. Weight factors are chosen in such a way
that more weight is given for most recent time series values and less weight is given for old time
series values. This technique has the same disadvantage as the simple moving average technique.

Exponential moving average: In this case, the current smoothed value (y′t) is computed as the simple
weighted average of the current observation at t (yt) and the previous smoothed value at t-1 (y′t−1),
whereα is the smoothing factor, and0 < α < 1 gives the formulay′t = (1− α)y′t−1 + αyt.

If the value ofα is close to one, it gives less smoothing effect and gives greater weight to recent
changes in the data. Ifα closer to zero, it gives a greater smoothing effect and is less responsive
to recent changes. There is no formalized and correct procedure for choosingα. Sometimes expert
knowledge is used to choose an appropriate factor and least squares method is used to optimize the
selected value.

A.1.2 Time Series Models

Time domain models and frequency domain models are used for time series analysis. One way of ana-
lyzing financial time series is to model the process using some statistical methods. An accepted model
for stock price series is the famous random walk or Brownian motion model proposed by Osborne in
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1959 [24]. Osborne suggests that stock return is a random variable that follows zero-mean Gaussian dis-
tribution. Other models, such as the linear correlative model for stock returns have also been used in the
research literature.

A.1.3 Autocorrelation Analysis of a Time Series

Autocorrelation and partial auto correlation are used in modeling a time series model for analysis. Au-
tocorrelation measures the similarity between time separated observations as a function. Simply, it is the
cross correlation of a signal with itself. Autocorrelation is a mathematical tool measures the repeated
patterns in a time series. It can also be used to identify the missing fundamental frequencies in a signal
implied by its harmonic frequencies. Autocorrelation of a random time series process describes the cor-
relation between values of the series at different points in time and provides a strong scale free measure
of the strength of statistical dependence, as a function of the two times or of the time difference. Its value
must lie in the range [-1, 1]. When the autocorrelation function is normalized by mean and variance of
that particular series, it is referred to as the autocorrelation coefficient [22, 23].

Partial autocorrelation function is very important when identifying autoregressive and autoregressive
moving average models for time aeries using the Box-Jenkins approach [22]. Partial autocorrelation of
lag k is the autocorrelation between t and t + k with the linear dependence of t + 1 through to t + k - 1
removed. This is useful in identifying the order of an autoregressive model. The partial autocorrelation of
an AR(p) process for lags greater than p is zero. If the sample autocorrelation plot indicates that an AR
model may be appropriate, then the sample partial autocorrelation plot is examined to identify the order of
the AR process [22, 23].

Model Selection Criteria [22, 23]:

• If none of the simple autocorrelation coefficients are significantly different from zero, the series can
be identified as a random number of white noise series. This kind of series cannot be modeled by an
autoregressive model as there is no information involve for modelling.

• If the simple autocorrelation coefficients decrease linearly, pass through zero and become negative,
or if the simple autocorrelations show a wave like cyclic pattern while cutting the zero line several
times, this series can be identified as not stationary; it should be differenced once or more times
using an appropriate transformation to convert the series in to a stationary one before it is modeled
with an autoregressive model.

• If the simple autocorrelation coefficients indicate seasonal patterns, (i.e., if there are almost equally
spaced cyclic autocorrelation peaks) the series is not stationary and it should be differenced with a
gap (approximately equal to the seasonal interval) before applying a model.

• If the simple autocorrelation coefficients are decreasing exponentially but approaching zero gradu-
ally while the partial autocorrelation coefficients are significantly non zero for some small number
of lags and also if they are not significantly different from zero, this series could be modeled with
an autoregressive process(AR(p) process).

• If the partial autocorrelation coefficients are decreasing exponentially but approaching zero gradu-
ally while the simple autocorrelations are significantly non-zero for some small number of lags and
they are not significantly different from zero, this series could be modeled with a moving average
process(MA(q) process).
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• If the partial and simple autocorrelations both converge to zero for longer lags, but neither actually
reaches zero after any particular lag, this series may be modeled by a combination of autoregressive
and moving average processes(ARMA(p,q) process.

A.2 Pareto-Levy Stable Distributions

Many empirical quantities of financial data cluster around extreme values [25]. As a result of this, the
Pareto-Levy family of distributions always go hand in hand with financial data. We have used a simple
power-law distribution (a member of Pareto-Levy distribution family) to fit extreme variations of logarith-
mic returns of various datasets used in our research (See the Algorithm 6).

Prior to Paul Levy’s mathematical analysis, some analysts investigated histograms of some variables
which generally looked like normal distributions but deviated from the actual shape of the normal distri-
butions. They identified some sharp peak and fat-tailed characteristics in these distributions and named
them leptokurtic. In 1915, economist Wesley Claire Mitchell [26] showed that the distribution of the
percentage changes in stock prices deviate from the normal distribution. This means that the probability
of having extremely large fluctuations or extremely small fluctuations is high compared to having mod-
erate fluctuations (higher proportion of probability is in the tails of the distribution compared to normal
distribution).

Distribution of a random variable can be considered as stable if the linear combination of two inde-
pendent copies of that particular random variable has the same distribution. So in general, if x and y are
random variables of two stable distributions, x+y also has a stable distribution. These stable distributions
are called Levy alpha-stable distributions [3, 4].Ex: If x1 andx2 are two independent copies of random
variable x, then the distribution of ax1+bx2 has the same distribution ascx + d. It becomes strictly stable
only if d = 0.

The normal distribution is one variation of stable distribution. According to the central limit theorem, a
properly normed sum of a set of random variables with finite variance converges into a normal distribution
as the number of variables increases. Stable distributions which are not normal are called stable Paretian
distributions after Vilfredo Pareto. All stable distributions are infinitely divisible (See A.2.1). Gnedenko
and Kolmogorov state that the sum of random variables drawn from a power law tail distribution (x−(1+α))
with exponent1 + α will converge to a stable distribution as the number of variables increases [3, 4].

It is not possible to analytically derive the probability density function for general stable distributions.
However Paul Levy discovered a generic characteristic formula (See Algorithm 5) for all stable distribu-
tions [3, 4].

There are four main parameters in stable Pareto distributions:

α : Stability parameterα, also known as characteristic exponent or peakedness of the distribution deter-
mines the type of the distribution where0 < α ≤ 2. For normal distributionα = 2. The second
(variance) or higher moments exist only whenα = 2.

β : Skewness parameter. This is a measure of asymmetry, identified as the third central moment of the
distribution (Whenα < 2 the second or higher moments does not exist for the distribution).β can
be any real value in the range [-1,1]. For normal distribution or any other symmetric distributions
β = 0. Whenβ < 0 or β > 0, the distribution skews left and right, respectively.

c : Scale or dispersion parameter (which is a measure of the width of the distribution). This can refer
to any positive real value and this value is related to the standard deviation of normal distributions.
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In non-normal distributions this is not related to the standard deviation but in non normal stable
distributions it is infinite.

µ : This represents the shift of the distribution, Also known as the mean or a measure of centrality. This
can refer to any real value. Distribution mean exists and equal to the value ofµ only whenα > 1.

In general, the parametersβ andα are considered to be shape parameters whileµ and c are location
and scale parameters respectively.

A Log-log plot of probability density functions of symmetric centered stable distributions show power
law behavior for large x, with the slope or power law exponent equal to−(α + 1). So the parameter
α increases the peakedness of the distribution goes down while the slope of the log-log plot becomes
steeper. Log-log plot of skewed centered stable distributions probability density functions show the power
law behavior for large x. The slope of the linear portions is equal to−(α + 1).

/* Characteristic Function (Pareto-Levy Distribution) */

CharacteristicFunction = φ(ω) (A.1)

log(φ(ω)) = ıµω− | cω |α (1− ıβF (ω, α, c)) (A.2)

F (ω, α, c) = sgn(ω)tan(πα/2), if(α 6= 1) (A.3)

= −(2/π)log(| cω |), if(α = 1) (A.4)

sgn(ω) = 1, ω > 0 (A.5)

= 0, ω = 0 (A.6)

= −1, ω < 0 (A.7)

Algorithm 5 : Characteristic Function (Pareto-Levy Distribution)

A.2.1 Flavors of stable distributions

Following distributions can be defined as special cases of Stable Pareto Distribution.
Some of the derived distributions of stable Pareto distributions [3, 4].

Normal Distribution : For the normal distributionα = 2, β = 0, variances2 = 2c2, andµ = mean.

Cauchy Distribution : For Cauchy distribution,α = 1, β = 0. Cauchy distribution does not have a mean
value, so the central moments are not defined.
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Levy Distribution : For Levy distributions,α = 1/2 andβ = 1, where c is the scale parameter of the
distribution.

Except for the normal distribution withα = 2, all other stable distributions are leptokurtotic and
heavy-tailed in shape. The normal distribution, Cauchy distribution, and Levy distribution are considered
as special cases of stable distribution because all of them posses the aforementioned characteristics.

When relating this behavior with financial data, it is observed that the linear behavior with slope(α+1)
can be observed after some value ofx = γ and in the range[γ,∞]. Determination of the exponent(α+1)
and the cut-off parameter (or threshold)γ is done by performing a simple graphical method (obtaining
the value which separate two power law regions) to the log-log scale. But this procedure is considered as
subjective. Hence methods such as goodness of fit tests 3.2 can be used to estimate the cut-off parameter
of the distribution.

Problems Associated with Fitting Data to a Probability Distribution [9, 10, 11]:
The main problem of fitting financial data to a distribution is to choose the best distribution to fit.

Commonly used method to address this issue is by means of a hypothesis which states that the given data
set has been drawn from a particular distribution and to rule out the other competing hypothesis while
proving the selected one.

When selecting an appropriate data range to fit to a given distribution, we often use a cut-off value.
Choosing this cut-off value is also problematic because if we choose a very low value we may be selecting
data which have not come from the selected distribution. On the other hand, if we chose a very large
cut-off value we might be omitting legitimate values which actually follow the selected distribution.

When we fit a data set to a distribution, maximum likelihood or any other method gives us only the
best fit of the given distribution to the given data set. But it doesnt give any warnings or errors if the given
dataset does not follow the given distribution. In fact, there can be some other distributions which would
be best fits to the given dataset. So our fitting method does not imply that our dataset actually follows the
given distribution.

There can be deviations when we try to fit a known distribution to a data set which was drawn from
that particular distribution, because of the random nature of the sampling. Addressing the issue of finding
the best distribution type to fit a given data set is a big problem in financial world [9, 10, 11].

Methods that can be Used to Validate the Fitted Values :
Likelihood ratio test is used to compare distributions with one another. It simply calculates the like-

lihood of two distributions and chooses the one with the higher likelihood. Also sign of the logarithmic
ratio between two likelihood values can be used to find the best fit. Non parametric bootstrap method can
be used overcome the uncertainty of estimated data. It is done by randomly selecting a large number of
sequences (1000) from the original dataset and estimating cut-off and exponent values for each of those
datasets to get the average of the estimated values. We have used this method when fitting real data to the
distribution.

Monte-Carlo power test is used to find the best goodness of fit method. It is simply analyzing the test
statistic values and gives evidence on the speed of convergence of the method and effect on values of the
parameters for convergence. According to this test, modified Cramer-Von-Mises test gives more accurate
and robust values above all the other methods [9]. We can use the p-value approach to find out the best
fitting distribution. We can simply calculate the p-value of competing distributions and compare with the
main (assumed) distribution to get the best fit. If the P-value of our assumed distribution is large, then the
assumption is not ruled out [11].

The following sections ( A.2.1 and A.2.1)) describe the terms used to describe a probability distribu-
tion.
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Infinite divisibility If x is any random variable with cumulative distribution function F, and F is
infinitely divisible for every positive integer n, then there exist n different independent identically dis-
tributed random variablesx1+x2+....+xn (with a cumulative distribution functionFn) whose sum is equal
to x. Normal distribution, Cauchy distribution and all other members of the stable distribution family, Pois-
son distribution, negative binomial distribution, exponential distribution, geometric distribution, Gamma
distribution and degenerate distribution are examples of infinitely divisible distributions. The uniform dis-
tribution and binomial distribution are not infinitely divisible. Also if a given characteristic function F can
be represented as thenth power of some other characteristic function for every integer n, both F and the
corresponding density function are called infinitely divisible [3, 4].

First few central moments and their interpretations

• The zeroth central moment is one.

• The first central moment is zero.

• The second central moment is variance; the square root of it represents the standard deviation.

• The third central moment represents skewness

• The fourth central moment represents kurtosis

Pareto Levy Relationship with Maslov paper[2]

• Histogram of short time lag increments of market price, generated by the Maslov model has a Gaus-
sian shape with sharp maximum and broad wings (i.e., high data concentration in extreme values).
So according to the current consensus of this peculiar distribution, up to a certain level it shows the
characteristics of Pareto-Levy distribution, with a power law exponent of1 + α1 ∼ 2.4 − 2.7, and
then it crosses over either to a steeper power law with an exponent1 + α2 ∼ 3.7 − 4.3 or to an
exponential decay. In both cases this crossover ensures a finite variance (second moment) of the
distribution [2].

• Maslov analyzed the histogram of price increments measured within time lags of 1, 10, and 100.
The overall shape of these histograms is strongly non Gaussian and it is very close to the shape of
real stock prices. As the lag increases the sharp maximum peak of the histogram gradually softens
(close to Gaussian), while the wings remain strongly non Gaussian. Also his analysis on the log-
log plot of histogram with lag 1 for data collected during 3.5 *107 time stamps shows the log-log
plot has two distinguishable power law regions separated by a large crossover around the increment
approximately equal to 1 due to some unknown reason. The exponents of these two regions are
measured to be1 + α1 ∼ 0.6 ± 0.1 and1 + α2 ∼ 3 ± 0.2. A similar crossover of two power law
regions was reported in real stock price fluctuations in NYSE with the exponents1+α1 ∼ 1.4− 1.7
and1 + α2 ∼ 4 − 4.5. The power law exponent of far tail1 + α = 3 stays right at the borderline,
separating the Pareto-Levy region with power law exponent 1 +α <3, where the distribution has
infinite second moment(variance). And also he does not expect a convergence of a price fluctuation
distribution to a universal Pareto-Levy or Gaussian as lag is increased [2].
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/* Probability Distribution Function of Simple Power-Law
Distribution: */

F (x) = 1− (γ/x)α (A.8)

Whereα is power exponent andγ is cut-off (x ¿γ).
/* Probability Density Function of Simple Power-Law Distribution:

*/

f(x) = (αγα)/xα+1 , α > 0, γ > x (A.9)

Mean = αγ/(α− 1), α > 1 (A.10)

Mode = γ (A.11)

V ariance = γ2α/(α− 1)2(α− 2), α > 2 (A.12)

Algorithm 6 : Pareto-Levy Distribution
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